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ABSTRACT

Congested radio frequencies call for efficient and flexible
spectrum use and, hence, spectrum sensing. As cognitive ra-
dios need channel information for achieving better use of ra-
dio frequencies, military systems require information about
unknown signals. In this paper, a novel method for comput-
ing signal-to-noise ratios (SNR) of several unknown narrow-
band signals without a priori information is proposed. The
presented frequency domain method is an extension of the
localization algorithm based on double-thresholding (LAD).
The main point is to produce fast and cost-efficient estima-
tors with adequate accuracy. The proposed method is veri-
fied via computer simulations and tested also with real-life
radio channel measurement data. The results verify that
the proposed method gives sufficient approximations of SNR
values with low overall computational complexity.

INTRODUCTION

Future cognitive radios [1], signal intelligence as well as
the suppression of jamming signals [2] in both military
and commercial applications require information about
signals in specific frequency bands. When investigating
radio channels, signal-to-noise ratio (SNR) is one of the key
parameters of interest. In the applications described above,
narrowband signals are usually unknown and that calls for
blind SNR estimation.

Blind SNR estimation is a difficult problem, and several
techniques have been reported in the literature. In [3], the
SNR was computed from higher order averages of the enve-
lope of a modulated signal. The SNR estimation in narrow-
band channels based on correlation properties of the signal
and noise was considered in [4]. In [5], higher-order mo-
ments were used to estimate the SNR of noisy data. Therein,
the shape of the narrowband signal and noise power density
spectrum (PDFs) were assumed to be known. Lately, sev-
eral SNR estimation techniques have been compared in [6].
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However, there are many problems and limitations in exist-
ing blind SNR estimation techniques. First, several methods
are not actually blind because some kind of a priori infor-
mation is required. Second, they are often useful only for
some specific narrowband signals. Thirdly and lastly, the
presence of several simultaneous narrowband signals may
collapse the performance of the SNR estimator, and several
methods are computationally demanding.

Versatility is one way to control the complexity of a system.
In many applications it would be practical to use one method
for several purposes, for example, to suppress jamming sig-
nals as well as estimate bandwidths (BWs) and SNR val-
ues. In this paper, a localization algorithm based on double-
thresholding (LAD) [7, 8] is extended to estimate the SNR
values of several unknown narrowband signals in the fre-
quency domain. Any a priori information about the narrow-
band signals is not required. LAD is a multipurpose tool,
and the total complexity is reasonably low, since computa-
tions are shared by several applications - localization [7, 8],
interference suppression [8] and now, blind SNR estimation.
The SNR estimation performance of the proposed extension
is verified via computer simulations and tested also for real-
life radio channel measurement data. Also, BW estimation
accuracy of LAD is briefly considered.

SYSTEM MODEL

The received discrete-time signal samples are assumed to
have the basic form

r(n) =
m∑

k=1

ik(n) + w(n), (1)

where m is the number of unknown narrowband signals,
ik(n) is the kth narrowband signal, and w(n) is a zero-mean
complex proper Gaussian random variable with total vari-
ance 2σ2. The considered narrowband signals are off-center
sinusoids as well as binary phase shift keying (BPSK) com-
munication signals in the simulations, and narrowband com-
munication signals in the real-life radio channel measure-
ment survey. The signals are assumed to be independent of
each other.
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The SNR of the kth signal is defined to be

γk =
P ik
Pw

, (2)

where P ik is the power of the kth narrowband signal and Pw
is the power of the noise.

THE LOCALIZATION ALGORITHM BASED ON
DOUBLE-THRESHOLDING

LAD [7, 8] calculates two detection thresholds in order to
separate the total set of samples into two or more sets: m′

sets are from detected narrowband signals and one set con-
tains the assumed noise samples. The threshold setting can
be performed, for example, using the forward consecutive
mean excision (FCME) algorithm [8, 9].

