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Three-Phase Inclusions
of Arbitrary Shape With Internal
Uniform Hydrostatic Stresses
in Finite Elasticity
We study the internal stress field of a three-phase two-dimensional inclusion of arbitrary
shape bonded to an unbounded matrix through an intermediate interphase layer when the
matrix is subjected to remote uniform in-plane stresses. The elastic materials occupying
all three phases belong to a particular class of compressible hyperelastic harmonic mate-
rials. Our analysis indicates that the internal stress field can be uniform and hydrostatic
for some nonelliptical shapes of the inclusion, and all of the possible shapes of the inclu-
sion permitting internal uniform hydrostatic stresses are identified. Three conditions are
derived that ensure an internal uniform hydrostatic stress state. Our rigorous analysis
indicates that for the given material and geometrical parameters of the three-phase inclu-
sion of a nonelliptical shape, at most, eight different sets of remote uniform Piola stresses
can be found, leading to internal uniform hydrostatic stresses. Finally, the analytical
results are illustrated through an example. [DOI: 10.1115/1.4006240]
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1 Introduction

The problem of how a remote uniform loading is disturbed by
an elastic inclusion (or inhomogeneity) continues to receive inves-
tigators’ attention (see, for example, Refs. [1–7]). In particular
,the internal uniform stress field inside the inclusion is especially
preferred because an internal uniform stress field is optimal, in the
sense that it eliminates any stress peaks within the inclusion [4,6].
Moreover, an internal uniform hydrostatic stress state will remove
stress peaks on the interface because it achieves both uniform nor-
mal stress and vanishing tangential stress [5].

Most recently, within the framework of linear plane and anti-
plane elasticity, Wang and Gao [7] obtained the following seem-
ingly impossible, while intriguing result, that the internal stress
state within a three-phase nonelliptical inclusion can still be uni-
form, provided that the shape of the inclusion, the elastic proper-
ties of each phase, and the thickness of the interphase layer are
appropriately designed. Thus, it is the objective of this work to
extend our previous results to finite plane elasticity.

In this work, we use the complex variable formulation devel-
oped in Ref. [8] for plane strain deformations of a particular set of
compressible hyperelastic materials of the harmonic type to study
the finite plane deformations of a nonelliptical elastic inclusion
bonded to an infinite matrix through an intermediate interphase
layer. We first identify any possible nonelliptical shape of the
inclusion permitting internal uniform hydrostatic stresses. Then,
in each case, three conditions are found that ensure that the inter-
nal stress state is, indeed, uniform and hydrostatic.

2 Formulation

Let the complex variable z ¼ x1 þ ix2 represent the initial coor-
dinates of a material particle in the undeformed configuration
and wðzÞ ¼ y1ðzÞ þ iy2ðzÞ represents the corresponding spatial
coordinates in the deformed configuration. Define the Cartesian
components of the deformation gradient tensor F as

Fij ¼
@yi

@xj
; i; j ¼ 1; 2; 3 (1)

For a particular class of harmonic materials, the strain energy
density W, defined with respect to the undeformed unit area, can
be expressed by [8]

W ¼ 2l FðIÞ � J½ �; F0ðIÞ ¼ 1

4a
I þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 � 16ab

ph i
(2)

Here, I and J are the scalar invariants of FF
Tgiven by

I ¼ k1 þ k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FijFij þ 2J

p
; J ¼ k1k2 ¼ det Fij

� �
(3)

where we sum over repeated indices, k1 and k2 are the principal
stretches, l is the shear modulus and 1=2 � a < 1; b > 0 are two
material constants [8]. (We note that the function F(I) is a material
function of I and is not to be confused with the components of the
deformation gradient tensor F). This special class of harmonic
materials has attracted considerable attention recently [9–11]. For
example, the preceding model has been used in Ref. [12] to inves-
tigate large deformations of a rubber sheet containing a single
inhomogeneity and, more recently, in Refs. [9,13] to study the
finite deformations of an annular membrane induced by the rota-
tion of a rigid hub and the finite deformations of a crack, respec-
tively. We adopt the same model in our own investigations.
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According to the formulation developed by Ru [8], the defor-
mation wðzÞ can be written in terms of two analytic functions uðzÞ
and wðzÞ as

iwðzÞ ¼ auðzÞ þ iwðzÞ þ bz

u0ðzÞ
(4)

and the complex Piola stress function vðzÞ is then given by

vðzÞ ¼ 2il ða� 1ÞuðzÞ þ iwðzÞ þ bz

u0ðzÞ

" #
(5)

