
INTRODUCING SCALEGRAPH : AN

X10 LIBRARY FOR BILLION SCALE

GRAPH ANALYTICS

Miyuru Dayarathna, Charuwat Houngkaew, and Toyotaro Suzumura

Department of Computer Science

Graduate School of Information Science and Engineering

Tokyo Institute of Technology

Japan

X10 Workshop 2012

6/14/2012

This research was partly supported by the Japan Science and Technology Agency (JST) Core Research of Evolutionary

Science and Technology (CREST)

Background

• Massive graph mining and Management has become an

important research issue in recent years.

2

The network structure of the Internet

 (Opte Project, 2011) Human Protient Interaction Network (P.M. Kim et al, 2007).

Food web of Carrbibean Reef3

 (R.J. Williams et al., 2004)

Political Blogs (Adamic et al., 2005) Blog Sphere core (M., Hurst, 2005)
Molecular Graph structure of Compound 7

(Song et al., 2005)

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Background

• HPC programmer productivity is considered one of the

important goals in achieving the Exascale computational

capabilities.

• PGAS languages are an example for such initiatives.

• It is important for having a complex network analysis

software APIs in such languages

• However there are no such libraries currently available

3 Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Current Libraries for Complex Network

Analysis
• Do not aim at solving large graph problems (Beyond the

scale of Billions of Vertices and Edges)

• Do not provide a complete mix of graph algorithms

• Famous example libraries,
1. Igraph – by Gabor Csardi et al.

2. JUNG (Java Universal Network/Graph Framework) – by Joshua
O’Madadhain et al.

3. GraphStream - Stefan Balev et al.

4. The Boost Graph Library (BGL) – by Jeremy Siek et al.

5. JGraphT - Barak Naveh et al.

6. Ruby Graph Library (RGL) – by Horst Duchene

7. LEMON – Alpar Juttner et al.

8. NetworkX – Hagberg et al.

9. NG4J – Bizer et al.

4 Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Research Problem

5

Comprehensive support for HPC programmers to

specify highly productive, distributed, scalable

graph analysis tasks for billion scale graphs has not

been achieved yet.

Possible Solutions

• Create high level language wrappers for existing low level graph analysis

libraries (E.g., Knowledge Discovery Toolbox [45])

[45] Adam Lugowski, David Alber, Aydin Buluç, John Gilbert, Steve Reinhardt, Yun Teng, and Andrew Waranis.

 A flexible open-source toolbox for scalable complex graph analysis. In SIAM Conference on Data Mining (SDM), 2012.

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Presentation Outline

• Introduction

• Research Problem

• Proposed Solution

• Related Work

• Background (X10)

• Library’s Design

• Implementation

• Evaluation

• Conclusion

6 Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Aim and Objectives of ScaleGraph

• Aim - Create an X10 graph processing library which can
efficiently process massive graphs (beyond the scale of
billions of vertices and edges).

• Objectives
• To define concrete abstractions for Massive Graph Processing

• To investigate use of X10 (I.e., PGAS languages) for massive
graph processing

• To support significant amount of graph algorithms including
algorithms (E.g., structural properties, clustering, community
detection, etc.)

• To create well defined interfaces to Graph Stores

• To evaluate performance of each measurement algorithms and
applicability of ScaleGraph using real/synthetic graphs in HPC
environments.

7 Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Goal and Contributions of the Paper

• Establish the baseline architecture of ScaleGraph library

• Contributions

1. We specify a graph API with graph representations, and

algorithms for specifying graph processing in the scale of billions

of vertices and edges

2. We cover a wide range of graph representation standards which

will enable complex network analysts to easily use their Massive

(ranging from GB to TB) datasets.

3. We make an initial scalability study of our API in Peta scale

computer systems

8 Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

ScaleGraph Architecture

9

ScaleGraph

Application

Executable

X10 Runtime

Computer Cluster

X10 programmer

X10

Graph

program

code

GraphStore(s)

X10 Standard API

X10 C++ Compiler

Third party

libraries

ScaleGraph

Library

calls

uses

uses
uses

outputs uses

communication

communication

creates

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Related Work (I)

• Complex Network Research - Igraph [15], SNAP [16]

• Run only on workstations.