The FCME algorithm is an automated, iterative method for
setting a threshold. First, the desired clean sample rejec-
tion rate PFA,DES is selected [10] and threshold parame-
ter TCME is calculated. The threshold parameter depends
on the assumed distribution of the noise. Here, complex
Gaussian distributed samples are magnitude squared, so they
will follow a scaled chi-squared distribution, and TCME =
− ln(PFA,DES) [9]. For example if PFA,DES = 0.05 which
means that on the average about 5% of noise samples are
classified to be signal samples in the case when there is only
noise present, TCME = 2.99. Samples are rearranged in an
ascending order according to sample energy [11]. The total
number of observations is N . Next, n (usually n = 0.1 ·N )
smallest observations are selected to form the initial set. Let
the size of this set be Q.
Step 1: Calculate threshold

Th =
1

Q

Q∑

i=1

|xi|2 · TCME. (3)

Step 2: Add xi, i = Q+1, · · · , N to the setQ if |xi|2 < Th.
The algorithm continues until there are no new samples be-
low the threshold. Finally, samples below the threshold are
assumed to belong to the noise set. For two thresholds, the
FCME algorithm is run twice with two different threshold
parameters.

After the thresholds have been calculated, LAD groups the
adjacent samples above the lower threshold into the same
group, a cluster. According to LAD, the cluster is accepted
to be a narrowband signal if at least the sample with the
largest energy is also above the upper threshold [7, 8]. The
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Figure 1. One realization of LAD, an RC-BPSK signal
with a BW of 5%. Detected samples are the adjacent sam-
ples above the lower threshold Tlo. Because at least one
of the samples is also over the upper threshold Tup, the
cluster is accepted to be caused by a signal.

use of two thresholds avoids needless separation of the sig-
nal and falsely detected signals [8]. The principle of LAD is
illustrated in Fig. 1.

BLIND SNR ESTIMATION

After LAD has been performed in the frequency domain,
there are m′ estimated sets of narrowband signals, and one
noise set containing estimated noise. The SNR estimate for
the kth estimated narrowband signal is

γ̂k =
1
N

∑ |Ik(n)|2
1
K

∑ |W (n)|2 =
P̂ ik
P̂w

, (4)

where {Ik}, k = 1, · · · ,m′, denotes the received frequency
domain samples belonging to the kth estimated narrowband
signal set, N is the total number of samples, {W (n)} de-
notes the received frequency domain samples belonging to
the noise set and K is the size of the noise set. If the noise
mean is known, P̂w is replaced by 2σ2. Because all the sam-
ples are already squared, the overall complexity is relatively
low. Note that if the SNR is required only from the narrow-
band signal’s BW, coefficient N/nk is used, where nk is the
size of the kth narrowband signal set. Estimated SNR in dBs
is γ̂k[dB] = 10 log10 γ̂k.

The bias and the normalized mean square error (NMSE)
[12] are used to measure the correctness of the estimated
SNR. The average bias of a SNR estimator is defined as
Bias(γ̂k) = E|γk − γ̂k|, where E is the expected value
and γk is the actual SNR for the kth signal. Note that
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here we have assumed that the numbering of the estimated
and actual narrowband signals correspond to each other. If
Bias(γ̂k) = 0, the estimated SNR equals the real SNR,
i.e., γ̂k = γk. The NMSE is J = E|γk − γ̂k|2/γ2

k .
In the simulations, the sample bias was computed accord-
ing to Bias(γ̂k) = 1

Ni

∑Ni
i=1 |γk − γ̂ki|, where Ni is the

number of iterations. Similarly, sample NMSE was J =
1
Ni

∑Ni
i=1[(γk − γ̂ki)2/γ2

k ].

The performance of the method is strictly connected to the
accuracy of LAD. For example, if LAD separates one sig-
nal into two or more signals, it results in two or more SNR
values instead of one, respectively. Moreover, LAD can ac-
cidentally handle two closely spaced signals as one signal,
thus giving only one SNR instead of two. The numerical
study is made assuming that LAD finds the correct number
of signals, i.e.,m′ = m. LAD has good performance in find-
ing the correct number of sinusoids, but has some problems
defining the correct number of BPSK signals, especially at
low SNR [8]. However, this seems to be quite a common
problem from which many blind SNR methods suffer.

NUMERICAL RESULTS

The method is tested both in simulations and using real-life
radio channel measurement data.

