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The actin cytoskeleton plays a role in cell-cell adhesion but its specific function is not clear. Actin
might anchor cadherins or drive membrane protrusions in order to facilitate cell-cell adhesion. Using
a mathematical model of the forces involved in cadherin-based adhesion we investigate its possible
functions. The immersed boundary method is used to model the cell membrane and cortex with
cadherin binding forces added as linear springs. The simulations indicate that cells in suspension can
develop normal cell-cell contacts without actin-based cadherin anchoring or membrane protrusions.
The cadherins can be fixed in the membrane or free to move and the end results are similar. For
adherent cells, simulations suggest that the actin cytoskeleton must play an active role for the cells
to establish cell-cell contact regions similar to those observed in vitro.

I. INTRODUCTION

Cadherin-based adhesion is critical in assembling individual cells into tissues. Initiation of cadherin-based adhesion
between cells results in dramatic changes in actin organization [1-4]. Actin rearrangements include the formation of
lamellae at or near the cell-cell contact, which have been proposed to expand the area of adhesion between individual
cells [5, 6]. Actin has also been thought to anchor engaged cadherin complexes, limiting their diffusion and providing
a structural component that results in strong cell-cell adhesion [7]. Recent work reconstituting cadherin-actin com-
plexes have called this assumption into question, however, as the proposed cadherin-catenin-actin complex cannot be
reconstituted [8, 9].

A general role for actin in cell-cell adhesion is well accepted. Perturbations in the actin cytoskeleton with drugs
do weaken cadherin-based adhesion between cells [10, 11]. Similarly, perturbations of many actin regulatory systems
result in altered cell-cell junction morphology and, not surprisingly, actin organization at cell-cell contacts [4, 12-16].
However, studies identifying players in actin regulation at cell-cell contacts do not address whether actin is required for
direct cadherin anchoring or expansion and maintenance of the cell-cell contact area through actin-based membrane
protrusions, or both. In fact, assessing these roles in isolation from one another is experimentally challenging. How
can actin’s function in protrusion formation be perturbed without altering other functions, such as cell-cell adhesion?

Here we use a mathematical model to examine the basic biophysical parameters that must exist for cells to initiate
and expand their cell-cell junctions. The immersed boundary (IB) method can be used to model individual cells
that display an elastic, deformable cortex. Cells coated with cadherins adhere to one another and will expand their
junctions to a maximum area. Using this method, we independently test the roles of actin in cadherin anchoring or
membrane protrusion formation in expansion of cell-cell contacts to a maximum cell-cell junction area.

Simulations using this model show that cadherin anchoring is not necessary to expand nascent cell-cell contacts.
While membrane protrusions are not necessary to expand cell-cell junctions for cells in suspension, models which
crudely mimic cells adhered to a substrate do not passively expand nascent cell-cell contacts fully, but do when
membrane protrusions occur at the boundary of the cell-cell contact.

II. DESCRIPTION OF THE MATHEMATICAL MODEL

In our model we consider the forces exerted by cadherins, a cell’s membrane along with its cortical shell, and the
fluid surrounding the cells. We will divide our discussion of the model into two main areas — first, the representation of
the cell membrane, cortical shell, and the fluid; second, the treatment of the cadherins. For the first part it is natural
to use the IB method [17], which has been applied to a variety of biological fluid-structure interaction problems,
including modeling of the cell with various degrees of complexity [18-20].



A. IB method

In the IB method, the coupled equations of motion for one or more elastic, massless surfaces immersed in a viscous,
incompressible fluid are solved. The key idea of the IB method is to model the effect of the surface by a suitable force
density term in the fluid dynamics equations; this allows a single set of fluid dynamics equations to hold in the entire
domain with no internal boundary conditions. Thus the surface exerts forces on the fluid and the motion of the fluid
determines the motion of the surface. The boundary is assumed to be massless, so that all of the force generated
by distortions of the boundary is transmitted to the fluid. The boundary is modeled by a singular force, which is
incorporated into the forcing term, f, in the Navier-Stokes equations. The Navier-Stokes equations are then solved to
determine the fluid velocity throughout the domain. Since the immersed boundary is in contact with the surrounding
fluid, its velocity must be consistent with the no-slip boundary condition. Thus the immersed boundary moves at the
local fluid velocity. Let I' represent the immersed boundary surface, X(s,t) be the parametrized curve in R? that
specifies points on I', x is a point in the domain €2, u is the fluid velocity, p is the fluid pressure, and ¢ is time. The
method is described by the following set of equations:

F(s,t) = AX, ] (1)

f(x,t) = /FF(S,t)é(x — X(s,t))ds (2)

p(ug+ (u)-Vu) = =Vp+ plu+f (3)
V-u=0 (4)

w =u(X(s,t),t) = /Qu(x,t)é(x — X(s,1)) dx. (5)

The operator, A = M +C has two parts: the first, M, models the cell membrane and cortex assuming that it behaves
like an object under elastic tension and the other part, C, adds the force contributions due to binding cadherin
pairs. The boundary, fluid force, and velocity are related through equations 2 and 5. Equations 3 and 4 are the
incompressible Navier-Stokes equations. We assume that the density, p, is constant and p is the viscosity. Here § is
the Dirac delta distribution.

