
Lock Holder Preemption Avoidance
via Transactional Lock Elision

Dave Dice

Oracle Labs

dave.dice@oracle.com

Tim Harris

Oracle Labs

timothy.l.harris@oracle.com

Abstract

In this short paper we show that hardware-based transactional lock
elision can provide benefit by reducing the incidence of lock holder
preemption, decreasing lock hold times and promoting improved
scalability.

Categories and Subject Descriptors D.4.1 [Operating Systems]:
Mutual Exclusion

General Terms Performance, experiments, algorithms

Keywords Concurrency, synchronization, threads, multicore, locks,
mutexes, contention, involuntary preemption, hardware transac-
tional memory, transactional lock elision

1. Introduction

Transactional Lock Elision (TLE) [7, 8] permits multiple threads to
concurrently enter and execute critical sections guarded by a given
lock L. The critical section is executed in optimistic transactional
mode. If the hardware transaction aborts because of conflicting
accesses or other reasons, the lock system can retry with another
transaction. If there are excessive aborts in a given lock acquisition
episode, then, to ensure progress, the system reverts as necessary to
classic pessimistic physical locking.

The benefits of TLE are commonly taken to be the ability to
leverage disjoint access parallelism 1 and, for promiscuous locks
2, avoidance of so-called cache line sloshing – cache-to-cache co-
herence traffic related to lock metadata. We identify and demon-
strate yet another mode of benefit for TLE: lock-hold preemption
avoidance (LHPA). By running a critical section as a TLE transac-
tion, if the operating system preempts the thread, then the transac-
tion immediately aborts and rolls back execution, leaving the lock
available. Absent such TLE-based LHPA, convoys can form and
the critical section durations can be artificially increased.

1 A classic application of TLE might be a hash table protected by a single
coarse-grained lock where accesses to different buckets would be expected
to be disjoint. Concurrent transactional threads operating on different buck-
ets would be expected to run and commit without conflict aborts.
2 A promiscuous lock is typically uncontended, but is accessed in turn by
multiple threads

Copyright c©2015 Oracle and/or its affiliates.

2. Related Work

Blasgen et al. [3] identified the convoying phenomena for locks.
Edler et al. [9] suggested the idea of temporary non-preemption
to allow lock holders to defer preemption. Kosche at al. [13] im-
plemented a related facility in the Solaris operating system as the
schedctl interface, where threads can request advisory and bounded
preemption deferral. Schedctl has been employed in surprising
ways in lock implementations [5]. In some environments, lock
holder preemption can be avoided for short periods by masking the
timer interrupt through which preemption is driven. Uhlig et al. [16]
investigated lock-hold preemption avoidance for virtual machine
monitors. In real-time systems the priority ceiling protocol or pri-
ority inheritance protocol [15] may be able to forestall lock holder
preemption. Similarly, using elevated thread priorites for the lock
holder may avoid LHPA, although this does not suffice for the de-
fault schedulers on commodity operating systems such as Linux or
Solaris. Bershad et al. [2] emulated atomic instructions on unipro-
cessors with restartable atomic sequences. Dice et al. [6, 10] used
restartable critical sections to roll back preempted critical sections
that access CPU-specific data. Similar ideas [4] have been recently
rediscovered by the Linux kernel developer community. Harris et
al. [11] introduced the concept of revocable locks implemented as
a specialized software transactional memory.

Obviously, lock-freeandwait-free algorithmsarealsoimmune topreemptionconcerns.

3. Evaluation

To illustrate the benefits of LHPA we use a simple microbench-
mark where T concurrent threads loop as follows: acquire a central
lock L; increment a shared variable; advance a shared random num-
ber generator 3 200 steps; release L; advance a thread-local random
number generator 100000 steps. At the end of a 10 second mea-
surement interval we report aggregate number of iterations com-
pleted. We increment the shared variable to intentionally preclude
any benefit from TLE that might otherwise allow critical sections
to run concurrently in transactional mode.

We used an Oracle x5-2 [14] for our benchmarks. The system
has 2 sockets, each populated with an Intel Xeon x5-2699v3 pro-
cessor running at 2.3 GHz. Each processor has 18 cores, and each
core is 2-way hyperthreaded. The system exposes a total of 72 log-
ical CPUs. The system ran Ubuntu 15.04 with a 3.19 Linux ker-
nel. The default energy management polices were used, with turbo
mode enabled. Hardware transactional memory was explicitly en-
abled. The processors provide best-effort hardware transactional
memory with a requester-wins conflict management policy.

