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[1] In order to quantify the multifractality of solar wind
turbulence, we consider a generalized weighted Cantor set
with two different scales describing nonuniform compression
of cascading eddies. We investigate the resulting multifractal
spectrum of generalized dimensions depending on two
scaling parameters and one probability measure parameter,
especially for asymmetric scaling. In particular, we show that
intermittent pulses are stronger for the model with two
different scaling parameters and a much better agreement
with the solar wind data is obtained, especially for the
negative index of the generalized dimensions. Therefore we
argue that there is a need to use a two-scale cascade model.
Hence we propose this new more general model as a useful
tool for analysis of intermittent turbulence in various
environments. Citation: Macek, W. M., and A. Szczepaniak

(2008), Generalized two-scale weighted Cantor set model for solar

wind turbulence, Geophys. Res. Lett., 35, L02108, doi:10.1029/

2007GL032263.

1. Introduction

[2] The question of multifractality is of great importance
for space plasmas because it allows us to look at intermittent
turbulence in the solar wind [e.g., Burlaga, 1991; Carbone,
1993; Carbone and Bruno, 1996; Marsch et al., 1996;
Marsch and Tu, 1997; Bruno et al., 2001]. Starting from
Richardson’s scenario of turbulence, many authors try to
recover the observed scaling exponents, using some simple
and more advanced fractal and multifractal models of
turbulence describing distribution of the energy flux be-
tween cascading eddies at various scales. In particular, the
multifractal spectrum has been investigated using Voyager
(magnetic field fluctuations) data in the outer heliosphere
[e.g., Burlaga, 1991; Burlaga et al., 1993; Burlaga, 2001]
and using Helios (plasma) data in the inner heliosphere
[e.g., Marsch et al., 1996].
[3] In general, the spectrum of generalized dimensions

Dq as a function of a continuous index, �1 < q < 1
quantifies multifractality of a given system [e.g., Ott, 1993].
A chaotic strange attractor has been identified in the solar
wind data by Macek [1998] as further examined by Macek
and Redaelli [2000]. We have also considered the Dq

spectrum for the solar wind attractor using a simple multi-
fractal model with a measure of the self-similar weighted

Cantor set with one parameter describing uniform compres-
sion and another parameter for the probability measure of
the attractor of the system. The spectrum is found to be
consistent with the data, at least for positive index q of the
generalized dimensions Dq [Macek, 2002, 2003, 2006;
Macek et al., 2005, 2006]. However, the full singularity
spectrum is necessary to quantify the degree of multifrac-
tality. Notwithstanding of the well-known statistical prob-
lems with negative q [Macek, 2006], we have recently
succeeded in estimating the entire spectrum for solar wind
attractor using a generalized weighted Cantor set with two
different scales describing nonuniform compression
[Macek, 2007].
[4] Therefore here, in order to further quantify the multi-

fractality, we consider this generalized weighted Cantor set
also in the context of turbulence cascade. Even though one
can find the two-scale Cantor set in many classical text-
books [e.g., Ott, 1993], it is still difficult to understand this
strange attractor that exhibits multifractality in various
complex real systems, also in case of intermittent turbu-
lence. Hence we argue that there is, in fact, need to use a
two-scale cascade model. Therefore we investigate the
resulting multifractal spectrum depending on two scaling
parameters and one probability measure parameter, demon-
strating that intermittent pulses are stronger for asymmetric
scaling and a much better agreement is obtained, especially
for q < 0. We hope that this generalized new asymmetric
multifractal model could shed light on the nature of turbu-
lence and will be a useful tool for analysis of intermittent
turbulence in various environments.

2. Theoretical Model

2.1. Generalized Two-Scale Weighted Cantor Set

[5] At each stage of construction of the weighted two-
scale Cantor set we basically have two scaling parameters l1
and l2, where l1 + l2 � 1, and two different weights p1
and p2. In order to obtain the generalized dimensions
Dq � t(q)/(q � 1) for this interesting example of
multifractals we use the following partition function at
the n-th level of construction [Hentschel and Procaccia,
1983; Halsey et al., 1986]

Gn l1; l2; p1; p2ð Þ ¼ p
q
1

l
t qð Þ
1

þ p
q
2

l
t qð Þ
2

 !n

¼ 1 ð1Þ

[6] The resulting strange attractor (of 2n closed intervals
for n ! 1) is the generalized weighted two-scale Cantor
set of narrow segments of various widths and probabilities.
The singularity spectrum f(a) = qa � t(q) as a function of
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a = t0(q) could also easily be obtained by using Legendre
transformation [Ott, 1993; Macek, 2006].
[7] Here we consider a standard scenario of cascading

eddies, each breaking down into two new ones, but not
necessarily equal and twice smaller. In particular, space
filling turbulence could be recovered for l1 + l2 = 1 [Burlaga
et al., 1993]. Naturally, in the inertial region of the system
of size L, h � l � L, we do not allow the energy to be
dissipated directly, assuming p1 + p2 = 1, until the Kolmo-
gorov scale h is reached. However, in this range at each n-th
step of the binomial multiplicative process, the flux of
kinetic energy density e transferred to smaller eddies
(energy transfer rate) could be divided into nonequal frac-
tions p and 1 � p, as schematically shown in Figure 1 [cf.
Meneveau and Sreenivasan, 1987].