In our model there are two immersed boundaries which represent the membrane and cortical shell of two cells. The
boundaries are discretized and represented by IB points. The cells are filled with and surrounded by water. Of course
it would be more realistic to model the interior of the cell as a more complex material, but the model framework we
are using only allows for one fluid. Due to this restriction, we include a section on model verification, where it is
shown the simulations can reproduce experimental evidence in a different system with the same issue.

In our model the immersed boundary is a one dimensional representation of the two dimensional cell membrane.
The elastic properties of a two dimensional network are more complex than those of a one dimensional network. In
a one dimensional elastic spring, one elastic parameter will characterize the system, whereas in a two dimensional
system a strain tensor describes the elastic properties of the system. Assuming certain symmetries the strain tensor
for a two dimensional elastic membrane can be characterized by a shear modulus and an area compression modulus
[21]. In our formulation the shear of the membrane is determined by a combination of the local stretching of the
immersed boundary and the internal fluid pressure. We assume that for cells adhering in suspension, the membrane
area of the cells does not change. Thus we use shear moduli for our model to determine the elastic properties of the
immersed boundary. The stretching of the immersed boundary can be interpreted as the membrane becoming less
flaccid locally.

The operator M is defined by assuming that the membrane and cortex behave like an object under elastic tension.
For a boundary under tension, the strength of the force on the boundary is given by

0
F(Svt) = ai(T(Sat)T(&t))a (6)
s
where T'(s,t) is the tension at the given point and 7(s, t) is the tangent vector to the boundary at that point (see [22]

for a derivation). The tangent vector is
( t) = 87X 67X
Y= s ds

Assuming that the reference configuration represents an unstressed configuration, then H %—)S( H —1 represents the strain.
If we assume a Hooke’s law material so that the force is proportional to the strain, then the tension is given by

T(s,t):To( (Z{Hq). (8)

(7)




If we instead assume that the boundary is linearly elastic with zero resting length (which we do not assume in this
paper) then the tension becomes
) o
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In the latter case M simplifies to Tog—;.
The discretized force operator is defined by

where the superscript denotes the time and the subscript denotes the immersed boundary point (see the appendix for
more details). The first part represents the membrane forces as an elastic substance which obeys Hooke’s law. More
specifically
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where the sum is over all IB points connected to k, kps is the spring constant for the membrane elasticity (for red
blood cells kyy = 14 uN/m [23, 24] and for MDCK cells kj; = 7 dynes/cm [25, 26]), £py = 0.14um is the rest length
of the springs, and As = 0.156um is the initial separation of the immersed boundary points. The initial separation
of the immersed boundary points is set to be slightly higher than the spring rest length so the cell membrane will be
under tension causing it to be circular in the absence of any other forces. Later in the manuscript we will describe
the operator A} which models the forces due to interacting cadherins.

B. Numerical Implementation

The Navier-Stokes equations are solved using a projection method, meaning that equation (3) is first solved with
an approximation to the pressure gradient while ignoring the incompressibility constraint, and then a correction is
performed which involves solving a Poisson equation in order to enforce the incompressibility constraint and obtain a
more accurate pressure approximation.

Due to the parameters in our system, p = 1g/cm 3, u = 0.01 g per sec per cm, and the characteristic length being
the order of microns, we can approximate the solution with a Stokes flow, i.e, we replace equation (3) with

0=-Vp+plAu+f

where the variables have all been scaled appropriately. This simplification also allows the Navier-Stokes solver to be
replaced with three Poisson solves (one for the pressure, followed by one for each of the velocity components).

A comparison of numerical solutions of Stokes flow, Ug(k1) and Ug(kz) calculated using two time steps 10k = ko,
with solutions of the full Navier-Stokes equation, Uy (k1) and U (k2), verified that Stokes flow is a good approximation.
If we assumed that Upy(k1) is accurate, we found that Us(kz) is a better approximation than Uy (kz2), and Ug(k;)
was almost identical to Uy (k1). The theoretical analysis indicates that Stokes flow should be a good approximation
and the numerical results are consistent with this prediction. All the simulations shown in the paper are solved using
Stokes flow.

We have implemented a slightly modified interpolation scheme in our Immersed Boundary implementation. The
interpolated velocity field specified by equation 5 will not in general maintain the incompressibility of the fluid,
which can result in an observable volume loss during the course of the simulation. We addressed this problem by
introducing a correction to the interpolated velocity field which ensures that the corrected velocity field satisfies a
discrete incompressibility condition. More details on the correction can be found in [27] and the appendix.

