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Summary. We consider the problem of pose estimation in the context of outdoor
robotic mapping. In such cases absolute position information from GPS is often
available, making a full-blown SLAM implementation largely unnecessary. However,
the peculiarities of GPS can lead to problems when using it in conjunction with a
naive mapping system, as unpredictable biases tend to cause significant inconsisten-
cies in the generated maps. We thus present a two-stage pose estimation system to
address this problem. The first stage consists of a best-effort “blind” pose estimator
based on a robust and extensible Rao-Blackwellized particle filtering framework. The
estimate from this stage is then fed to a “seeing” HMM-style filter that attempts to
infer the uncorrected bias of the first stage by matching stereo maps under an as-
sumption of scene rigidity. Results are shown that demonstrate a vast improvement
in pose estimates and map consistency using this method over the naive approach.

1 Motivation

Our work is motivated by the desire to create an autonomous robotic system
that is able to navigate across unknown terrain as quickly and reliably as
possible. Such is the scope of the Learning Applied to Ground Robots (LAGR)
project, sponsored by the U.S. Defense Advanced Research Projects Agency
(DARPA). In the type of scenario studied in LAGR, our robot is required to
complete multiple trips between two GPS waypoints, with no initial knowledge
of the intervening terrain. We would expect the first trip to be completed in
the greatest amount of time, as the robot would inevitably get caught in
cul-de-sacs, necessitating backtracking and further exploration. After the first
trip, with a complete map, we would expect no such delays. However, in
our experiments we have discovered more often than not that the subsequent
trips are even more delayed than the initial one. Analysis usually reveals that
this phenomenon is caused by map and pose inconsistency between the two
trips. Obstacles observed at a certain position on the first trip are observed
at another position on the second trip, leading to a map filled with phantom
obstacles and hence impeding progress.
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These experiments were conducted using a system with separate local-
ization and mapping components. GPS, inertial, and odometric sensors were
first used to form a fused pose estimate. Given this pose information, local
occupancy grids obtained from stereo vision were then overlaid into a globally-
referenced occupancy grid used for navigation. The lack of feedback from the
mapping process back into the pose estimation is what enabled the types of
failures we observed.

In light of this, an obvious approach is to leverage existing techniques for
performing simultaneous localization and mapping (SLAM), which perform
the kind of feedback necessary to address the consistency issues. However,
these approaches have drawbacks as well, including implementation difficulty,
computational complexity, and difficulty in integrating GPS and INS measure-
ments. This is primarily what led to our seeking a solution that would address
the consistency issues associated with the naive approach while avoiding the
complexities of SLAM.

We thus present our own version of this “GPS/INS and mapping” paradigm
that addresses many of the failings present in the traditional approach. We
decompose the problem into two parts. The first is to generate a “blind” esti-
mate using an algorithm that is best suited for sensors such as GPS, inertial
measurements, and odometry. This estimate makes use of a recent application
of a Rao-Blackwellized particle filter that performs well in situations with large
amounts of uncertainty and sensor drop-out, while simultaneously admitting
an implementation that avoids many of the difficulties inherent in traditional
GPS/INS integration. We then assume this estimate is biased in a way that is
unobservable without taking vision into account. The second component then
uses vision to attempt to estimate this bias. We will show in the rest of this
paper how this division leads to a method for pose estimation and mapping
that has practical advantages over both traditional GPS/INS solutions and
SLAM-based approaches.

2 Previous Work

Typical approaches to GPS/INS integration are mainly based on nonlinear
variants of the Kalman filter [van der Merwe and Wan, 2004]. However, the
assumptions upon which these are based tend to fail in cases of large uncer-
tainty and noisy sensors. In this work, we apply a Rao-Blackwellized particle
filter with sampled orientations to address these issues. This aspect of the ap-
proach is summarized later in this paper and is described in detail in [Vernaza
and Lee, 2006].

Another characteristic of traditional approaches to GPS/INS integration
is that they usually do not address the issue of mapping, an issue that has
relatively recently become one of the cornerstones of research in robotics. Ap-
proaches to mapping might be grouped roughly into those that assume known
poses and those that do not (see [Thrun, 2002] for a comprehensive review of
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mapping techniques). When poses are assumed known, a typical approach is
to build a probabilistic, grid-based representation of the environment known
as an occupancy grid.