SIMULATION RESULTS

Monte Carlo computer simulations consisted of a complex
AWGN channel, several off-center sinusoids, and BPSK sig-
nals with BWs 2−10% of the system bandwidth. The BPSK
signals were band-limited by a root raised cosine (RC) filter
with a roll-of factor of 0.22. The noise mean was assumed
to be unknown. The total number of samples N = 1024,
and the FFT length was 1024. There was no temporal win-
dowing before the FFT. The SNR values were defined sepa-
rately for each signal. The threshold parameters were 13.81
(PFA,DES = 10−4, upper) and 2.66 (PFA,DES = 0.07, lower)
[8, 9] which seems to be a good compromise. If the lower
threshold parameter is too low, sidelobes will skew the BW
estimation. Respectively, if the lower threshold parameter
is too high, it may cause false separation of the signal (see
Fig. 1).

Fig. 2 shows some BW and SNR estimation examples. For
example, when there are two simultaneous BPSK signals
with BWs of 5% and 5 dB SNR values (Fig. 2(a)), estimated
BWs are 5.7% and 5.2%. Respectively, estimated SNR val-
ues are 4.8 dB and 4.78 dB. In these cases, both the BW and

Table I
BW ESTIMATION ACCURACY OF LAD.

Estimated BWs
SNR [dB]

0 5 10 15 20 25
BPSK, BW 5% 5.0 5.6 6.1 6.9 8.6 11.9
BPSK, BW 10% 7.7 10.3 11.3 11.9 12.7 14.6
BPSK #1, BW 5% 4.8 5.0 5.8 6.5 7.9 9.8
BPSK #2, BW 5% 3.9 4.7 5.9 6.6 7.8 10.0
BPSK #1, BW 10% 5.9 6.6 9.1 10.0 11.4 12.5
BPSK #2, BW 10% 3.6 6.3 8.6 10.5 11.2 12.5

SNR estimates correspond rather well the real ones. Note
that these are only examples based on single realizations.

Numerical BW estimation results are shown in Table I. Re-
sults are based on about 105 Monte Carlo iterations. For ex-
ample, when there are two simultaneous BPSK signals with
BWs of 10% and 15dB SNR, estimated BWs are, on aver-
age, 10.0% and 10.5%.

In Figs. 3–6, the performance of the SNR estimation method
is demonstrated through simulations, and also the bias and
NMSE are considered. The BPSK signal was simulated with
BWs of 2%, 5% and 10%. In Fig. 3, results are presented
for one BPSK signal with a BW of 5%. At low SNR, the
performance of the method is very good. At high SNR, say
25dB or more, the SNR estimate is about 2dB too small. The
NMSE is at most 0.11 which is a good result. At low SNR,
the NMSE is large. When considering a BPSK signal with a
BW of 2% or 10%, or one sinusoid, the performance of the
method was almost the same. Results for several signals are
presented in Figs. 4–6. In that case, the signals are randomly
spaced and, hence, may interfere each other. When there are
two BPSK signals (Fig. 4) or two sinusoids (Fig. 5) with
equal SNR values, the performance is almost equal to the
situation when there is only one signal. However, the NMSE
is somewhat larger: with low SNR it is at most 1.0 for BPSK
signals. For sinusoids, the NMSE is at most 0.11. When the
SNR is 6 dB or more, the NMSE is small. In Fig. 6, there
are two BPSK signals, and the SNR of the second signal is 3
dB lower. The SNR estimation method performs well even
though there is more bias and NMSE. However, when the
SNR is 6 dB or larger, the NMSE is relatively small.

The SNR estimation method seems to be able to give satis-
factory approximations about the SNR values. At low SNR,
<6dB, noise causes large NMSE. The NMSE decreases as
the SNR increases. With a large SNR, the amount of esti-
mation error increases. That is because the rising sidelobes
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(a) Two RC-BPSK signals. Actual BWs
5%, estimated BWs 5.7 and 5.2%. γk=5
dB, γ̂k=4.8 and 4.78 dB.
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(b) Two RC-BPSK signals. Actual BWs
8 and 2%, estimated BWs 8.5 and 3.2%.
γk=10 and 7 dB, γ̂k=9.7 and 6.4 dB.
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(c) Five sinusoids. γk=5 dB, γ̂k=4.7,
4.8, 4.96, 4.96 and 4.7 dB.