C. Cadherins

The cadherins are modeled as discrete complexes on the cell membrane (the immersed boundary). A complex can
represent more than one cadherin and more than one complex can occupy the same location or site. The number of
caherins in a complex is the cadherin weight. Cadherin complexes interact with cadherins complexes on the other cell
and they can move within the cell membrane. The locations of the cadherin complexes or the sites of the cadherin
complexes are constrained to the IB points which define the membrane, but cadherin complexes can move from point
to point and can accumulate at points. From now on in the paper we will refer to a cadherin complex as simply a
cadherin.



1. Cadherin motion

The cadherins can diffuse in the membrane and move due to sustained directional forces (convective motion). The
diffusive motion of the cadherins is modeled by a random walk with the diffusion coefficient for an individual cadherin
taken to be 1 x 1071%m? /s [28]. If the diffusive motion of a pair of bound cadherins would cause them to separate
and break the bonds, the cadherins do not move. In the results section we discuss how varying the diffusion coefficient
affects the system.

Any forces on the cadherin can cause a convective motion within the membrane. We will assume that motion in
the membrane occurs at low Reynold’s number and can be approximated by

F=1v (12)

where F is a force vector, v is the drag coefficient, and v is the velocity of the cadherin. Of course, the motion is
constrained so that the cadherin remains in the cell membrane. We determine v from the Einstein relationship

D = ukT

where D is the diffusion coefficient, k is Boltzmann’s constant, 7" is the temperature (assumed to be 37 degrees Celsius),
and g is the mobility. At low Reynolds number, p = % The motion is determined in the model by projecting the
forces on the cadherin onto a unit vector tangent to the cell membrane at the position of the cadherin and averaging
this force for the two linked cadherins. Using equation (12) we determine the velocity of the cadherin. We use Euler’s
method to determine the distance the cadherin should move. If it is greater than half the distance to the next IB
point, the cadherin moves. This approximation is for simplicity and should result in making the cadherins less mobile
than normal. The distance between the IB points in the model is variable but for simplicity we assume it is constant
and take the value to be the separation given in the initial conditions.

2.  Cadherin adhesions

We assume that a cadherin binds to only one cadherin on the other cell. When a cadherin from one cell gets close
enough to a cadherin on the other cell they will interact and bind to one another which means they will exert forces
on each other. The interaction distance is taken to be 40 nm [29] and the interaction force attains a maximum of 35
pN per individual cadherin molecule when the cadherin sites are 40 nm apart (and the membranes have not crossed
over each other) [29]. The force is modeled as a linear spring when stretched and the discretized operator A} is given
by,

n o __

r= 8 i

wke (| X2 — X2 — £e) = Za=Xi i cadherin is bound
otherwise
where w is the weight, k. = 1.75dynes/cm, . = 20nm, X7} is the location of the current cadherin, and X7 is the
location of the cadherin to which it is adhering. If the cell membrane overlaps or if the cadherins become separated
by more than 40nm the cadherins do not exert force.

III. MODEL VERIFICATION

Although our model treats the forces involved in cell-cell adhesion in a more complex manner than most previous
models, the formulation of the cell membrane and cytoplasm is simplistic. We use red blood cells to test the validity
of our model because their membrane dynamics and properties have been widely studied [30]. Though red blood cells
and MDCK cells are vastly different from each other, their membrane and cytoplasmic properties are equally different
from the model assumptions. The two model assumptions we are referring to are making the cell membrane and the
cortical shell one elastic structure and assuming the cytoplasm has the viscosity of water.

We simulated experiments where a red blood cell is deformed using optical tweezers [23]. For red blood cells the
spring constant for the membrane elasticity in our model is kp; = 14 uN/m [23, 24]. When a force of 340 x 10712
newtons was applied to the cell, it stretched 50 percent of its diameter in the direction of the applied force and the
diameter transverse to the stretching direction was decreased by 40 percent [23, 24]. In those studies, the authors
calculated shear moduli of 22.5 microNewton per meter for low shear strains and 13.3 microNewton per meter for
high shear strain from their theoretical model which match the experimental data. The stretching occurred in 2-5



seconds. They observe that a simple spherical model was not able to match the change in diameters in both directions.
Additionally they noted that their membrane shear moduli values are larger than those measured using micropipette
aspiration experiments [31].

Our simulations matched experimental data using reasonable parameters. We simulated a cell of diameter 10
microns with a force of 340 x 1072 newtons applied to each side using a shear modulus of 14 microNewton per
meter (see figure 1). Within six seconds the cell had almost reached a steady-state; diameters were elongated by
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FIG. 1: Results of a simulation designed to mimic experiments where red blood cells are stretched. The membrane is initially
a circle with a ten micron diameter. The cell shape is shown two seconds after a total force of 340 x 10™'? newtons is applied
to a two micron arc on both the right and left side of the cell membrane. Over 99 percent of the elongation occurred within

two seconds and steady state was basically reached within six seconds. The time step in the explicit scheme is fixed at 1 x 1075
seconds.

