
On The Error-Prone Substructures for The
Binary-Input Ternary-Output Channel and Its
Corresponding Exhaustive Search Algorithm

Gyu Bum Kyung
Samsung Advanced Institute of Technology

Samsung Electronics, Yongin, Korea
E-mail: gyubum.kyung@samsung.com

Chih-Chun Wang
School of Electrical and Computer Engineering

Purdue University, West Lafayette, IN 47907, USA
E-mail: chihw@purdue.edu

Abstract—The error floor performance of a low-density parity-
check (LDPC) code is highly related to the presence of error-
prone substructures (EPSs). In general, existing characterizations
of the EPSs are inspired by the LDPC decoding behavior under
simple binary erasure channel (BEC) and binary symmetric
channel (BSC) models. In this work, we first introduce a new
class of EPSs: the 1-shot EPSs and static EPSs for the binary-
input ternary-output channel (BITOC). By focusing on BITOCs,
which are a step closer to additive white Gaussian channels
(AWGNC), the proposed EPS would better characterize the
decoding behavior of the AWGNC than the existing BEC-
or BSC-based definitions. We then develop an efficient search
algorithm that can exhaustively enumerate all small BITOC
EPSs. The new exhaustive algorithm enables us to order the
harmfulness of the EPSs and distinguish within a given EPS
which bits are more prone to what types of errors. The proposed
algorithm can also be regarded as a unified search method for
the existing EPSs such as cycles, codewords, stopping sets, and
fully absorbing sets. The proposed methodology is potentially
generalizable to the binary-input m-ary output channel.

I. INTRODUCTION

Low-density parity-check (LDPC) codes can be decoded
by the efficient belief propagation (BP) decoder, which is,
nonetheless, still suboptimal. One drawback of LDPC codes
is the error floor phenomenon in the high signal-to-noise ratio
(SNR) regime [1]. The cause of the error floor is due to the
presence of the error-prone substructures (EPSs) [2], [3].
Some examples of the EPSs are stopping sets (SSs) [2], near-
codewords [3], trapping sets (TSs) [1], and fully absorbing
sets (FASs) [4].

Most existing works on error floor characterization started
from considering the decoding error events on the simplest
channel models, such as the binary erasure channel (BEC) and
the binary symmetric channel (BSC) models. More specifi-
cally, SSs are the EPSs when performing erasure decoding on
the BEC. FASs are the EPSs when performing bit-flipping
decoding on the BSC [4]. By focusing on simple channel
models, the corresponding EPSs can be characterized in a
rigorous graph-theoretic manner. Efficient algorithms can then
be devised to enumerate and later eliminate small EPSs, which
further lowers the error floor. The EPS search algorithms
can be classified into two categories: Exhaustive and non-
exhaustive search algorithms. Exhaustive search algorithms
provide a complete list of all EPSs in a given LDPC code

Fig. 1. The relationship of existing EPSs and the operational-definition of
trapping sets (TSs) on AWGNCs.

that meet the search criteria, which can be used for thorough
diagnosis of the cause of the error floor and for the subse-
quent low-error-floor code design. [5] proposed the first such
algorithm that exhaustively searches for small SSs. A more
efficient exhaustive SS search algorithm was later proposed
in [6]. Motivated by [6] and [7], new efficient exhaustive
search algorithms for FASs for LDPC codes are devised
in [8] and [9] based on the branch-&-bound algorithm and
integer-programming (IP) solvers. It is worth noting that the
common goal of the above approaches is to understand the
notoriously challenging problem of characterizing/lowering
the error floor of BP decoding over the realistic additive white
Gaussian channel (AWGNC) model by studying the EPSs that
are rigorously defined on the much simpler channel models.

Although initial success has been obtained [5], [6], [8], there
are problems in the above SS- and FAS-based approaches.
First, the BEC and the BSC models are drastically simplified
versions of the AWGNC. Second, the definition of the FAS
is motivated by the bit-flipping decoder, which is a much
simplified version of the BP decoder. As a result, BP decoding
over AWGNCs is not fully captured by the SS- and FAS-
based approaches. To mitigate such problems, a solution is to
characterize the EPS based on a channel model that is closer
to the AWGNC and for a decoding method that better mimics
the floating-point BP decoder (also see Fig. 1).