• May scale only for few billion edges

• Graph Libraries - GGCL [17], BGL [18], JUNG [43]

• Generic Libraries – STAPL [2]

• Our library is for distributed processing

• Vertex and Edge Attributes (Colorful Graphs)

10

[15] G. Csardi and T. Nepusz. The igraph software package for complex

 network research. InterJournal, Complex Systems:1695, 2006. URL: http://igraph.sf.net.

[16] J. Leskovec. Snap: Stanford network analysis project. URL: http://snap.stanford.edu/, Jan. 2012.

[17] L.-Q. Lee, J. G. Siek, and A. Lumsdaine. The generic graph component library. SIGPLAN Not., 34:399–414,

 October 1999. ISSN 0362-1340.

[18] D. Batenkov. Boosting productivity with the boost graph library.XRDS, 17:31–32, Mar. 2011. ISSN 1528-4972.

[43] Sourceforge. Jung - java universal network/graph framework. URL:http://jung.sourceforge.net/index.html, Jan. 2012.

[2] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato, and L. Rauchwerger. Stapl: an

 adaptive, generic parallel c++ library. In Proceedings of the 14th international conference on Languages and compilers

 for parallel computing, LCPC’01, pages 193–208, Berlin, Heidelberg, 2003. Springer-Verlag. ISBN 3-540- 04029-3.

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Related Work (II)

• Distributed Graph Libraries – PBGL [21], ParGraph [24], ComBLAS

[10]

• Programmer productivity

• Shared Memory Graph Libraries – MTGL [7], SNAP (Georgia Tech)

[46]

• Need specialized hardware

11

[21] D. Gregor and A. Lumsdaine. Lifting sequential graph algorithms for distributed-memory parallel computation.

 SIGPLAN Not., 40:423–437, October 2005. ISSN 0362-1340.

[24] F. Hielscher and P. Gottschling. Pargraph. URL: http://pargraph.sourceforge.net/, Jan. 2012.

[10] A. Buluc¸ and J. R. Gilbert. The combinatorial blas: design, implementation, and applications. International Journal of

 High Performance Computing Applications, 25(4):496–509, 2011. http://hpc.sagepub.com/content/25/4/496

[7] J. Berry, B. Hendrickson, S. Kahan, and P. Konecny. Software and algorithms for graph queries on multithreaded

 architectures. In Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International, pages 1 –14,

 march 2007.

[46] Kamesh Madduri: SNAP (Small-World Network Analysis and Partitioning) Framework. Encyclopedia of Parallel

 Computing 2011: 1832-1837

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

http://hpc.sagepub.com/content/25/4/496
http://hpc.sagepub.com/content/25/4/496

Related Work (III)

• Graph Analysis using X10 – Cong et al.[13][14]

• We focus on Graph API

• Other Computational Models – Pregel [35]

• We can implement programming models like Pregel in X10

• Importance of well defined abstractions – Kulkarni et

al.[28]

12

[13] G. Cong, G. Almasi, and V. Saraswat. Fast pgas connected components algorithms. PGAS ’09, pages 13:1–13:6, New

 York, NY, USA, 2009. ACM. ISBN 978-1-60558-836-0.

[14] G. Cong, G. Almasi, and V. Saraswat. Fast pgas implementation of distributed graph algorithms. SC ’10, pages 1–11,

 Washington, DC, USA, 2010. IEEE Computer Society. ISBN 978-1-4244-7559-9.

[35] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for large-

 scale graph processing. In Proceedings of the 2010 international conference on Management of data, SIGMOD ’10,

 pages 135–146, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0032-2.

[28] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P. Chew. Optimistic parallelism requires

 abstractions. In Proceedings of the 2007 ACM SIGPLAN conference on Programming language design and

 implementation, PLDI ’07, pages 211–222, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-633-2.

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

X10 – An Overview

• X10 is a PGAS language being developed by IBM

Research in collaboration with academic partners

13

X10 provides a programming model that can

withstand architectural challenges posed by multiple

cores, hardware accelerators, clusters, and super

computers

Increased programming productivity for future systems

such as Exascale computing systems

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

X10 – An Overview

• X10 Language Features

• Strongly typed

• Object-oriented

• Static type-checking

• Static expression of program invariants

• Supports the motivation of improving programmer productivity and

performance

• Latest Major Release X10 2.2 – source-to-source compilation

• ScaleGraph uses native X10

• Supports GPU

• Currently ScaleGraph does not use GPU programming features

14 Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

X10 – An Overview (Contd.)