52.4 percent parallel to the direction of the force and reduced 29.3 percent in the transverse direction. Most of the
elongation occurred in the first two seconds. Although our model formulation is very different from that used in the
experimental work, it mimics the elongation of the cell in the correct time frame with similar parameter values. This
gives confidence that by changing the parameters of membrane elasticity from those measured for red blood cells
to those measured for MDCK cells, we can accurately model MDCK cells during cell-cell contact formation. The
appropriate spring constant for the membrane elasticity in our model for MDCK cells is kp; = 7 dynes/cm [25, 26].

IV. RESULTS

We now describe the results of the computational simulations. For simplicity, the simulations model two MDCK
cells in suspension adhering to each other, and interactions with a substrate are not considered initially. In order to
understand the effects of cadherin motion within the membrane on the length of cell-cell interaction, the first set of
simulations has cadherin which are fixed in the membrane. This is intended to mimic the ability of the cytoskeleton
to anchor the cadherins and restrict their movement in the membrane. Motion within the membrane is added in later
simulations by first considering simple lateral diffusion, then convection of the cadherins, and finally both diffusion
and convection. In this manner we can compare the differences that would occur if the cell actively restricts the
motion of cadherins in the membrane or if the cadherins can freely move.

A. Cell-cell junctions in suspension

In order to determine the cellular morphology of two cells adhering in suspension, MDCK (Madin-Darby canine
kidney) cells were placed in suspension culture at 250,000 cells/ml in a 20 pl drop that was suspended from the lid of
a petri dish. Cells were allowed to adhere to one another for 30 minutes before the drop was spread on a microscope
slide and images of paired cells recorded (figure 2a). The length of a cell-cell junction, relative to the diameter of each
cell in a pair was determined for 21 adherent pairs using ImageJ [32]. The average ratio of the length of the contact
area of the cell-cell interaction and the cell diameter in the experiments is 0.60 with a standard deviation of 0.10.
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FIG. 2: This figure shows in vitro cells adhering and results of a mathematical simulation of cells adhering. Part a) shows a
pair of MDCK cells in suspension culture with a cadherin based junction. In b) the initial conditions of a typical simulation of
adhering MDCK cells is shown and in ¢) the cells’ configuration after 60 seconds of simulated time is shown. In this simulation
the cadherins are fixed in space and each cadherin represents 100 individual cadherin molecules. The cadherin which are bound
are denoted by an “X” and the cadherin which are not bound are black dots.

1. Stationary cadherin

In the first set of simulations the cadherin are fixed in the membrane and not allowed to diffuse laterally. These
simulations are designed to test the effects of a cells actively anchoring the cadherins in the membrane, preventing
them from moving. For this model, figure 2b shows the initial conditions and figure 2c shows a typical simulation
after 60 seconds.

The measurements of the stable contact length relative to cell diameter in our model compare well with values
determined for MDCK cells in suspension culture. The length of the nascent cell-cell contact as a function of time
is shown in figure 3a, which demonstrates how the rate of contact expansion is initially rapid and reaches a plateau
phase as it approaches the maximal contact length.

In order to examine how increasing the number of cadherins at the membrane might alter contact expansion,
we increased the number of cadherin molecules for each cadherin complex on the membrane, the cadherin weight.
Although cells with an increased number of individual cadherin molecules per complex reached a steady state contact
length earlier, the final contact length was largely unaffected (see figure 3a).
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FIG. 3: (Color online) Simulation results where the weight of the cadherins are varied showing the length of the MDCK cell
contact over time. Part a) is a graph of the contact length as it changes with time. Simulations with 5 individual cadherin
molecules per complex are shown in black, 50 individual cadherin molecules per complex are shown in red (medium gray), 100
individual cadherin molecules per complex are shown in green (light gray), and 500 individual cadherin molecules per complex
are shown in blue (dark gray). In part b), high magnification images of the interface between bound membranes and unbound
membranes in frames from a simulation of laterally fixed cadherins with 100 individual cadherin molecules per complex. Arrows
represent the force vectors on the membrane. The two bound cadherin adjacent to unbound cadherins have the associated force
vectors colored red and the rest are blue. Notice how forces are greatest near the interface, but stabilize. In b) the cadherins
denoted by “X” are bound and cadherins denoted by black dots are unbound. For these simulations there is no diffusion and
no convection.

2. Cadherins with lateral diffusion

In order to assess how anchoring of cadherins contributes to rapid cell-cell junction expansion, we ran a set of
simulations where cadherins were free to diffuse in the plane of the membrane. All other parameters from simulations
of fixed cadherins were retained. Free lateral mobility of cadherins did not affect the long term contact length but
did result in an altered rate of cell-cell contact expansion. This seems to be true for a large range of values for the
diffusion coefficient. Surprisingly, the initial rate of contact expansion is faster, as well as more saltatory (see figure 4).
The length of the contact at plateau phase is between 0.6 and 0.7 of a cell diameter, very similar to that of actual
cells. We observe that diffusible cadherins tend to cluster towards the boundary between the contacting and free
membrane surfaces, resulting in a significantly reduced level of cadherin density on the membrane at the center of the
contact and, particularly, just outside the boundary of the contact (figure 5). This is natural since in the model it is
assumed that the force of diffusion does not break the cadherin-cadherin bonds in this simulation. The break in the
contact between membranes acts like a barrier to diffusion until the membranes move close enough for the cadherins
to interact resulting in the accumulation at that boundary. The low density region results in an early slowing of
contact expansion as abutted membranes devoid of cadherins fail to adhere later in the simulation. This situation
could be overcome with local deposition of newly synthesized or recycled cadherins.