2.2. Comparison With the P-Model

[8] The multifractal measure [Mandelbrot , 1989]
m = e/heLi (normalized) on the unit interval for (a) the usual
one-scale p-model [Meneveau and Sreenivasan, 1987] and
(b) the generalized two-scale cascade model is shown in

Figure 2 (n = 7). It is worth noting that intermittent pulses
are much stronger for the model with two different scaling
parameters. In particular, for non space-filling turbulence,
l1 + l2 < 1 one still could have a multifractal cascade,
even for unweighted (equal) energy transfer, p = 0.5. Only
for l1 = l2 = 0.5 and p = 0.5 there is no multifractality.

3. Solar Wind Data

[9] For illustration, we analyze the Helios 2 data using
plasma parameters measured in situ in the inner heliosphere
[Schwenn, 1990]. The X-velocity (mainly radial) component
of the plasma flow, ux, has been already investigated by
Macek [1998, 2002, 2003] and Macek and Redaelli [2000].
The Alfvénic fluctuations with longer (two-days) samples
have been studied by Macek [2006, 2007] and Macek et al.
[2005, 2006]. Now we have selected even longer (four-
days) time intervals of ux samples in 1976 (each of 8531
data points, interpolated with sampling time of 40.5 s) for
both slow and fast solar wind streams measured at various
distances from the Sun.

4. Methods of Data Analysis

[10] In the inertial range the standard q-order (q > 0)
structure function Su

q(l) = hju(x + l) � u(x)jqi, where u(x + l)
is a velocity component parallel to the longitudinal direction
separated from a position x by a distance l, is scaling as lx(q).
As is usual, the temporal scales can be interpreted as the
spatial scales, x = uxt (Taylor’s hypothesis). The transfer rate
of the energy flux, el, is widely estimated by el � Su

3(l)/l.
Recently, limitations of this approximation are discussed by
Vasquez et al. [2007] using power spectra, and its hydro-
magnetic generalization for the Alfvénic fluctuations is
considered by Sorriso-Valvo et al. [2007].
[11] It can be argued that in some region the total

probability measure should scale with the exponent t(q) �
(q � 1)Dq as

X
i

mq
i � lt qð Þ ð2Þ

Figure 1. Generalized two-scale weighted Cantor set
model for solar wind turbulence [Macek, 2007].

Figure 2. The multifractal measure m = e/heLi on the unit interval for (a) the usual one-scale p-model and (b) the
generalized two-scale cascade model. Intermittent pulses are stronger for the model with two different scaling parameters.
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where mi = el /h�Li is the probability measure of ith eddy in
the d-dimensional physical space. Here, for simplicity the
third moment of structure function of velocity fluctuations is
used for estimation of this measure [Marsch et al., 1996].
Admittedly, the structure function scaling exponent x(q) is
easier to measure experimentally than the spectrum of
dimensions Dq � t(q)/(q � 1) in equation (2), which is
easier to interpret theoretically, see equation (1). Surely,
both have the same information about multifractality, at
least for q > 0 [Tsang et al., 2005]. However, because we are
also interested in negative q, it is more convenient to use
dimensions instead of structure functions.

5. Results

[12] The results for the generalized dimensions Dq as a
function of q are shown in Figure 3. The values of Dq given
in equation (2), for one-dimensional turbulence, d = 1, are
calculated using the radial velocity components u = ux (in
time domain) [cf. Macek et al., 2005, Figure 3]. We have
verified that the slopes in the scaling region are not sensitive
to the number of points used [e.g., Eckmann and Ruelle,
1992; Macek, 1998, 2006, 2007]. It is well known that for

q < 0 we have some basic statistical problems [Macek,
2006, 2007]. Nevertheless, in spite of large statistical errors
in Figures 3a, 3b, 3c, and 3d, especially for q < 0, the
multifractal character of the measure can still clearly be
discerned. Therefore one can confirm that the spectrum of
dimensions still exhibits the multifractal structure of the
solar wind in the inner heliosphere.
[13] For q � 0 these results agree with the usual one-scale