In this paper, we provide the first step along this direction.
We first define new types of EPSs based on the binary-input
ternary-output channel (BITOC). We then show that even
with the new EPS definitions that better capture the AWGNC
decoding behavior, one can design efficient search algorithms
that exhaustively enumerate all such EPSs with small sizes. In
particular, we cast the bounding step of the existing branch-
&-bound exhaustive algorithms as a new IP problem. Our
results can also be viewed as the unification of existing search

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357330116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

methods for the existing EPSs such as cycles, codewords, SSs,
and FASs. Other benefits of our results include the ordering
of ‘harmfulness’ of EPSs, and distinguishing within a given
EPS which bits are more prone to what types of errors. The
proposed methodology is also potentially generalizable to the
binary-input m-ary output channels.

II. BINARY-INPUT TERNARY-OUTPUT CHANNELS
(BITOCS) AND THE CORRESPONDING EPSS

A. BITOCs

The BITOC XXX → YYY is defined as a channel with binary
input set XXX = {+1,−1} and ternary output set YYY =
{+1, 0,−1} such that

P (Y = x|X = x) = 1− p1 − p2 (1)
P (Y = 0|X = x) = p1 (2)
P (Y = −x|X = x) = p2 (3)

where X and Y are the input and output, respectively, and p1
and p2 are prespecified channel parameters. We then apply the
following 3-level quantized version of the BP decoding: Each
message mvi→cj (or mcj→vi) takes values in {−1, 0, 1}. The
variable node message map is defined as

m(l)
vi→cj = sgn

m(0)
vi +

∑
ck∈N (vi)\cj

m(l−1)
ck→vi

 (4)

where m
(0)
vi , yi is the received channel output for variable

node vi, and the signum function sgn(x) is defined by

sgn(x) =

 1 if x > 0
0 if x = 0
−1 if x < 0

. (5)

The message from a check node cj to a variable node vi is

m(l)
cj→vi =

∏
vk∈N (cj)\vi

m(l)
vk→cj . (6)

The final decision m
(l)
vi is calculated by

m(l)
vi

= sgn

m(0)
vi

+
∑

ck∈N (vi)

m(l−1)
ck→vi

 . (7)

B. 1-shot EPSs and Static EPSs

In this section, we define new EPSs called 1-shot EPSs and
static EPSs for the BITOC.

1) 1-shot EPSs : Suppose we transmit an all-one codeword
that contains only channel inputs ‘+1’. Then, after passing
through a BITOC, we call the received channel output a 1-
shot EPS if it satisfies the following condition:

m(1)
vi = m(0)

vi
and at least one m(0)

vi ̸= +1

for all vi ∈ V (8)

where V is the set of variable nodes. Namely, the 1-shot
EPS refers to the error pattern such that the variable node
decisions stay the same after the first iteration of the 3-level
BP decoding.

2) Static EPSs : We define the static EPS as follows:

m(l)
vi→cj = m(0)

vi
and at least one m(0)

vi ̸= +1

for all vi ∈ V, cj ∈ N (vi) and l. (9)

The static EPS refers to the error patterns for which the
message m

(l)
vi at every iteration l stays the same value for

all vi.

III. A NEW EXHAUSTIVE SEARCH ALGORITHM FOR THE
BITOC EPSS

A. The Main Branch-&-Bound Structure

Let n , |V | denote the total number of variable nodes. We
say that the i-th coordinate of an n-dimensional quaternary
vector s ∈ {−1, 0, 1, ∗}n is an “unconstrained position” if the
value of its i-th coordinate is “∗”. We say that a quaterary vec-
tor s1 = (s11, · · · s1n) is compatible with s0 = (s01, · · · s0n)
if s1i = s0i for all i that is not an unconstrained position
of s0. For example, s1 = (1,−1, 0, 1, 0) is compatible to
s0 = (∗,−1, ∗, 1, 0). Let Obj(s) be the corresponding ob-
jective value of a vector s, which will later be used in an
IP problem during the bounding step. In addition, we use A
to denote a collection of 1-shot EPSs. The overall branch-&-
bound structure is described as follows.