We used two locks in our experiments: tts and ttstle. Tts is
a simple polite test-and-test-and-set lock [1]. Upon arrival, threads
use an atomic XCHG operation to try to acquire the lock 4. Failing
that, they enter a busy-wait loop populated with a single PAUSE
instruction. There is no back-off in the busy-wait loop. When the

3 We used the the PCG random number generator from http://www.
pcg-random.org/

4 Transitioning the lock word from 0 to 1 via XCHG confers ownership.

1 2015/11/27

http://www.pcg-random.org/
http://www.pcg-random.org/


lock is then observed free, control exits the busy-wait loop and
again retries the XCHG instruction.
Ttstle is just tts augmented with TLE in a simplistic fashion.

Arriving threads use the Intel TSX RTM [12] XBEGIN instruction to
start a hardware transaction. The thread then checks the lock state,
and if the lock is held, the thread immediately commits via XEND
and reverts to the classic tts path 5. Otherwise control passes into
the critical section, and, absent aborts, the thread will successfully
commit in the unlock operator. If the transaction aborts for any
reason, control diverts into the tts slow path. No retries are used,
and there is no lemming avoidance [8]. If two or more more threads
try to simultaneously execute the critical section in transactional
mode, then at least one will abort because of data conflicts on
the variable that is incremented. We intentionally structured the
critical section and TLE policies so that the sole benefit of using
TLE would be lock holder preemption avoidance – that is, the data
conflicts ensure that there is no opportunity for speculation to allow
multiple critical section executions to run concurrently.

If a thread in the critical section in transactional mode is aborted
by a preemption interrupt, that transaction aborts and, when the
thread is again dispatched, control reverts to the classic tts slow
path. This acts to reduce lock holder preemption. In our case, the
critical section duration is far less than any reasonable time slice
length 6, so when the thread is dispatched and subsequently enters
the critical section via the tts path, it is less vulnerable to being
preempted. In a sense, the ttstle path shifted or “realigned” the
critical section to a time interval that is less likely to be exposed
to preemption. A freshly dispatched thread is unlikely to suffer
immediate re-preemption at the start of a new time slice.

In Figure 1 we show the performance of the microbenchmark
for tts and ttstle on the Y-axis, varying the thread count on the
X-axis (log scale). In our experiments the critical section length
(CSL) is far shorter than non-critical section length (NCSL) even
when 72 threads run concurrently. While the lock is promiscuous,
contention and waiting are rare. Up to 72 ready threads, tts ex-
hibits the same performance as ttstle – ttstle provides no ben-
efit in this region. Conflict aborts are rare, and most critical sec-
tions manage to execute transactionally. Beyond 72 ready threads
we encounter the onset of preemption, and ttstle shows better
performance by virtue of lock holder preemption avoidance. Under
tts the lock holder is more likely to suffer preemption. Queueing
and contention ensue until the lock holder is again dispatched onto
a CPU, after which contention will abate. Preemption of the lock
holder transiently increased the critical section length.

LHPAisForgottenbenefit Claimofprofitability:aborted CSlessexpensivethanapreempted CS–betterprogress properties Theslightlossof performancearisingfromwasted effortinpreemptedandaborted criticalsectionsisoffset byimprovedscalability. Futile wastedeffort Bewareentrainment; shouldrandomizeNCS period Inducedcontention Decreaselockholdtimes Showexistenceofbenefit;mode ofbenefit;profitability;utility Inopportunepreemption; infelicitous Tobepreempted; tosufferpreemption; Ensure; emerge;arise;manifest;reify; BesteffortHTM Requester-wins conflictresolution policy Strategyvspolicy Support ourclaims;proofbylack ofimagination;excludeother factors Shortslicelength :morefrequentLHP;lessdelay impactLongslicelength: lessfrequentLHP;moredelay impact LHPreflectsdead timeandresultsineitherhigher voluntarycontextswitching forSTPlocks,orinvoluntary switchingforpurespinlocks. BothartificiallylengthenCS andimpedescalability.Increases queueingandwaiting.

4. Conclusion

We show the existence of a non-traditional mode of benefit for TLE
– lock holder preemption avoidance.

References
[1] T. E. Anderson. The performance of spin lock alternatives for shared-memory

multiprocessors. IEEE Trans. Parallel Distrib. Syst., 1(1), Jan. 1990. URL
http://dx.doi.org/10.1109/71.80120.

[2] B. N. Bershad, D. D. Redell, and J. R. Ellis. Fast mutual exclusion for unipro-
cessors. In Proceedings of the Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS V. ACM,
1992. URL http://doi.acm.org/10.1145/143365.143523.

[3] M. Blasgen, J. Gray, M. Mitoma, and T. Price. The convoy phenomenon.
SIGOPS Oper. Syst. Rev., 1979. URL http://doi.acm.org/10.1145/
850657.850659.

[4] J. Corbet. Restartable sequences, 2015. URL https://lwn.net/Articles/
650333/.