Occupancy grids have seen widespread adoption due to their simplicity and
practicality. They can be made very dense and can be scaled up to very large
sizes with negligible effect on computational efficiency. However, a significant
drawback to occupancy grids is that maps can quickly become inconsistent if
poses are assumed known when they are in fact uncertain, as is most often the
case. This becomes quite a significant obstacle when it comes to autonomous
navigation, as a common goal in autonomous navigation is to benefit from
experience. Methods do exist for enforcing consistency in occupancy grids.
Thrun provides one such method using expectation maximization [Thrun,
2003]. Unfortunately, this is an offline, computationally intensive procedure,
making it unsuitable for autonomous navigation.

Autonomous navigation demands a solution that is both online and re-
sults in consistent maps. Simultaneous localization and mapping (SLAM) al-
gorithms generally attempt to achieve both these goals by explicitly main-
taining probability distributions that correlate positions of landmarks and
vehicle pose. They are thus able to create consistent estimates of vehicle pose
and landmark locations without an explicit absolute position sensor. How-
ever, doing so comes at a cost in both computational efficiency and ease of
implementation.

Our basic motivation in this work is that the simple occupancy grid ap-
proach nearly works for GPS-aided mapping. The presence of an absolute
position sensor renders a full-blown SLAM implementation largely unneces-
sary, since the robot’s pose can typically be resolved to within error bounds
of several meters with no need for any sort of visible landmark. However, we
have already mentioned the caveats involved in using these uncertain esti-
mates in a naive occupancy grid mapper. Our approach addresses the most
fundamental limitation of the naive method while avoiding the complexity
and other issues involved in typical SLAM. It is computationally efficient,
and its computational complexity does not scale with the size of the map.
However, like SLAM, it is also probabilistic and explicitly attempts to enforce
map consistency in an online manner.

3 Pose estimation via GPS/INS

We first consider the problem of “blind” pose estimation without taking the
map into account. We accomplish this by first considering the case where we
are only concerned with orientation estimation and later considering how to
integrate translational state estimation as well.
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3.1 Orientation Estimation via Particle Filtering

As alluded to earlier, we take a particle filtering approach to attitude esti-
mation. By choosing a particle filter we immediately avoid most of the repre-
sentational issues that plague attitude estimators based on the Kalman filter,
since there is no need to define an analytical distribution over orientations.
Instead, we will represent our orientation distribution by a set of discrete
particles.

In order to apply a simple particle filter, we need only to define how to
sample from a state transition distribution p(xt|xt−1) (assuming xt is the
state at time t) and how to evaluate a measurement likelihood probability
p(zt|xt) (where zt is the observation at time t). We then sample from the state
transition distribution in order to obtain a proposal distribution. The samples
in the proposal distribution are weighted according to Eq. (1) [Arulampalam
et al., 2002], where w

(i)
t is the weight of the ith sample at time t.

w
(i)
t = p(zt|xt, zt−1)w(i)

t−1 (1)

Given that an inertial angular rate sensor is available, an obvious choice
for the state transition density is based on the rotation of the inertial unit
in time. Sampling from the state transition distribution thus amounts to ro-
tating each particle by an amount specified by the inertial unit, adding small
peturbations in order to reflect uncertainty in the angular rate measurement.
In the absence of significant external forces besides gravity, an inertial unit’s
accelerometers can be used a as tilt sensor. We can therefore calculate a mea-
surement likelihood probability by defining a Gaussian distribution on the
difference between the expected gravity measurement and the actual mea-
surement, given the orientation of each particle. Defining the state transition
and measurement likelihood distributions in this way, it is straightforward to
implement an attitude estimator.

3.2 Estimating Translation States via Rao-Blackwellization

Rao-Blackwellization [Doucet et al., 2000] provides a simple and computation-
ally efficient way to include the translational states in the estimator. Given
each sampled orientation, we might adequately describe the translational state
distribution as Gaussian. Furthermore, we can write down linear equations
for the translational state dynamics and observation models given the sam-
pled orientation. It is therefore possible to update these Gaussians using the
Kalman filter.

In order to successfully integrate this approach with the particle filtering
framework, it is necessary to calculate an appropriate importance weight for
each particle given observations on the translational state. The form of the
importance weights can be derived in a manner very similar to the way the
Kalman filter is derived; in fact, the importance weights turn out to be the
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likelihood of the measurement under the expected measurement distribution,
whose statistics are already calculated as part of the Kalman filter update.
Details on the calculation of the importance weights are given in [Vernaza and
Lee, 2006].