Algorithm Exhaustively searching for 1-shot EPSs.
1: Input: the parity check matrix HHH and a scalar smax, which

is an upper bound of the objective values of interest.
2: Set S← {(∗, ∗, · · · , ∗)} and set A ← ∅.
3: while S ̸= ∅ do
4: Take one vector s0 from S, and set S← S\s0.
5: Using an IP solver to compute a lower bound b for the

objective values of all vectors s′ that satisfy both (i)
being a 1-shot EPS and (ii) compatible to s0.

6: if b ≤ smax then
7: if during the computation of b, the IP solver also finds

a vector s∗ with Obj(s∗) = b then
8: A ← A∪ {s∗}.
9: end if

10: Choose one unconstrained position of s0 and generate
three new vectors s1, s2, and s3 by setting the uncon-
strained position of s0 to −1, 0 and 1, respectively.

11: S← S ∪ {s1, s2, s3}.
12: end if
13: end while
14: Output: A is the exhaustive list of all 1-shot EPSs with

objective values (≤ smax).

B. The IP Problem in Line 5

For the following, we first describe how to formulate an
IP problem that finds the minimum objective value of all 1-
shot EPSs without the condition “being compatible to s0.” As
will be seen shortly after, the compatibility condition can be
added readily by slightly modifying the following IP problem.
The proposed IP problem can be easily modified to search for
static EPSs as well. The detailed modification is omitted due
to space constraints.

The proposed IP problem consists of 4 classes of binary
integer variables, denoted by xvi , yvi , zel , and uel , and
one class of non-negative integer variables wel , where the
subscripts indicate whether the variable is associated to a
variable node vi ∈ V or an edge el ∈ E, E being the
set of all edges. For simplicity, we use xi, yi, wl, zl, and
ul as shorthand when there is no ambiguity. The binary
integer pair (xi, yi) represents the value of the variable node
messages mvi→c. That is, (xi, yi) being (0, 0), (0, 1), and
(1, 0) corresponds to mvi→c being 1, 0, −1, respectively.
Similarly, for a given edge el connecting variable node v and
check node c, the pair (zl, ul) represents the value of the check
to variable node messages, i.e., (zl, ul) being (0, 0), (0, 1), and
(1, 0) corresponds to mc→v being 1, 0, −1, respectively. The
following is an IP problem of finding the “smallest objective
value” BITOC 1-shot EPSs for the BITOC.

Minimize log
1− p1 − p2

p2

∑
vi∈V

xi

+ log
1− p1 − p2

p1

∑
vi∈V

yi (10)

subject to the following groups of conditions:
Regularity conditions:

xi, yi, zl, ul ∈ {0, 1}, ∀vi ∈ V , ∀el ∈ E. (11)
wl is a non-negative integer ,∀el ∈ E. (12)
xi + yi ≤ 1,∀vi ∈ V and zl + ul ≤ 1,∀el ∈ E. (13)

Check node message map - Erasure consideration: For all
edges el = (v, c), we must have(

max
vk∈N (c)\v

yk

)
≤ ul ≤

 ∑
vk∈N (c)\v

yk

 (14)

Check node message map - Parity consideration: For all
edges el = (v, c), we must have

0 ≤

 ∑
vk∈N (c)\v

xk − 2wl − zl

 ≤ ul (15)

Variable node message constraints for the 1-shot EPS: For
all vi ∈ V , its adjacent edges el is of the form el = (vi, c) for
some check node c. Use E(vi) to denote all adjacent edges
of vi. The degree of vi is thus dvi , |E(vi)|. For all vi ∈ V ,
we must have

dvi(xi + yi) ≤

 ∑
el∈E(vi)

ul

+

2
∑

el∈E(vi)

zl

 ≤ dvi(xi + 1)

(16)

Avoid searching for the trivial all-1 pattern:∑
vi∈V

(xi + yi) ≥ 1 (17)

We first explain the objective function in (10). Assume that we
transmit an all-one codeword, which means that without any

noise, we will have xi = 0 and yi = 0 for all vi ∈ V . However,
with errors, the number of −1’s (bit-flipping errors) can be
computed by

∑
vi∈V xi and the number of 0’s (erasures) can

be computed by
∑

vi∈V yi. As a result, the likelihood of the
received channel output can be calculated by

(1− p1 − p2)
n−

∑
vi∈V xi−

∑
vi∈V yi(p2)

∑
vi∈V xi(p1)

∑
vi∈V yi .