[5] D. Dice. Inverted schedctl usage in the jvm, 2011. URL https://blogs.
oracle.com/dave/entry/inverted_schedctl_usage_in_the.

[6] D. Dice and A. Garthwaite. Mostly lock-free malloc. ISMM ’02. ACM, 2002.
URL http://doi.acm.org/10.1145/512429.512451.

5 ttstle uses a conservative early subscription policy
6 quanta on Linux and Solaris are usually greater than 1 millisecond

[7] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early Experience with a Commer-
cial Hardware Transactional Memory Implementation. In ASPLOS XIV. ACM,
2009. URL http://doi.acm.org/10.1145/1508244.1508263.

[8] D. Dice, Y. Lev, M. Moir, D. Nussbaum, and M. Olszewski. Early Experience
with a Commercial Hardware Transactional Memory Implementation, 2009.
URL https://blogs.oracle.com/dave/resource/smli_tr-2009-180.
pdf. Sun Labs Technical Report SMLI TR–2009–180.

[9] J. Edler, J. Lipkis, and E. Schonberg. Process management for highly parallel
unix systems. In Proc. 1988 USENIX Workshop on UNIX and Supercomputers,
1988.

[10] A. Garthwaite, D. Dice, and D. White. Supporting per-processor local-allocation
buffers using lightweight user-level preemption notification. In Proceedings
of the 1st ACM/USENIX International Conference on Virtual Execution En-
vironments, VEE ’05. ACM, 2005. URL http://doi.acm.org/10.1145/
1064979.1064985.

[11] T. Harris and K. Fraser. Revocable locks for non-blocking programming. PPoPP
’05. ACM, 2005. URL http://doi.acm.org/10.1145/1065944.1065954.

[12] Intel Corporation. Transactional Synchronization in Haswell, 2012.
URL https://software.intel.com/en-us/blogs/2012/02/07/
transactional-synchronization-in-haswell/. [online; retrieved
2015].

[13] N. Kosche, D. Singleton, B. Smaalders, and A. Tucker. Method and apparatus for
execution and preemption control of computer process entities: Us patent number
5937187, 1999. URL http://www.google.com/patents/US5937187.

[14] Oracle Corporation. Oracle x5-2 server architecture, 2015. URL http://www.
oracle.com/technetwork/server-storage/sun-x86/documentation/
x5-2-system-architecture-2328157.pdf.

[15] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An
approach to real-time synchronization. IEEE Trans. Comput., 1990. URL
http://dx.doi.org/10.1109/12.57058.

[16] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski. Towards scalable
multiprocessor virtual machines. In Proceedings of the 3rd Conference on Virtual
Machine Research And Technology Symposium - Volume 3, VM’04. USENIX
Association, 2004. URL http://dl.acm.org/citation.cfm?id=1267242.
1267246.

2 2015/11/27

http://dx.doi.org/10.1109/71.80120
http://doi.acm.org/10.1145/143365.143523
http://doi.acm.org/10.1145/850657.850659
http://doi.acm.org/10.1145/850657.850659
https://lwn.net/Articles/650333/
https://lwn.net/Articles/650333/
https://blogs.oracle.com/dave/entry/inverted_schedctl_usage_in_the
https://blogs.oracle.com/dave/entry/inverted_schedctl_usage_in_the
http://doi.acm.org/10.1145/512429.512451
http://doi.acm.org/10.1145/1508244.1508263
https://blogs.oracle.com/dave/resource/smli_tr-2009-180.pdf
https://blogs.oracle.com/dave/resource/smli_tr-2009-180.pdf
http://doi.acm.org/10.1145/1064979.1064985
http://doi.acm.org/10.1145/1064979.1064985
http://doi.acm.org/10.1145/1065944.1065954
https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://www.google.com/patents/US5937187
http://www.oracle.com/technetwork/server-storage/sun-x86/documentation/x5-2-system-architecture-2328157.pdf
http://www.oracle.com/technetwork/server-storage/sun-x86/documentation/x5-2-system-architecture-2328157.pdf
http://www.oracle.com/technetwork/server-storage/sun-x86/documentation/x5-2-system-architecture-2328157.pdf
http://dx.doi.org/10.1109/12.57058
http://dl.acm.org/citation.cfm?id=1267242.1267246
http://dl.acm.org/citation.cfm?id=1267242.1267246


1 5 10 50 100 500 5000

0e
+

00
2e

+
06

4e
+

06

Threads

A
gg

re
ga

te
 th

ro
ug

hp
ut

 : 
ite

ra
tio

ns

tts
ttstle

Figure 1: Aggregate throughput

3 2015/11/27


	Introduction
	Related Work
	Evaluation
	Conclusion