In addition, the Piola stress components can be written in terms
of the Piola stress function v as

� r21 þ ir11 ¼ v;2; r22 � ir12 ¼ v;1 (6)

We consider a three-phase inclusion of arbitrary shape, as
shown in Fig. 1. The elastic materials occupying the inclusion, the
intermediate interphase layer, and the unbounded matrix belong to
the class of harmonic materials characterized by Eq. (2) with
the associated elastic constants ðl1; a1; b1Þ, ðl2; a2; b2Þ, and
ðl3; a3; b3Þ, respectively. Let S1, S2, and S3 denote the inclusion,
the interphase layer, and the matrix, respectively, all of which are
perfectly bonded through two sharp interfaces L1 and L2.
Throughout the remainder of this paper, the subscripts 1, 2, and 3
[or the superscripts (1), (2), and (3)] are used to identify the asso-
ciated quantities in S1, S2, and S3.

The following conformal mapping is introduced [14]

z ¼ xðnÞ ¼ R nþ
XN

n¼1

pn

nn

 !
(7)

where R is a real scaling constant and pn (n¼ 1,2,…,N) are com-
plex constants. In this study, we will focus on inclusions of nonel-
liptical shape by assuming that N� 2 in Eq. (7). The preceding
mapping function can conformally map L1 and L2 onto two
coaxial circles with the radii 1 and q�1=2, (0� q� 1), in the n-
plane (Fig. 2). Here, q can be considered as a parameter meas-
uring the relative thickness of the interphase layer. Thus, the
regions S2 and S3 are mapped onto 1 < nj j < q�1=2 and
nj j > q�1=2, respectively. In order to make the mapping function

“one-to-one” or conformal, we must have x0ðnÞ 6¼ 0 for nj j > 1.
In the following analysis, for simplicity, we will adopt the nota-
tion that uiðnÞ ¼ uiðxðnÞÞ; wiðnÞ ¼ wiðxðnÞÞ; i ¼ 1; 2; 3.

In the n-plane, the boundary value problem for the three-phase
inclusion of arbitrary shape now takes the following form

a2u2ðnÞ þ iw2ðnÞ þ
b2xðnÞx0ðnÞ

u02ðnÞ

¼ a1u1ðnÞ þ iw1ðnÞ þ
b1xðnÞx0ðnÞ

u01ðnÞ

ða2 � 1Þu2ðnÞ þ iw2ðnÞ þ
b2xðnÞx0ðnÞ

u02ðnÞ

¼ C1 ða1 � 1Þu1ðnÞ þ iw1ðnÞ þ
b1xðnÞx0ðnÞ

u01ðnÞ

" #
on nj j ¼ 1

(8)

a3u3ðnÞ þ iw3ðnÞ þ
b3xðnÞx0ðnÞ

u03ðnÞ

¼ a2u2ðnÞ þ iw2ðnÞ þ
b2xðnÞx0ðnÞ

u02ðnÞ

ða3 � 1Þu3ðnÞ þ iw3ðnÞ þ
b3xðnÞx0ðnÞ

u03ðnÞ

¼ ða2 � 1Þ
C3

u2ðnÞ þ
i

C3

w2ðnÞ þ
b2xðnÞx0ðnÞ

C3u02ðnÞ
on nj j ¼ q�1=2

(9)

u3ðnÞ ffi iARnþ Oð1Þ; w3ðnÞ ffi BRnþ Oð1Þ; as nj j ! 1
(10)

where C1¼ l1/l2 and C3¼l3/l2 are two stiffness ratios, A and B
are complex constants determined by the remote uniform Piola
stresses ðr111;r

1
22; r

1
12; r

1
21Þ such that

ð1� a3ÞA�
b3

�A
¼ r111 þ r122 þ iðr121 � r112Þ

4l3

;

B ¼ r111 � r122 � iðr112 þ r121Þ
4l3

(11)

3 The Internal Uniform Hydrostatic Stress State

In order to achieve an internal uniform hydrostatic stress state
within the inclusion of arbitrary shape, u1(n) and w1(n) must take
the following forms

u1ðnÞ ¼ iX nþ
XN

n¼1

pn

nn

 !
; w1ðnÞ ¼ 0 (12)