8. Influence of convective forces on cadherins

We reasoned that a lack of convective forces in our model involving mobile cadherins might give us unanticipated
results. In order to address this we examined how such forces altered cell-cell contact expansion. The convective
forces depend on the diffusion coefficient via the Einstein relationship as stated previously. When convective forces
were first added to simulations with no lateral diffusion using a realistic diffusion coefficient of 1 x 10710 cm? /s, the
initial contact expansion was more rapid than with fixed cadherins, but not much different from diffusing cadherins
without convective forces (see figure 4b). The overall impact of allowing the cadherins to move within the membrane
does not affect the final length of the contact region.
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FIG. 4: (Color online) Simulation results showing the change in length of the MDCK cell contact with time when cadherins
are allowed to move. In a) the cadherins laterally diffuse in the membrane at different rates resulting in little overall effect on
the final contact length. For the simulations shown in black the diffusion constant is 0, for red (medium gray) it is 1 x 107'2,
for green (light gray) it is 1 x 107'Y (a realistic value), and for blue (dark gray or the top line) it is 1 x 107%. In b) simulations
with fixed cadherins are shown in black, cadherins which diffuse are shown in red (medium gray), cadherins which convect are
shown in green (light gray), and cadherins which both diffuse and convect are shown in blue (dark gray). In b) the diffusion
rate is fixed at 1 x 107100m2/sec, In these simulations the cadherin weight is 100. The simulation with the largest diffusion
coefficient ended prematurely due to computational difficulties.

Interestingly, if the diffusion coefficient is higher, 7 x 10~8 c¢m?/s, allowing convection makes a more dramatic
difference. In the set of simulations shown in figure 6, adding convection increases the rate at which the contact
region grows when compared to simulations with fixed or freely diffusible cadherins without convective forces applied.
This seems to result from movement of bound cadherins at the edge of the contact area. Bound cadherins at the
interface between the junction and the free surface exert larger forces on the cell cortex. As these bound cadherins
move away from and then back towards the interface, a result of convective forces, forces on the cell cortex are relaxed
and then suddenly reimposed at the interface. The result is a membrane fluctuation that is driven past the interface
and onto the cell cortex of the free surface, causing in the free membrane of apposed cells to be drawn together more
quickly (see figure 6b). Drawing apposed membranes into closer proximity in this manner increases the likelihood of
cadherin-cadherin interactions occurring at areas adjacent to the edge of the cell-cell contact. At plateau phase, the
contact length of the simulation with convection only was comparable to that for models without convective forces.

We then tested at the higher diffusion rate, whether addition of convective forces would reduce the ability of cells
with cadherins which laterally diffuse to expand cell-cell adhesions. Surprisingly, adding both types of cadherin
motion, random diffusion and motion due to convective forces, resulted in the contact length growing to a larger value
than in other simulations (see figure 6a). The rate of expansion was both more rapid and more saltatory. The likely
reason is that engaged cadherins pairs that exert large forces at the contacting and free membrane interface are more
free to move laterally. The result is that the loss and re-imposition of large forces at the interface is more pronounced,
driving larger membrane fluctuations through to the free membrane surface and bringing the free membranes near
the interface of apposing cells together much more rapidly. A low density of cadherins is observed in this region later
in the simulation.

B. Simulations with high viscosity that model cell-substrate adhesion

We then wondered how a model of cells adhering in suspension conditions could be compared to those making
contact while already adhering to a substrate. A modification of this model to consider a cell’s interaction with a
substrate is to increase the viscosity of the system [33-35]. The cell interacts with the substrate via integrins, which
bind and unbind to the substrate. In a fluid, interaction between the molecules is modeled by viscosity. Increasing
the viscosity represents increasing the strength of interaction between the molecules. Increasing the viscosity does not
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FIG. 5: In this image the low density of cadherins near the cell-cell interaction region can be seen in a simulation with laterally
diffusing cadherins. The image in b) is a blow up of the boxed region in a). The simulation has cadherin complexes weighted by
100. The time shown is 30 seconds into the simulation. The cadherins which are bound are denoted by an “X”, the cadherins
which are not bound are black dots, and the sites which are empty are denoted with an open circle.

directly increase the interacting forces between the immersed boundary (the cell membrane) and the fluid (substrate),
but does increase the force required to move the boundary in the fluid. Integrin binding and unbinding increases the
force required for the cell to move not unlike an increase in the forces of interacting molecules requires more force
for an object to move through a fluid. In simulations where the viscosity of the fluid is increased by a factor of 10*
the region of contact between the two membranes did not grow beyond 2 microns within 400 hours with or without
cadherin diffusion and convection.