p-model fitted to the generalized dimensions as obtained
analytically using l1 = l2 = 0.5 in equation (1) and the
corresponding value of the parameter p = 0.11, 0.20, 0.11,
and 0.13 for the slow (a) and (c) and fast (b) and (d) solar
wind streams at distances of 0.3 AU and 0.97 AU,
correspondingly, as shown by dashed lines. On the con-
trary, for q < 0 the p-model cannot describe the observa-
tional results, as noted by Marsch et al. [1996]. Here we
show that the experimental values are consistent with the
generalized dimensions obtained numerically from
equation (1) for the weighted two-scale Cantor set using
an asymmetric scaling, i.e., using unequal scales l1 6¼ l2, as
is shown in Figures 3a, 3b, 3c, and 3d by continuous lines.
[14] We see that the multifractal spectrum of the solar

wind is only roughly consistent with that for the multifractal

Figure 3. The generalized dimensions Dq as a function of q. The values of Dq for one-dimensional turbulence are
calculated for the generalized two-scale (continuous lines) model and the usual one-scale (dashed lines) p-model and fitted
using the ux velocity components (diamonds) for the slow (a) and (c) and fast (b) and (d) solar wind streams at distances of
0.3 AU and 0.97 AU, correspondingly.
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measure of the self-similar weighted symmetric one-scale
weighted Cantor set only for q � 0, as also seen from the
standard structure function analysis. On the other hand, this
spectrum is in a very good agreement with two-scale
asymmetric weighted Cantor set schematically shown in
Figure 1 for both positive and negative q. Obviously, taking
two different scales for eddies in the cascade, one obtains
a more general situation than in the usual p-model of
Meneveau and Sreenivasan [1987] for fully developed
turbulence, especially for an asymmetric scaling, l1 6¼ l2.
Hence we hope that this generalized model will be a useful
tool for analysis of intermittent turbulence in space plasmas.
[15] The value of parameter p (within some factor) is

related to the usual models, which are based on the p-model
of turbulence [e.g., Meneveau and Sreenivasan, 1987]. The
values of p obtained here are roughly consistent with the
fitted value in the literature both for laboratory and the solar
wind turbulence, which is in the range 0.13 � p � 0.3 [e.g.,
Burlaga, 1991; Carbone, 1993; Carbone and Bruno, 1996;
Marsch et al., 1996].

6. Conclusions

[16] We have studied the inhomogeneous rate of the
transfer of the energy flux indicating multifractal and
intermittent behavior of solar wind turbulence in the inner
heliosphere. In particular, we have demonstrated that inter-
mittent pulses are stronger for the model with two different
scaling parameters and a much better agreement with the
real data is obtained, especially for q < 0. We confirm that
the degree of multifractality of the solar wind in the inner
heliosphere is different for slow and fast streams. Also as
the heliocentric distance increases the solar wind becomes
more multifractal in agreement with other studies. In par-
ticular, we observe radial evolution of multifractality (inter-
mittency) as noticed, e.g., by Bruno et al. [2003].
[17] Basically, the generalized dimensions for solar wind

are consistent with the generalized p-model for both posi-
tive and negative q, but rather with different scaling
parameters for sizes of eddies, while the usual p-model
can only reproduce the spectrum for q � 0. Thus, we also
confirm the utility of the model introduced by Burlaga et al.
[1993], using a different data set. In general, the proposed
generalized two-scale weighted Cantor set model should
also be valid for non space filling turbulence. Therefore we
propose this cascade model describing intermittent energy
transfer for analysis of turbulence in various environments.

[18] Acknowledgments. This work has been supported by the Polish
Ministry of Science and Higher Education (MNiSW) through grant
NN202412733.

References
Bruno, R., V. Carbone, P. Veltri, E. Pietropaolo, and B. Bavassano (2001),
Identifying intermittency events in the solar wind, Planet. Space Sci., 49,
1201–1210.

Bruno, R., V. Carbone, L. Sorriso-Valvo, and B. Bavassano (2003), Radial
evolution of solar wind intermittency in the inner heliosphere, J. Geo-
phys. Res., 108(A3), 1130, doi:10.1029/2002JA009615.

Burlaga, L. F. (1991), Multifractal structure of the interplanetary magnetic
field: Voyager 2 observations near 25 AU, 1987–1988, Geophys. Res.
Lett., 18, 69–72.

Burlaga, L. F. (2001), Lognormal and multifractal distributions of the helio-
spheric magnetic field, J. Geophys. Res., 106, 15,917–15,927.

Burlaga, L. F., J. Perko, and J. Pirraglia (1993), Cosmic-ray modulation,
merged interaction regions, and multifractals, Astrophys. J., 407, 347–
358.