Fig. 1 Three-phase composite with a nonelliptical inclusion Fig. 2 The mapped n-plane
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where X is a real constant to be determined. Thus, by enforcing
the interface conditions on nj j ¼ 1, we arrive at the following
expressions for u2(n) and w2(n)

u2ðnÞ ¼ i a1þC1ð1�a1Þ½ �Xþð1�C1ÞR2b1

X

� �
nþ

XN

n¼1

pn

nn

 !

w2ðnÞ ¼
a1ð1� a2Þ�C1a2ð1� a1Þ½ �XþR2b1 C1a2þð1� a2Þ½ �

X

� R2b2X

a1þC1ð1� a1Þ½ �X2þð1�C1ÞR2b1

0
BB@

1
CCA

� 1

n
þ
XN

n¼1

�pnn
n

 !
ð1< nj j< q�1=2Þ (13)

Similarly, by enforcing the interface conditions on nj j ¼ q�1=2,
we can finally obtain the following expressions for u3(n) and
w3(n)

C3

C3 � 1
u3ðnÞ

¼ i

C3a2 þ ð1� a2Þ½ �
C3 � 1

a1þC1ð1� a1Þ½ �Xþ ð1�C1ÞR2b1

X

� �

þ R2b2X

a1þC1ð1� a1Þ½ �X2 þ ð1�C1ÞR2b1

0
BBB@

1
CCCA

� nþ
XN

n¼1

pn

nn

 !

þ i

a1ð1� a2Þ �C1a2ð1� a1Þ½ �XþR2b1 C1a2þ ð1� a2Þ½ �
X

� R2b2X

a1þC1ð1� a1Þ½ �X2 þ ð1�C1ÞR2b1

0
BBB@

1
CCCA

� qnþ
XN

n¼1

pn

qnnn

 !
ð nj j> q�1=2Þ (14)

C3w3ðnÞ ¼

C3a2ð1� a3Þ � a3ð1� a2Þ½ � a1 þ C1ð1� a1Þ½ �X þ ð1� C1ÞR2b1

X

� �

þ a3 þ C3ð1� a3Þ½ �R2b2X

a1 þ C1ð1� a1Þ½ �X2 þ ð1� C1ÞR2b1

0
BBBBB@

1
CCCCCA

1

qn
þ
XN

n¼1

�pnq
nnn

 !

þ a3 þ C3ð1� a3Þ½ �

a1ð1� a2Þ � C1a2ð1� a1Þ½ �X þ R2b1 C1a2 þ ð1� a2Þ½ �
X

� R2b2X

a1 þ C1ð1� a1Þ½ �X2 þ ð1� C1ÞR2b1

0
BBBB@

1
CCCCA

1

n
þ
XN

n¼1

�pnn
n

 !

�
R2C2

3b3

1

qn
þ
XN

n¼1

�pnq
nnn

 !
n�

XN

n¼1

npn

nn

 !

C3a2 þ ð1� a2Þ½ � a1 þ C1ð1� a1Þ½ �X þ ð1� C1ÞR2b1

X

� �
þ ðC3 � 1ÞR2b2X

a1 þ C1ð1� a1Þ½ �X2 þ ð1� C1ÞR2b1

� �

� n�
XN

n¼1

npn

nn

 !
þ ðC3 � 1Þ

a1ð1� a2Þ � C1a2ð1� a1Þ½ �X þ R2b1 C1a2 þ ð1� a2Þ½ �
X

� R2b2X

a1 þ C1ð1� a1Þ½ �X2 þ ð1� C1ÞR2b1

0
BBBB@

1
CCCCA qn�

XN

n¼1

npn

qnnn

 !