• X10 Language Features

• Place – A collection of non-migrating mutable data objects and the

activities that operate on the data

15

Immutable Data:

Final variables, value type instances

Local array section Distributed Array
Remote array

section

Local object Remote object

Outbound

activities
Inbound

activities

Globally Asynchronous

…
Inbound activity

replies

Outbound activity

replies

Activity

Local Data

Activity

Local Data

Activities Activities

… …

(P. Charles, et. al. 2005)

Local array section Distributed Array
Remote array

section

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

X10 – An Overview (Contd.)

• DistArray

• Used for creating graph abstractions

• Annotation system of X10 allows extensions

• We use @Native(lang, code) for implementing C++ language

specific functions that are not implemented in current X10

• Directory listing

• GML Reader

• GlobalRef

• Used as a support for coordinating activities between different

places

16 Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Library Design

• Aim : Define solid abstractions for billion scale graph

processing

17

ScaleGraph

Application

Executable

X10 Runtime

Computer Cluster

X10 programmer

X10

Graph

program

code

GraphStore(s)

X10 Standard API

X10 C++ Compiler

Third party

libraries

ScaleGraph

Library

calls

uses

uses
uses

outputs uses

communication

communication

creates

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

ScaleGraph Application types

• SMALL (n:n > 0, n ∈ N)

• Graph applications that run in a single place

• To support complex network analysis community at large

• Use the library in single node settings

• Entire graph is stored in place 0.

• Maximum 2n vertices

• E.g., n = 16, 216 = 65,536 vertices

• MEDIUM (m:m > 0, m ∈ N)

• In memory graphs that is stored in multiple places

• Maximum (2m * numberOfPlaces)

vertices

• E.g. m = 24, (224 * 128) = 2,147,483,648

18

MEDIUM scale with four machines each machine

holds 32 places (i.e., Total 128 places).

2^2

4
2^2

4
2^2

4
2^2

5

2^2

4
2^2

4
2^2

4
2^2

5

2^2

4
2^2

4
2^2

4
2^2

5

2^2

4
2^2

4
2^2

4
2^2

5

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

ScaleGraph Application types

• LARGE

• End user does not have enough compute resources to instantiate

sufficient amount of resources to hold billion scale graphs

• Users with small compute clusters

• Resourceful clusters such as super computers when the processed

graphs need to reside on disks

19

2^24

LARGE scale with four machines each machine holds

 32 places (i.e., Total 128 places). However only a

portion of the graph is loaded on to the machines.

2^24
2^24

2^25

2^24
2^24

2^24
2^25

2^24
2^24

2^24
2^25

2^24
2^24

2^24
2^25

Why three scales?

Performance tradeoffs and

resource availability issues

present in many graph analysis

applications

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Software Design

• Current Design consist if six main categories of classes :

graph, I/O, generators, metrics, clustering, and

communities

20

graph

graph

io

generator clustering

sort spantree

subgraph

util

communities metrics

org

scalegraph

isomorphism layout

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Software Design : Graph Representation

• Graph is just a data structure. Graph algorithms are

coded separately.

• Graphs are represented as adjacency lists.

• Most of the real world graphs are sparse

21

Graph

PlainGraph AttributedGraph

CyclicPlainGraph

Place 0 Place 1 Place 2 Place 3

Place 0 Place 1 Place 2 Place 3

PlainGraph

CyclicPlainGraph

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Software Design : Data Representation of

AttributedGraph

22

Attribute

Values
Edge ID

0 1

attributeNameID

Map

attributeIDName

Map

attributeNameID

Map

attributeIDName

Map

V
er

te
x

E

d
g
e

Array of edges

i

Array of edge attributes

Place ID

. . .

Edge to attribute map

Vertex ID

In Edge IDs

Vertex

Records

Edge ID

Edge Records

Array of vertices

Array of vertex attributes

Vertex to attribute map

E(i,P)

E(i,j)

E(i,0)

…
V(i,P)

V(i,j)

V(i,0)

…

Vertex ID

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Software Design : Data Representation of

PlainGraph

23

0 i . . .