Carbone, V. (1993), Cascade model for intermittency in fully developed
magnetohydrodynamic turbulence, Phys. Rev. Lett., 71, 1546–1548.

Carbone, V., and R. Bruno (1996), Cancellation exponents and multifractal
scaling laws in the solar wind magnetohydrodynamic turbulence, Ann.
Geophys., 14, 777–785.

Eckmann, J.-P., and D. Ruelle (1992), Fundamental limitations for estimat-
ing dimensions and Lyapunov exponents in dynamical systems, Physica
D, 56, 185–187, doi:10.1016/0167-2789(92)90023-G.

Halsey, T. C., M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman
(1986), Fractal measures and their singularities: The characterization of
strange sets, Phys. Rev. A, 33, 1141–1151.

Hentschel, H. G. E., and I. Procaccia (1983), The infinite number of gen-
eralized dimensions of fractals and strange attractors, Physica D, 8, 435–
444.

Macek, W. M. (1998), Testing for an attractor in the solar wind flow,
Physica D, 122, 254–264.

Macek, W. M. (2002), Multifractality and chaos in the solar wind, in
Experimental Chaos, edited by S. Boccaletti et al., AIP Conf. Proc.,
622, 74–79.

Macek, W. M. (2003), The multifractal spectrum for the solar wind flow, in
Solar Wind 10, edited by R. Velli, R. Bruno, and F. Malara, AIP Conf.
Proc., 679, 530–533.

Macek, W. M. (2006), Modeling multifractality of the solar wind, Space
Sci. Rev., 122, 329–337, doi:10.1007/s11214-006-8185-z.

Macek, W. M. (2007), Multifractality and intermittency in the solar wind,
Nonlinear Proc. Geophys., 14, 695–700.

Macek, W. M., and S. Redaelli (2000), Estimation of the entropy of the
solar wind flow, Phys. Rev. E, 62, 6496–6504.

Macek, W. M., R. Bruno, and G. Consolini (2005), Generalized dimensions
for fluctuations in the solar wind, Phys. Rev. E, 72, 017202, doi:10.1103/
PhysRevE.72.017202.

Macek, W. M., R. Bruno, and G. Consolini (2006), Testing for multifrac-
tality of the slow solar wind, Adv. Space Res., 37, 461–466, doi:10.1016/
j.asr.2005.06.057.

Mandelbrot, B. B. (1989), Multifractal measures, especially for the geophy-
sicist, Pure Appl. Geophys., 131, 5 – 42.

Marsch, E., and C.-Y. Tu (1997), Intermittency, non-Gaussian statistics and
fractal scaling of MHD fluctuations in the solar wind, Nonlinear Proc.
Geophys., 4, 101–124.

Marsch, E., C.-Y. Tu, and H. Rosenbauer (1996), Multifractal scaling of the
kinetic energy flux in solar wind turbulence, Ann. Geophys., 14, 259–
269.

Meneveau, C., and K. R. Sreenivasan (1987), Simple multifractal cascade
model for fully developed turbulence, Phys. Rev. Lett., 59, 1424–1427.

Ott, E. (1993), Chaos in Dynamical Systems, Cambridge Univ. Press, Cam-
bridge, U. K.

Schwenn, R. (1990), Large-scale structure of the interplanetary medium, in
Physics of the Inner Heliosphere, Phys. and Chem. in Space, vol. 20,
edited by R. Schwenn and E. Marsch, pp. 99–181, Springer, Berlin.

Sorriso-Valvo, L., R. Marino, V. Carbone, F. Lepreti, P. Veltri, A. Noullez,
R. Bruno, B. Bavassano, and E. Pietropaolo (2007), Observation of in-
ertial energy cascade in interplanetary space plasma, Phys. Rev. Lett., 99,
115001, doi:10.1103/PhysRevLett.99.115001.

Tsang, Y.-K., E. Ott, T. M. Antonsen Jr., and P. N. Guzdar (2005), Inter-
mittency in two-dimensional turbulence with drag, Phys. Rev. E, 71,
066313, doi:10.1103/PhysRevE.71.066313.

Vasquez, B. J., C. W. Smith, K. Hamilton, B. T. MacBride, and R. J.
Leamon (2007), Evaluation of the turbulent energy cascade rates from
the upper inertial range in the solar wind at 1 AU, J. Geophys. Res., 112,
A07101, doi:10.1029/2007JA012305.

�����������������������
W. M. Macek and A. Szczepaniak, Space Research Centre, Polish

Academy of Sciences, Bartycka 18 A, 00-716 Warszawa, Poland.
(macek@cbk.waw.pl)

L02108 MACEK AND SZCZEPANIAK: MODEL FOR TURBULENCE L02108

4 of 4