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð nj j > q�1=2Þ

(15)

At this point, only the remote boundary conditions (10) remain to
be satisfied. A careful inspection of Eq. (15) reveals that the con-
formal mapping function (7) can take only one of the following
three forms

(a) When N¼ 2

z ¼ xðnÞ ¼ R nþ p1

n
þ p2

n2

� �
(16)

(b) When N¼ 3

z ¼ xðnÞ ¼ R nþ p1

n
þ p3

n3

� �
(17)

(c) When N� 4

z ¼ xðnÞ ¼ R nþ pN

nN

� �
; N � 4 (18)

For each possible value of the integer N (�2), three conditions
should be met in order to satisfy the remote uniform loading con-
ditions (10). The first and second conditions for any value of N
(�2) can be written as
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X2 a3 þ C3ð1� a3Þ½ � a1ð1� a2Þ � C1a2ð1� a1Þ½ � þ qN a1 þ C1ð1� a1Þ½ � C3a2ð1� a3Þ � a3ð1� a2Þ½ �
	 

þ R2b1 C1a2 þ ð1� a2Þ½ � a3 þ C3ð1� a3Þ½ � þ qNð1� C1Þ C3a2ð1� a3Þ � a3ð1� a2Þ½ �

	 

� X2R2b2ð1� qNÞ a3 þ C3ð1� a3Þ½ �

a1 þ C1ð1� a1Þ½ �X2 þ ð1� C1ÞR2b1

� X2C2
3R2b3q

N

X2 a1 þ C1ð1� a1Þ½ � C3a2 þ ð1� a2Þ½ � þ qðC3 � 1Þ a1ð1� a2Þ � C1a2ð1� a1Þ½ �f g

þ R2b1 ð1� C1Þ C3a2 þ ð1� a2Þ½ � þ q C1a2 þ ð1� a2Þ½ �ðC3 � 1Þf g þ X2R2b2ð1� qÞðC3 � 1Þ
a1 þ C1ð1� a1Þ½ �X2 þ ð1� C1ÞR2b1

0
B@

1
CA
¼ 0

ðN � 2Þ

(19)

C3A

C3 � 1
¼
�

a1 þ C1ð1� a1Þ½ � C3a2 þ ð1� a2Þ½ �
C3 � 1

þ q a1ð1� a2Þ � C1a2ð1� a1Þ½ �
�

X

R

þ ð1� C1Þ C3a2 þ ð1� a2Þ½ �
C3 � 1

þ q C1a2 þ ð1� a2Þ½ �
� �

Rb1

X
þ ð1� qÞRb2X

a1 þ C1ð1� a1Þ½ �X2 þ ð1� C1ÞR2b1

(20)

It is observed from condition (20) that the loading parameter A must be a real number, which implies that the remote uniform Piola
stresses should be symmetric, i.e., r112 ¼ r121.

The expressions of the third condition are quite different for different values of N (¼2, 3, �4). When N¼ 2, the third condition can
be written as

C3

B

�p1

þ qb3

A

� �
a3 þ C3ð1� a3Þ

¼ a1ð1� a2Þ � C1a2ð1� a1Þ þ
q a1 þ C1ð1� a1Þ½ � C3a2ð1� a3Þ � a3ð1� a2Þ½ �

a3 þ C3ð1� a3Þ

� �
X

R

þ C1a2 þ ð1� a2Þ þ
qð1� C1Þ C3a2ð1� a3Þ � a3ð1� a2Þ½ �

a3 þ C3ð1� a3Þ

� �
Rb1

X
� ð1� qÞRb2X

a1 þ C1ð1� a1Þ½ �X2 þ ð1� C1ÞR2b1

(21)

When N¼ 3, the third condition becomes

C3B

�p1

¼ q a3 þ C3ð1� a3Þ½ �Rb2X

a1 þ C1ð1� a1Þ½ �X2 þ ð1� C1ÞR2b1

� qC3b3

A

þ q C3a2ð1� a3Þ � a3ð1� a2Þ½ � a1 þ C1ð1� a1Þ½ �X
R
þ ð1� C1Þ

Rb1

X

� �

þ a3 þ C3ð1� a3Þ þ
b3p1 �p3q

2ð1� q2Þð1� C3Þ
�p1A2

� � a1ð1� a2Þ � C1a2ð1� a1Þ½ �X
R
þ Rb1 C1a2 þ ð1� a2Þ½ �

X

� Rb2X

a1 þ C1ð1� a1Þ½ �X2 þ ð1� C1ÞR2b1

0
BB@

1
CCA

(22)

It is of interest to note that when p3¼ 0, Eq. (22) reduces to
Eq. (21). When N� 4, the third condition is B¼ 0, which implies
that now the remote uniform stresses must be hydrostatic, i.e.,
r111 ¼ r122;r

1
12 ¼ r121 ¼ 0.