We sought to examine how the cell overcomes this problem by focusing on the role of actin-based protrusions. Cells
on substrates demonstrate increased membrane protrusive activity that is focused towards nascent cell-cell junctions
[6]. The stall forces of lamellipodia in keratocytes has been measured as 2 nN per um? [36], and in our model a force
of 0.2 nN per um? causes a protrusion of about 5 microns in length in about 48 seconds. To mimic forces resulting
from membrane protrusions, a radial force of magnitude ranging from 0.02 to 0.2 nN um? representing pseudopodial
activity was applied to the cell membrane on an arc of 1.4 microns away from the interface between the contacting
and free membranes of each cell. In simulations with stationary cadherins weighted at 100 and where pseudopod
forces are applied, the final contact area increased to about 10 microns in 30 minutes (see figure 7) as the force
of the pseudopod increased. Simulations with freely diffusible cadherins failed because pseudopods forced together
apposed membranes devoid of cadherins and, without adhesion, the membranes moved through each other and into
the adjacent cell. Taken together, these results suggest that pseudopod activity is necessary to obtain the observed
contact length of cells on a substrate. The pseudopod extension allows membranes to be forced into apposition long
enough for cadherins from opposite cells to bind and stabilize the membrane contact.

V. DISCUSSION

Traditional understanding of cadherin-based adhesion is founded on cadherin anchoring by actin filaments. An-
choring is thought to restrict cadherin mobility and allow clustering of cadherins on the cell surface. Recent evidence
indicates that the cadherin complex does not directly associate with actin filaments [9]. Instead, cadherin complexes
may direct changes in local actin organization [8]. It remains unclear how unanchored cadherin molecules with full
lateral mobility in the membrane would be able to drive expansion of cell-cell contacts. Here we present the results
of a mathematical model of cell-cell junction expansion in cells with variable cadherin mobility. While our initial hy-
pothesis was that full cadherin mobility would limit expansion of cell-cell contacts beyond a single point of adhesion,
results show that full lateral mobility of cadherin complexes allow expansion of the cell-cell junction. Application of
convection forces at the boundaries between cell-cell contacts and free membrane surfaces does not reduce contact
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FIG. 6: (Color online) Simulation results showing the change in length of the MDCK cell contact with time when cadherins
are allowed to move in the membrane with a diffusion constant of 7 x 1075, It is interesting that at higher diffusion rates the
convection has a greater impact on the contact length. In part a) simulations with fixed cadherins are shown in black, cadherins
which diffuse are shown in red (medium gray), cadherins which convect are shown in green (light gray), and cadherins which
both diffuse and convect are shown in blue (the highest line). In part b) high magnification images of the interface between
bound membranes and unbound membranes in frames from a simulation with lateral cadherin motion due to convective forces
only is shown. At ¢t = 2.4 seconds the bound cadherin pair has moved relaxing the forces at their previous location. At ¢t = 2.46
the cadherin pair has moved back and the forces are reapplied. This motion causes more fluctuations in the membrane and a
longer contact area sooner than in the case where the cadherins do not move or move with diffusion only. In these simulations
the cadherin weight is 100. In part b) the simulation has convective forces acting on cadherins but no diffusion. The red arrows
represent the force vectors on the membrane. The cadherins denoted by “X” are bound, cadherins denoted by black dots are
unbound, and open circles denote IB points with no cadherins.

expansion. Surprisingly, fixing cadherins by anchoring to actin filaments, as proposed in traditional understanding
of cell-cell adhesions, does not appear to be necessary for establishment of cell-cell junctions. What, then, might be
the role of actin in cell-cell adhesion? Cells clearly demonstrate altered actin organization at cell-cell contacts, and
changes in actin dynamics are apparent as epithelial cells initiate and establish cell-cell contacts [4, 37]. Increased
membrane protrusions are observed at cell-cell contact sites, and have been proposed in facilitating rapid expansion of
the cell-cell contact [6]. Our model, however, best represents cell-cell junction assembly between cells in suspension,
where limited membrane protrusion opportunities are likely to occur. In suspension, epithelial cells do adhere and
expand their junctions, though the maximum contact length, as a function of cell diameter, is reduced compared to
substrate adherent cells. In our suspension model, contact expansion rapidly reaches a plateau phase, a point beyond
which active membrane protrusion may be necessary. Models of cell contact expansion in high viscosity medium sup-
ports this idea. In such simulations contact expansion is severely limited no matter how cadherin’s lateral diffusion
properties are varied nor whether convective forces are present. However, addition of protrusive forces at the bound-
aries of the cell-cell contact, mimicking those observed in real cells [6], allows rapid and complete contact expansion.
The results of this model indicates that a primary role of actin in cell-cell contact formation may be expansion of the
contact length by formation of membrane protrusions.