4 Bias estimation for consistent mapping

Thus far we have only discussed the first part of the estimator. Now we turn
our attention to the problem of modeling and estimating the residual bias
present in the first estimate. We will assume that the majority of this bias
arises from the fact that we assumed a simple Gaussian white noise model for
the GPS position error. However, it is clear at the very least that the error is
strongly time-correlated. Qualitatively, we might describe the error as slowly
drifting in a random way. This description is captured in the following simple
state space model:

bt+1 =
{

bt + νt, νt ∼ N (0,B) ‖bt‖ < σ
(1− ε)bt ‖bt‖ ≥ σ

(2)

Here bt is a two-dimensional additive bias such that the true (2D) pose
is given by the sum of the first estimator’s output and the bias. The bias
is characterized as drifting according to a Gaussian random walk with drift
covariance B. We also assume orientation has been resolved sufficiently well
to ignore any additional estimable bias in it.

As mentioned earlier, in order to observe the bias it is necessary to employ
some kind of measurement beyond the GPS/INS combination. For this pur-
pose, we propose to use a measure of consistency between an instantaneously
observed local map and a continuously accumulated global map. Specifically,
we can employ the normalized cross-correlation between them. Again, for the
sake of efficiency, we might partially relax the normalization requirement. This
suggests the following observation model:

p(zt|bt = (x, y)) = σ(κ
∑
a,b

zt(a, b)M(x + a, y + b)) (3)

Here zt(a, b) is a function that provides the value of the observed local map
at position (a, b) with respect to the center of the local map (after rotation
into the global reference frame). M(x, y) is is the value of the map under
the robot assuming that the first-stage pose estimate is biased by an amount
equal to (x, y) (see Fig. (1)).

Since the value is to be interpreted as a probability, we use the sigmoid
function σ(z) = (1 + e−z)−1 and an appropriate scale factor κ to ensure that
the result is between zero and one. Aside from κ, the expression inside the
sigmoid function is simply the cross-correlation of zt and M .
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Fig. 1. Illustration of measurement model evaluation for secondary bias estimator

In order to estimate the bias from these observations, we propose ex-
act inference via discretization of the state space. One motivation for this
is the nature of the observations. Since we assumed that the bias would be
bounded, discretization of the space of potential biases is easily accomplished.
We should note that this idea is very similar in spirit to Markov localization
(especially the correlation-based variant [Konolige and Chou, 1999]). Express-
ing the problem in the canonical form:

p(bt|zt) = αp(zt|bt)
∑
bt−1

p(bt|bt−1)p(bt−1|zt−1) (4)

This suggests an update rule that is O(N2) in the number of distinct biases
we would like to evaluate. However, if the transition matrix that specifies
p(bt|bt−1) is relatively sparse, the asymptotic complexity will be much reduced.
Fortunately, this is the case for our scenario. Given the Gaussian random
walk model in (2), p(bt|bt−1) is given by a Gaussian distribution with mean
bt−1. Given that we are dealing with a finite, discretized state space, we can
ultimately implement p(bt|bt−1) as a look-up table T such that p(bt|bt−1) =
T (bt− bt−1). Since the vast majority of the mass of the Gaussian is contained
within a few standard devations of the mean, the look-up table can be made
fairly small. Substituting this into (4) yields:

p(bt|zt) = αp(zt|bt)
∑
bt−1

T (bt − bt−1)p(bt−1|zt−1) (5)

The inner summation evaluated at each bt is thus equivalent to convolution
of the prior with a small kernel. The fact that both the observation and process
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models can be implemented as discrete convolutions is appealing not only for
its simplicity, but also due to the availability of special purpose hardware
and techniques that could be employed to perform these convolutions at high
speed.

while zt = new local map (rotated to global frame) do
M: the global map centered on zero bias
?: the cross-correlation operator
p(zt|bt)← (zt ? M)(bt)
T: Gaussian kernel
∗: the convolution operator p(bt|zt−1)← σ(κ(T ∗ p(bt−1|zt−1))(bt))
pairwise multiplication of sequences: p(bt|zt)/α← p(zt|bt)p(bt|zt−1)
α← (

P
bt

p(bt|zt)/α)−1

p(bt|zt)← α(p(bt|zt)/α)
end

Algorithm 1: GPS bias estimator

5 Implementation Results

For simplicity, we tested the blind and seeing components of the estimator
separately. We first ran the blind component on simulation data, producing
results summarized in table (1), where E|x̃| represents mean absolute error,
and

√
E|x̃2| represents the standard deviation of the absolute error. Differ-

ent sets of sensors were enabled in different scenarios to test robustness in
conditions of sensor unavailability. A “dead-reckoning” case employing only
gyroscopes and odometry is provided as a control. As expected, results were
best with all sensors enabled, yielding a very small mean error. However,
disabling other sensors had a comparatively minimal effect on performance.