Place ID

Vertex

records

Neighbor vertex IDs of A(i,j)

Array of vertex

records

0 i . . .

Place ID

Array of vertex

records

Source vertices
Destination vertices

Neighbor vertex IDs of B(i,j)

A(i,P)

A(i,j)

A(i,0)

…

Vertex

records

B(i,P)

B(i,j)

B(i,0)

…

0 i . . .

Place ID

Array of unique

vertices

M : Total supported vertices

N : Number of Places

P : Vertices per Place (P=(M/N))

i : Place ID (N > i ≥ 0)

P > j ≥ 0

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Software Design : Graph Storage Formats

• There are variety of graph storage formats in use.

24

<?xml version="1.0" encoding="UTF-8"?>

<gexf xmlns="http://www.gexf.net/1.1draft"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.gexf.net/1.1draft http://www.gexf.net/1.1draft/gexf.xsd"

 version="1.1">

 <graph mode="static" defaultedgetype="undirected">

 <nodes>

 <node id="4941" label="YBR236C"/>

 <node id="4942" label="YOR151C"/>

 <node id="4943" label="YML010W"/>

 <node id="4944" label="YNR016C"/>

 <!-- Rest of the Contents -->

 <edge id="20367" source="7276" target="7277"/>

 <edge id="20368" source="7278" target="7279"/>

 <edge id="20369" source="7293" target="7294"/>

 </edges>

 </graph>

</gexf>

GEXF

Creator "Mark Newman on Sat Jul 22 05:41:45 2006"

graph

[

 directed 0

 node

 [

 id 0

 label "8001"

]

 node

 [

 id 1

 label "64666"

]

 node

 [

 id 2

 label "7018"

]

GML

% US power grid - unweighted network

% from Panayiotis Tsaparas:

% http://www.cs.helsinki.fi/u/tsaparas/MACN2006/data-code.html

% adapted for Pajek, V. Batagelj, March 19, 2006

% 0 -> 4941

*vertices 4941

*edgeslist

4941 386 395 451

1 3553 3586 3587 3637

2 3583

3 4930

4 88

5 13 120

6 8

7 8

8 6 7 9

9 8 10 61 75 205 208

Pajek

<?xml version="1.0" encoding="UTF-8"?>

<graphml xmlns="http://graphml.graphdrawing.org/xmlns"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns

 http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">

 <graph id="G" edgedefault="undirected">

 <node id="n0"/>

 <node id="n1"/>

 <node id="n2"/>

 <node id="n3"/>

 <edge source="n0" target="n2"/>

 <edge source="n1" target="n2"/>

 <edge source="n2" target="n3"/>

 </graph>

</graphml>

GraphML

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Software Design : Graph Storage

Readers/Writers
• A set of classes for reading and writing graph files located

at org.scalegraph.io

• E.g.

• EdgeListReader, EdgeListWriter

• ScatteredEdgeListReader, ScatteredEdgeListWriter

• GEXFReader, GEXFWriter

• GMLReader, GMLWriter

25

Attributed Graphs Non-attributed Graphs

GML CSV

GEXF DIMACS

GraphML LGL

CSV Pajek

GDF

GraphViz

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Software Design : Graph Generators

• Include a collection of synthetic graph generators

• Have implemented R-MAT generator

• Working on

• BarabasiAlbertGenerator

• CitationgraphGenerator

• ErdosRenyiGenerator

26 Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Software Design : Graph Structural

Properties
• Graphs contains specific topological features which

characterize their connectivity.

• Implemented
• Degree Distribution Calculation (in-degree, out-degree, in/out-degree)

• Betweeness Centrality (BC)

• PageRank/RWR

• Clusters (E.g., Spectral Clustering)

• Planned other metrics
• Diameter

• Density

• Complexity

• Cliques

• Kcores

• Mincut

• Connected Component

27 Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Implementation : Background – Degree

Distribution Calculation, R-MAT Scale
• If one denotes degree by k, then the degree distribution

can be represented by pk.