Analysis of forces exerted on cadherin complexes reveal that large forces appear in waves and usually at the boundary
between the contacting and free membranes of the cell-cell contact. Forces along the length of the contacts are much
smaller. This is particularly apparent when convective forces are added, which move cadherins in and out of the
boundary between the contacting and free membrane surfaces. The result is large force fluctuations at the interface
that drive adjacent free membranes from apposed cells together. These “forced” membrane protrusions increase
the rate of cell-cell contact expansion, particularly for cells with freely diffusible cadherins. A role for membrane
protrusion is further supported by our simulations of cells in a high viscosity conditions designed to mimic substrate
adhesion, where contact expansion is severely limited. While neither convective forces nor cadherin mobility allow
increased contact expansion, addition of membrane protrusive forces had a significant effect, driving free membranes
of contacting cells together and increasing both the rate of contact expansion and the maximal contact length. These
results indicate that focusing membrane protrusions towards nascent cell-cell contacts could be critical in establishment
of cell-cell adhesions for substrate adherent cells.

Interestingly, the interface between the contacting and free membrane surfaces, the site of large force fluctuations,
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FIG. 7: (Color online) This image shows results from simulations for MDCK cells on substrate. In a) the length of the contact
region is plotted in time for simulations with cadherins which are fixed in the membrane shown in black (the lowest line of
dots), cadherins which laterally diffuse and move with convective forces shown in red (medium gray, mostly superimposed on
the black), fixed cadherins and pseudopods exerting a force of 0.02 nN per um? shown in green (light gray), and fixed cadherins
and pseudopods exerting a force of 0.2 nN per pm? shown in blue (the highest line of dots). In b) the cell membranes are
shown for the simulation shown in blue in a) at 30 minutes.

shows dramatically different actin organization from the rest of the cell-cell contact in real cells. A thin line of actin is
observed at the length of cell-cell contacts, while a thick cable of filaments abuts the membrane at a near perpendicular
angle at the ends of the contact [2]. Such different organizations may be critical in handling forces exerted during
contact expansion. Zyxin and VASP are localized to the ends of such thick cables [4, 16], perhaps serving to link actin
filaments to membranes at these sites. Further, zyxin and VASP have been recently implicated in remodeling actin
in response to stretch forces at actin cables that emanate from focal adhesions [38]. Actin organization at cell-cell
junctions could be altered as a direct result of forces applied on points of the cell-cell contact.

Here we directly address the role of cadherin anchoring in establishment and expansion of cell-cell adhesions.
Surprisingly, cadherin mobility is not a factor in the majority of cell-cell junction expansion. These results provide
additional evidence that traditional thinking about how actin contributes to cell-cell adhesion must be reevaluated.

VI. APPENDIX

A. Numerical details

The most common temporal discretization of the equations describing the IB (immersed boundary) method is a
mixed explicit/implicit one, where the forces from the immersed boundary and the advection terms in the Navier-
Stokes equations are treated explicitly while the viscous terms are treated implicitly. The work involved in a timestep
of such a method consists of five steps: (1) calculation of forces on the immersed boundary, (2) spreading forces from
the immersed boundary to the Eulerian grid, (3) solving the Navier-Stokes equations with the resulting Eulerian force,
(4) interpolating velocities from the Eulerian grid to the immersed boundary, and (5) updating immersed boundary
points according to the interpolated velocity.

We use a superscript to denote the value of a variable at a given timestep; thus u”(x) = u(x,nAt) and X"(s) =
X(s,nAt). Using this notation, temporally discretizing equations (1) through (5) according to the steps listed above
using an explicit (forward Euler) handling of all immersed boundary and an implicit (Crank Nicholson) discretization
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FIG. 8: Example discrete immersed boundary curve and underlying dis-
cretized Eulerian grid

of the viscous terms, we obtain
F"(s) = A;X"(s) (13)
" (x) = / F"(s)d(x — X"(s)) ds (14)
r

un+1 —u”

pT _ _vpn+% —pl(u- v)u]nJr% + gA(unJrl +u") + " (15)
V-u"tt =0 (16)
n+1l _ n
% (X (s)) = / uH (x)8(x — X7(s)) dx. (17)
Q

These equations are solved on a pair of computational grids: a Cartesian grid for Eulerian variables, and a discrete
set of points for the Lagrangian variables. An example setup in 2 dimensions with a single immersed boundary curve
on a very coarse mesh is shown in Figure 8.

Assuming that the lower left corner of the domain is at the origin, the coordinates of the ij-th Eulerian gridpoint
are x;; = ((i+ %) Az, (j+3) Ay). A pair of subscripts on a variable denotes the location at which the Eulerian
variable is being evaluated; thus u;; denotes the value of the variable u at the ij-th gridpoint. Lagrangian gridpoints
are identified by a single index, with variables at such gridpoints identified by the corresponding index appearing as
a subscript. Thus Fj, denotes the value of the variable F at the k-th gridpoint. The location of the kth Lagrangian
gridpoint is explicitly tracked in Xy (¢). The value As is typically taken to be the initial separation of the immersed
boundary points if they are evenly spaced.