Figure 2. Some BW and SNR estimation examples for single realizations.
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(c) NMSE vs. SNR.

Figure 3. Estimated SNR, Bias and NMSE vs. actual SNR. One RC-BPSK signal, actual BW 5%.

increase the noise level since it is difficult to identify if the
sidelobes belong to the signal or to the noise. This problem
is illustrated in Fig. 7, where NMSE of the estimated noise
mean is presented for several signals. When the SNR is 15
dB, the noise estimation error starts to increase.

In the case when the noise mean is assumed to be known, the
SNR estimation method yields very accurate results also for
large SNR values. For example, in Fig. 8, there are simul-
taneously two sinusoids. In that case, the SNR estimation
method gives very accurate results, and also the bias and
NMSE are lower when compared to the situation where the
noise level is not known (Fig. 5).

REAL-LIFE RADIO CHANNEL MEASUREMENT RE-
SULTS

Multiple-input multiple-output (MIMO) real-life radio
channel measurements have been performed using the Elek-
trobit PropSound multidimensional radio channel sounder
[13] in the city of Oulu, Finland, in Autumn 2004 [14]. The
investigated radio channel was measured at 2.45 GHz with
200 MHz receiver BW, and the number of total samples was
2046 (2 samples/chip). The measured M -sequence with a
100Mcps rate was corrupted by several wireless local area
network (WLAN) signals (in Finland, 2.412-2.472 GHz)
and other narrowband (ca. 10-20 MHz) signals [15,16]. Be-
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(b) Bias of the SNR.
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Figure 4. Estimated SNR, Bias and NMSE vs. actual SNR. Two RC-BPSK signals, actual BWs 5%.
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(a) Performance of SNR estimation.
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Figure 5. Estimated SNR, Bias and NMSE vs. actual SNR. Two sinusoids.

cause we do not know what the narrowband signals were, we
are not able to measure the correctness of the BW and SNR
estimation. Nevertheless, some BW and SNR estimation re-
sults for some frequency domain ’snapshots’ are presented
in Fig. 9 and Table II, respectively. In these results, the SNR
values were estimated in the narrowband signal’s BW, so co-
efficient N/nk was used in Eq. (4). At 2.45 GHz, there is
DC component (Fig. 9). When comparing figures and nu-
merical results from Table II it can be noticed that the BW
and SNR estimation seems to be quite successful.

CONCLUSIONS

Blind SNR estimation was considered. The proposed
SNR estimation method is an extension of the double-
thresholding signal detection method called LAD. The pro-

posed SNR estimation method was verified via computer
simulations and was tested also for real-life radio channel
measurement data. It can be concluded that the proposed
method offers good approximations of SNR values when the
number of narrowband signals has been estimated properly.
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Figure 6. Estimated SNR, Bias and NMSE vs. actual SNR. Two RC-BPSK signals with different SNR values, actual BWs 5%.
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Figure 9. BW and SNR estimation examples for real-life radio channel measurement. Corresponding results are presented in Table II.

Table II
BW AND SNR ESTIMATION EXAMPLE RESULTS.

Fig. 9(a) Figs 9(b)
Detected signals 3 3
center freqs [GHz] 2.45∗ 2.50 2.53 2.45∗ 2.50 2.53
estimated BWs [MHz] 0.39 21.48 18.75 0.19 19.73 16.02
γ̂k [dB] 31.65 18.86 15.16 30.17 18.80 15.53

Fig. 9(c) Fig. 9(d)
Detected signals 3 3
center freqs [GHz] 2.45∗ 2.48 2.50 2.45∗ 2.50 2.53
estimated BWs [MHz] 0.98 11.52 13.281 0.19 15.04 9.77
γ̂k [dB] 20.66 8.99 12.23 30.74 18.39 15.97

Fig. 9(e)
Detected signals 4
center freqs [GHz] 2.45∗ 2.48 2.50 2.53
estimated BWs [MHz] 0.19 6.45 21.88 15.82
γ̂k [dB] 34.04 8.64 20.96 17.89
∗ DC component
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