• R-MAT scale is an integer that specifies the number of
vertices available in a graph. E.g. Scale 10 graph has
1024 vertices

28

In degree = 3

Out degree = 2

In/Out degree = 5

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Implementation : Background –

Betweeness Centrality (BC)
• BC measures the extent to which a vertex lies on paths

between other vertices

• If be the number of geodesic paths from s to t that

pass through i (s, t, and i are vertices of the graph, s≠t≠i)

• If total number of geodesic paths from s to t is denoted as

• Betweenness Centrality Can be specified as follows,

29

n
i
st

g st

i

s

t

BC score of i = 2/2

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Implementation : An example for use of

AttributedGraph

30

val attrArray:ArrayList[Attribute] = null;

schema: AttributeSchema = new AttributeSchema();

schema.add("fname", AttributeSchema.StringAttribute);

schema.add("email_add", AttributeSchema.StringAttribute);

schema.add("age", AttributeSchema.IntAttribute);

attrArray = new ArrayList[Attribute]();

attrArray.add(new StringAttribute("fname", "Alice"));

attrArray.add(new StringAttribute("email_add", "alice@gmail.com"));

v0:Vertex = new Vertex(attrArray);

attrArray = new ArrayList[Attribute]();

attrArray.add(new StringAttribute("fname", "Bob"));

attrArray.add(new StringAttribute("email_add", "bob@gmail.com"));

v1:Vertex = new Vertex(attrArray);

Alice

Bob

alice@gmail.com

bob@gmail.com

Define attribute schema

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

First vertex

Second vertex

Implementation : An example for use of

AttributedGraph (Contd.)

31

g: AttributedGraph = AttributedGraph.make();

g.setVertexAttributeSchema(schema);

g.addVertex(v0);

g.addVertex(v1);

schema: AttributeSchema = new AttributeSchema();

schema.add("title", AttributeSchema.DateAttribute);

schema.add("dtime", AttributeSchema.DateAttribute);

g.setEdgeAttributeSchema(schema);

attrArray = new ArrayList[Attribute]();

attrArray.add(new StringAttribute("title", "Meeting"));

attrArray.add(new DateAttribute(2012,2,10));

e0: Edge = new Edge(v0,v1, attrArray);

g.addEdge(e0); Alice

Bob

alice@gmail.com

bob@gmail.com

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Initialize the graph and add

 the two vertices

Create edge attribute schema

Create the edge

Add the edge

Implementation : Run Betweeness

Centrality on AttributedGraph

32

var graph: AttributedGraph;

//Load the graph data from secondary storage

graph = GMLReader.loadFromFile("/data/power_grid.gml");

//Run the Betweeness Centrality calculation

val result = BetweennessCentrality.run(graph, false);

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Implementation : Betweeness Centrality

on PlainGraph

33

finish {

 val distVertexList:DistArray[Long] = this.plainGraph.getVertexList();

 val localVertices : Array[Long]{self.rank == 1} =

distVertexList.getLocalPortion();

 val numLocalVertices: Int = localVertices.size;

 val numThreads = Runtime.NTHREADS;

 val chunkSize = numLocalVertices / numThreads;

 val remainder = numLocalVertices % numThreads;

 var startIndex: Int = 0;

 for(threadId in 0..(numThreads -1)) {

 async doBfsOnPlainGraph(threadId, numThreads, localVertices);

 }

}

Initialize the data structures

Distributed BFS

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Implementation : Betweeness Centrality

on PlainGraph (Contd.)

34

// If undirected graph divide by 2

if(this.plainGraph.isDirected() == false) {

 if(this.isNormalize) {

 // Undirected and normalize

 betweennessScore.map(betweennessScore, (a: Double) => a /

 (((numVertex - 1) * (numVertex - 2))));

 } else {

 // Undirected only

 betweennessScore.map(betweennessScore, (a: Double) => a / 2);

 }

} else {

 if(this.isNormalize) {

 // Directed and normalize

 betweennessScore.map(betweennessScore, (a: Double) => a /

 ((numVertex -1) * (numVertex - 2)));

 }

}

Team.WORLD.allreduce(here.id, betweennessScore, 0,

 betweennessScore, 0, betweennessScore.size, Team.ADD);

}

BC score

normalization

BC results

synchronization

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Evaluation : Environment

• Conducted on Tsubame 2.0 (5th ranked super computer

on November 2011 top 500 list) on 4 nodes

35

CPU/Core count Two Intel®Xeon®X5670 @ 2.93GHz CPUs each with 6 cores.