For given material parameters C1, C3, ai, bi (i¼ 1,2,3) and the
given thickness parameter q, we can first determine the real con-
stant X/R by solving Eq. (19), which is, in fact, a quartic equation
in (X/R)2. Then the two loading parameters A and B can be
obtained by using either: (i) Eqs. (20) and (21) when N¼ 2
(with p1 as a variable), or (ii) Eqs. (20) and (22) when N¼ 3 (with
p1 and p3 as variables), or (iii) Eq. (20) and B¼ 0 when N � 4 for
a given shape of the inclusion (i.e., the mapping function x(n) is
given). Finally, the remote uniform Piola stresses r111; r

1
22;

r112 ¼ r121 can be further determined by using Eq. (11). Appa-
rently, at most, eight different sets of the remote uniform Piola
stresses can be found, leading to internal uniform hydrostatic
stresses. In addition, the parameters appearing in the mapping
functions (16)–(18) should satisfy the two restrictions that
x0ðnÞ 6¼ 0; ð nj j > 1Þ and u03ðnÞ 6¼ 0; ð nj j � q�1=2Þ. The argument
for the second restriction can be found in [8]. More specifically,
when N¼ 2, the two parameters p1 and p2 should satisfy the fol-
lowing two inequalities

n3 � p1n� 2p2 6¼ 0; for nj j > 1 (23)

f ðqÞn3 � p1qf ðq�1Þn� 2p2q
3=2f ðq�2Þ 6¼ 0; for nj j � 1 (24)

where

f ðqÞ ¼ X

�
a1 þ C1ð1� a1Þ½ � C3a2 þ ð1� a2Þ½ �

C3 � 1
þ q½a1ð1� a2Þ

� C1a2ð1� a1Þ�
�
þ R2b1

X

� ð1� C1Þ C3a2 þ ð1� a2Þ½ �
C3 � 1

þ q C1a2 þ ð1� a2Þ½ �
� �

þ ð1� qÞR2b2X

a1 þ C1ð1� a1Þ½ �X2 þ ð1� C1ÞR2b1

(25)

When N¼ 3, the two parameters p1 and p3 should satisfy the
two inequalities
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p16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1 þ 12p3

q����
���� � 2

and q p1f ðq�1Þ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1½f ðq�1Þ�2 þ 12p3f ðqÞf ðq�3Þ
q����

���� < 2 f ðqÞj j

(26)

Finally, when N� 4, the parameter pN should satisfy the two
inequalities

pNj j �
1

N
and pNj j <

q�
Nþ1

2 f ðqÞj j
N f ðq�NÞj j (27)

In particular, if we choose a1 ¼ a2 ¼ a3 ¼ 1=2 for the situation
in which F0ðIÞ=I approaches unity as I tends to infinity [8,15], and
assume that b1 ¼ b2 ¼ b3, the roots of Eq. (19) can be explicitly
given by

X

R
ffiffiffiffiffiffiffi
2b1

p ¼ 61;61;6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 � k0k2

p
k2

s
;

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 � k0k2

p
k2

s
(28)

where

k2 ¼ ð1þ C1Þ2ð1þ C3Þ � qð1� C2
1Þð1� C3Þ

h i
� ð1� C2

1Þð1þ C3Þ � qNð1þ C1Þ2ð1� C3Þ
h i

k1 ¼ 2
h
ð1� C2

1Þð1þ C3ÞðC1 þ 2C3 þ C1C3Þ � 2qNC1ð1þ C1Þ2

� ð1� C2
3Þ � qNþ1ð1� C2

1Þð1� C3Þð�C1 þ 2C3 þ C1C3Þ
i

k0 ¼ 8
h
C3ð1� C2

1Þð1þ C3Þ � 2qNC2
1ð1� C2

3Þ

� qNþ1C3ð1� C2
1Þð1� C3Þ

i
(29)

The roots X=R ¼ 6
ffiffiffiffiffiffiffi
2b1

p
will lead to the trivial loading

r111 ¼ r122 ¼ r112 ¼ r121 ¼ 0 and so can be ignored. In the follow-
ing, we will illustrate the preceding results through an example.

Remark. Once X/R is known, the internal uniform hydrostatic
stress field can be determined by rð1Þ11 ¼ rð1Þ22 ¼ 2l1 ð1� a1ÞX=R½
�b1R=X�;rð1Þ12 ¼ rð1Þ21 ¼ 0.