Attitude error (deg) Position error (m)

Scenario E|x̃|
p

E|x̃2| E|x̃|
p

E|x̃2|
Dead-reckoning 125.39 32.85 32.79 15.94
All sensors (no magnetometer) 4.86 3.98 1.04 0.39
No GPS position 7.09 4.68 3.42 1.84
No GPS velocity or accelerometers 11.82 6.71 1.40 0.70

Table 1. Summary of simulation results

We then tested the blind estimator again by running it onboard a small,
remote-controlled ground robot equipped with GPS, odometry, and an inertial
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measurement unit (IMU). The test scenario consisted of driving the robot in
a closed-loop path around a relatively open field. The path was approximately
250 meters long. Reported GPS error averaged about 11 meters. We ran the
filter twice on the same data: once with all sensors enabled, and once with
GPS velocity and accelerometer measurements disabled. The resulting 2D
position tracks are displayed in Fig. (2). Closing the loop without GPS position
measurements resulted in a 2.41 meter error at the end of the loop, while
closing the loop with all sensors resulted in a 1.45 meter error. Raw GPS
closed the loop with a 2.33 meter error.
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Fig. 2. Position estimates obtained by running pose filter on data obtained from
real sensors. Different tracks indicate different scenarios.

We tested the performance of the second-stage estimator in a separate,
offline procedure. We first ran our robot along a certain course, logging pose-
tagged images of the course along the way. We repeated this procedure, ob-
taining a second set of images. The first set of images was then processed to
create stereo disparity maps, which we combined with logged pose to build
a map of the course. The resulting map is displayed in the leftmost figure of
Fig. (3).

We then repeated the map-building process with the second set of images,
but with a few changes. First, we initialized the procedure with the first
map, allowing views from the second to overwrite it where available. Second,
we added an artificial, drifting bias to the pose estimate before placing the
views in the second map. This allowed us to simulate the effect of a randomly
drifting GPS bias while also knowing its precise value. The logs used were
specifically chosen to minimize apparent GPS drift, so that any bias in the
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pose would be dominated by the artificially injected one. The map built as a
result of this procedure is displayed in the center figure of Fig. (3). Finally,
the last procedure was repeated with the secondary bias estimator enabled.
The resulting map is displayed in the rightmost figure of Fig. (3).

It is clear from Fig. (3) that the secondary bias estimation has a dramatic
effect on mapping performance. The most common symptom of GPS drift is
a map such as that in the center of Fig. (3), in which a shifted view of the
corridor appears alongside the view generated in the previous map. By con-
trast, the map generated with bias estimation in effect is sharp and detailed,
indicating that the true bias was successfully resolved. Plots of the injected
bias against the estimated bias for this experiment are displayed in Fig. (4).
As expected, these indicate that the bias was tracked closely for most of the
experiment, with the exception of a short period near the end of the course.
This is also to be expected, since the course ends in a clearing with few fea-
tures to match, which limits the estimator’s ability to distinguish between
different biases.
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Fig. 3. Comparison of original map with those generated on a second traversal of
the same course, with and without secondary bias estimation.

0 100 200 300 400

−5

0

5

x coordinate

time

m
et

er
s

0 100 200 300 400

−5

0

5

y coordinate

time

m
et

er
s

Fig. 4. Plots illustrating performance of secondary bias estimator in simulation.
Dashed line indicates magnitude of artificially injected bias. Crossed line indicates
estimated bias. Left and right figures indicate x and y components of bias, respec-
tively.
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6 Conclusions

We have presented a practical and comprehensive solution to the problem
of pose estimation and mapping for an autonomous vehicle. Our approach
combines the strengths of multiple inference techniques: for orientation, par-
ticle filtering; for translation, Kalman filtering; and simple discrete Bayesian
filtering for GPS bias estimation.

Our experiments have shown that the filter is very robust with respect
to conditions of high sensor uncertaity, initial state uncertainty, and sensor
unavailability. We have also shown that it is feasible to track the GPS bias
accurately with our method and to hence obtain a dramatic improvement in
map consistency over the naive occupancy grid mapping approach. Finally,
the method is efficient enough to run in real-time on modest hardware, and
its complexity does not scale with map size.

We have noted that our approach may have more in common with sim-
ple “GPS/INS + occupancy grid” approaches than it does with full SLAM.
Though there are advantages to this, it is also clear that there are many ideas
from SLAM from which we could benefit. Thus, in the future we would like
to further examine how SLAM-like features could be integrated with more
traditional approaches to pose estimation. We feel that ultimately, a combi-
nation of the two is what will enable autonomous vehicles to succeed in real
environments.
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