The interaction between these grids, governed by integration against a delta function in the spatially continuous
equations (14) and (17), is handled by introducing a regularized discrete delta function whose support is comparable
to the mesh spacing. The spatially discretized forms of equations (14) and (17) using this discrete delta function are

£ =3 Fpon(xi; — Xj)As (18)
k

XZ“FI _ X'Z n—‘,—l
L =U = > upon(xi; — Xp)AzAy (19)
ij
The discrete delta function appearing in equations (18) and (19) is derived from the requirement that a certain
set of properties be satisfied; these include, ensuring that the entire force is transmitted to the grid, that the force
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density on the grid is a continuous function of the IB point locations, and that the communication between Eulerian
and Lagrangian grids is very localized. We will use the delta function derived in [39],

5h(x7y) = 6h(x)6h(y) (20)
O i &

where h = Az for the delta function in the x direction and h = Ay for the delta function in the y direction.

Because of the stencil width of 4h in the definition of the delta function in (21), the force at any given immersed
boundary point affects only the Eulerian force density at the 16 nearest gridpoints. Because the force at an immersed
boundary point contributes to the Eulerian force density over a nonzero area in the discrete equations, this operation
is known as the force spreading operation.

Equation (19) is a simple interpolation operation and works much like the spreading operator but in reverse; the
interpolated field at the immersed boundary point would be an average of the surrounding values instead of being
much bigger than them all.

The Navier-Stokes equations, equations (3) and (4), are solved using a projection method, meaning that (3) is
first solved with an approximation to the pressure gradient while ignoring the incompressibility constraint, and then a
correction is performed (which involves solving a Poisson equation) in order to enforce the incompressibility constraint
and obtain a more accurate pressure approximation. Equations (3) and (4) are discretized with the following discrete
analogs of V, V-, A, and (u-V):

h, _ Wil Uil Vigtl — Vi1
(v u)ij B 2Azx + 2Ay (22)
Piv1,5 —Pi-1,5 DPij+1 — Dij—1
Vip) = , 23
( p)U < 2Ax 2Ay ) (23)
h _ Piv2,j —2Dij +Pi—2;5 | Pig+2 — 2Pij T Dij—2
(A idep) ij AA 2 + 4Ay2 (24)
h _ Pit1y — 2pij tPi-1y | Pig+1 — 2Py +Pij1
(Afignep) ;= A + Ay (25)
Cit+1,7 — Ci—1,5 Cij+1 — Cij—1
VM) = i Zitly T Tl P e Y 26
((u )c)” Ui j ( 5AL + v 90y (26)

Both discrete Laplacian operators are used, with the tight stencil used for the viscous terms and the wide stencil used
for the intermediate Poisson solve in the projection (or “correction”) step.

As stated in the text when solving the simpler equations for Stokes flow three Poisson solves are performed (one
for the pressure, followed by one for each of the velocity components) [40].

The most straightforward discretization of M is to write the force at an immersed boundary point as a difference
in the tensions on either side of that point. Assuming a single closed boundary with no external links, this can be
written as

(Thr172B)Thg1/2(t) = (Th1/2(O)Tr—1/2(2))

M, = As -
) (%(Hx,ﬁl(t) - X ()] = 50)%)
T A X1 () =X (t) (28)
(ﬁ(||xk,1(t) - X ()l - 50)m>
As

where ¢y is the resting length of the “springs” connecting Immersed Boundary points. The reason for calling the
connection between Immersed Boundary points a “spring” in the discrete set of equations is because of the form
of (28): Ty/As serves as a spring constant, ||X; — X|| — 4o is the length by which the connection between IB points 4
and k has been stretched, and (X; — Xg)/ [|X; — X|| is a unit vector in the direction of the connection, making this
look just like a Hooke’s Law spring.

Noting the similarity in the two terms of (28), we can instead write the force as a sum over IB points connected to
1B point k:

1 X;(t) — Xg(?)

A TXKu) — X (0] (29)

My = 3 2L (1X(0) - X0 - )
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An additional advantage of writing in this manner is that it also makes clear how to handle external links connecting
objects.
Gathering the temporal and spatial discretizations, the sequence of equations we solve is

P=2 ZZ<IIX?—X2||—€0>A15H' -
£ =) Fron(xi; — Xp)As .

ultt —un 3 k
p M (v gl O (Ah( e un))z—- +f£ >
N j (33)
X”Jrl X Zu”ﬂ&h (xij — Xy)AzAy. oy

In order to preserve the volume in the cells a correction to the membrane velocity is added to enforce the divergence
free condition. At the membrane grid point i let u; denote the velocity, n; be the unit normal vector, L be the arc
length of the membrane, and ds; be the arc length between grid point ¢ and ¢ — 1. The average outward velocity is
calculated by

1

The velocity is then adjusted at each point on the membrane by
U; = Uj — an;

where u; is the new velocity and 7; is a unit vector which is the average of the normal vectors for point ¢ and the
points adjacent to it. Due to computational difficulties, membrane points which are bound to the other cell are not
included in the average or the correction. The correction is linearly ramped up from the edge of the region on the
membrane of cell-cell contact.
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