4 Example

Letting C1 ¼ C3 ¼ 10, a1 ¼ a2 ¼ a3 ¼ 1=2, b1 ¼ b2 ¼ b3

¼ 0:6, and q¼ 0.8, we can identify the following remote uniform
Piola stresses leading to internal uniform hydrostatic stresses
within the inclusion.

• When N¼ 2, the remote Piola stresses can be determined as

(i)

6r111

l3

¼ 2:4757þ 0:6506Re p1f g;

6r122

l3

¼ 2:4757� 0:6506Re p1f g;

6r112

l3

¼ 6r121

l3

¼ 0:6506Im p1f g

(30)

which will lead to the internal uniform hydrostatic stresses
6rð1Þ11 ¼ 6rð1Þ22 ¼ 0:5859l1.

(ii)
6r111

l3

¼ 2:9567þ 0:9223Re p1f g;

6r122

l3

¼ 2:9567� 0:9223Re p1f g;

6r112

l3

¼ 6r121

l3

¼ 0:9223Im p1f g

(31)

which will lead to the internal uniform hydrostatic stresses
6rð1Þ11 ¼ 6rð1Þ22 ¼ 0:2778l1.

The parameters p1 and p2 should satisfy the inequalities (23)
and (24). When these two parameters are real, their permissible
values are shown in Fig. 3. The pair ðp1; p2Þ should lie within the
region enclosed by the curve for each case.

• When N¼ 3, the remote Piola stresses can be determined as

(i)

6r111

l3

¼ 4:2078þ 1:7199Re p1f g þ 9:6226Re �p1p3f g

6r122

l3

¼ 4:2078� 1:7199Re p1f g � 9:6226Re �p1p3f g

6r112

l3

¼ 6r121

l3

¼ 1:7199Im p1f g þ 9:6226Im �p1p3f g

(32)

Fig. 4 The permissible real values of p1 and p3 appearing in
Eqs. (32) and (33)

Fig. 3 The permissible real values of p1 and p2 appearing in
Eqs. (30) and (31)
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which will lead to the internal uniform hydrostatic stresses
6rð1Þ11 ¼ 6rð1Þ22 ¼ 0:7932l1.

(ii)

6r111

l3

¼ 5:4557þ 2:6169Re p1f g þ 23:4742Re �p1p3f g

6r122

l3

¼ 5:4557� 2:6169Re p1f g � 23:4742Re �p1p3f g

6r112

l3

¼ 6r121

l3

¼ 2:6169Im p1f g þ 23:4742Im �p1p3f g

(33)

which will lead to the internal uniform hydrostatic stresses
6rð1Þ11 ¼ 6rð1Þ22 ¼ 0:2603l1.

The parameters p1 and p3 appearing in Eqs. (32) and (33)
should satisfy the two inequalities in Eq. (26). When these two pa-
rameters are real, their permissible values are shown in Fig. 4. It
is observed from Fig. 4 that the pair ðp1; p3Þ should lie within the
triangle for each case.

• When N� 4, the values of the remote hydrostatic stresses,
the induced internal uniform hydrostatic stresses, and the

range of pNj j are listed in Table 1. Interestingly rð1Þ11

��� ��� ¼ rð1Þ22

��� ���
� l1 or l1=4 for any value of N� 4.

5 Conclusions

We have found that the internal Piola stress state inside a three-
phase nonelliptical inclusion of particular compressible hyper-
elastic harmonic materials can be uniform and hydrostatic. Three
conditions leading to internal uniform hydrostatic stresses were
derived. The first two conditions were given by Eqs. (19) and
(20), while the third one was given by either (i) Eq. (21) for
N¼ 2, or (ii) Eq. (22) for N¼ 3, or (iii) B¼ 0 for N� 4. The
results illustrate that, at most, eight different sets of the remote
uniform Piola stresses can be found, leading to internal uniform
hydrostatic stresses for the given geometrical and material param-
eters of the three-phase composite. It is expected that if we
increase the number of interphase layers, more unexpected results
can be obtained. Our preliminary analysis indicates that, at most,

2N different sets of the remote uniform Piola stresses can be
found, leading to internal uniform hydrostatic stresses within an
N-phase inclusion of arbitrary shape. In addition, the case of
N¼ 2 (in the absence of the interphase layer) has been discussed
by Ru et al. [10].
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