Total 12 cores per node/24 hardware threads

RAM 54GB per node

Interconnect Infiniband Network (Voltaire Grid Director 4700)

Secondary storage GPFS/Luster file system

OS SUSE Linux Enterprise Server 11 SP1

X10 version X10.2.2.2

X10 Runtime X10 native, MPI runtime. Used MPICH 2.1.4.

X10 was built with following options:

-DNO_CHECKS=true –Doptimize=true squeakyclean

X10 environment

varaibles

X10_STATIC_THREADS=true

X10_NTHREADS=22

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Evaluation : Elapsed time on single place

36

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

6 8 10 12 14 16 18 20 22

E
la

p
se

d
 T

im
e

(s
)

T
h

o
u

sa
n

d
s

RMAT Graph Scale

Elapsed time of BC for ScaleGraph on single place

0

1

2

3

4

5

6

7

8

9

6 8 10 12 14 16 18 20 22

E
la

p
se

d
 T

im
e

(s
)

RMAT Graph Scale

Elapsed time of In/Out Degree Calculation on Single Node

Betweenness Centrality In/Out Degree Distribution

Scale 16 has a knee because it has

more edges compared to scale 18

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Evaluation: Elapsed time of BC of

ScaleGraph on multiple nodes

37

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 4 8

E
la

p
se

d
 T

im
e

(s
)

T
h

o
u

sa
n

d
s

Number of nodes

Elapsed time of BC for ScaleGraph on multiple nodes

8

12

15

16

18

20

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

R-MAT

Graph

scale

Evaluation: Elapsed time of BC of

ScaleGraph on multiple nodes

38

0

5

10

15

20

25

30

35

40

45

1 2 4 8

E
la

p
se

d
 T

im
e

(s
)

Number of nodes

Elapsed time of BC for ScaleGraph on multiple nodes

8

12

15

16

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

R-MAT

Graph

scale

Evaluation: What is X10 BC?

• A benchmark implementation of Betweenness Centrality

• Available from X10 source distribution from

http://x10.svn.sourceforge.net/viewvc/x10/benchmarks/trunk/BC/

39 Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Evaluation: Elapsed time of X10 BC on

multiple nodes

40

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9

E
la

p
se

d
 T

im
e

(s
)

Number of nodes

Elapsed time for X10 BC on multiple nodes

8

12

15

16

18

20

RMAT

Graph Scale

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Evaluation: Elapsed time of X10 BC on

multiple nodes

41

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8 9

E
la

p
se

d
 T

im
e

(s
)

Number of nodes

Elapsed time for X10 BC on multiple nodes

8

12

15

16

RMAT

Graph Scale

RMAT

Graph Scale

Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Evaluation : Degree Distribution

calculation on KAIST Twitter dataset
• Contains 41.7million user profiles represented as

follower/followee relationship

• Contains 1.47 billion edges

• The dataset of 11GB (on GPFS) was scattered into 5454

files each of 2MB in size

• Results (Three times average)

• Data loading : 40 minutes

• Get vertex count : 81 seconds

• Get edge count : 93 seconds

• In/out degree calculation: 1hour and 12 minutes

42 Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Conclusion

• Objective of this paper : Introduce the design and some

initial experiment results of ScaleGraph

• Concrete abstractions for representing graph data on

distributed environments while providing simple API for

X10 application developer community

• Distinguishing feature : Graph is distributed across places

• Difficult to load.

• Solved by graph scattering

43 Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Current status and Future Work

• Five Developers (2 part-time)

• 14,000 lines of X10 code

• Currently working on

• Improving scalability of Algorithms. Experiments are done on Tsubame
2.0

• Degree, BC, Spectral Clustering, PageRank, Random Walk With Restart)

• Improving scalability of Data representation

• CyclicPlainGraph

• Implement other graph algorithms

• Graph pattern matching, graph property calculation algorithms

• Getting ready for Release 1.0 soon. Also planning for release 2.0.

• In Future

• Support for other complex graph algorithms and analysis techniques

• Usage of heterogenious hardware

44 Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

Acknowledgement

• This research was partly supported by the Japan Science

and Technology Agency (JST) Core Research of

Evolutionary Science and Technology (CREST)

45 Introduction Research Problem Related Work X10 Library Design Implementation Evaluation Conclusion