(18)
Our search algorithm thus finds the most likely error pattern
that maximizes (18), which is equivalent to minimizing (10).

Regularity conditions (11) and (12) specify the types of
integers for the variables. Since when mapping a binary integer
pair to a 3-level message we did not use the case (xi, yi) =
(1, 1), we use (13) to disallow the case xi = yi = 1. Similarly,
we also disallow the case zl = ul = 1.

For the check node message map (6), the output of check
node message is erasure if any one of the inputs is erasure. If
none of the inputs is erasure, the output is the parity sum of
all inputs. (14) guarantees that if yk = 0 (i.e., no erasure) for
all vk ∈ N (c)\v then the ul value over edge el = (v, c) is
zero. If at least one yk is 1, then (11) and (14) jointly imply
ul = 1. At the same time, when ul = 0, the value of zl has to
be the parity-sum of all input messages. This is achieved by
(15). Namely, when ul = 0, (15) collapses to ∑

vk∈N (cj)\vi

xk

 = 2wl + zl. (19)

The variable zl is thus the parity-sum. Note that when ul = 1,
we have zl = 0 by (13) and (15) can always be satisfied by
some integer wl

The intuition behind (16) is as follows. For example, the
output variable node message is 1 (i.e., xi = yi = 0) when
the sum of the input check-to-variable message is positive.
When xi = yi = 0, (16) ensures that 0 ≤ Inner term ≤ dvi ,
which is related to the sum of input messages being positive
(not too many el with zl = 1). We omit the proof of (16)
because of the space. To further accommodate the condition
“compatible to s0”, we simply add the following “hardwiring
conditions”:

• for all the unconstrained positions of s0, we allow the
corresponding xi, yi to be free variables ∈ {0, 1}.

• for all other xi, yi, set their values according to the value
of the i-th coordinate of s0 and the binary-pair to ternary-
message map.

Remark: In general, solving the above IP problem is very
time consuming. However, since we are only interested in
finding a lower bound b (see Line 5 of the algorithm), we
usually solve the relaxed mixed IP problem instead, which
greatly enhances the efficiency.

IV. THE EXHAUSTIVE LISTS OF BITOC EPSS FOR
SEVERAL REPRESENTATIVE CODES

We apply our new search algorithm to search for 1-shot
EPSs and static EPSs of two regular (3, 6) LDPC codes (M204
and M504), and a PEG-type regular LDPC code (PEGR504).

TABLE I
THE NUMBER OF 1-SHOT EPSS, STATIC EPSS, AND FASS FOR DIFFERENT LDPC CODES.

1-shot EPSs Static EPSs FASs
Code Type Obj Num Type Obj Num Type Num Type Num

M204

(-1,0,0,0) 8.56 5 (0,0,0,0,0,0,0,0) 10.86 1 (3, 3) 134 (4, 2) 13
(-1,0,0,0,0) 9.91 142 (0,0,0,0,0,0,0,0,0) 12.22 2 (4, 4) 730 (5, 1) 1

(0,0,0,0,0,0,0,0) 10.86 1 (-1,-1,-1) 13.45 134 (5, 3) 361 (5, 5) 3895
(-1,-1,0,0) 11.68 4624 (0,0,0,0,0,0,0,0,0,0) 13.57 3 (6, 2) 63 (6, 4) 4937

(0,0,0,0,0,0,0,0,0) 12.22 2 (0,0,0,0,0,0,0,0,0,0,0) 14.93 6 (6, 6) 20114 (7, 1) 7
(-1,0,0,0,0,0,0) 12.63 91 (0,0,0,0,0,0,0,0,0,0,0,0) 16.29 14 (7, 3) 1720 (8, 0) 1

(-1,-1,0,0,0) 13.04 351 (0,0,0,0,0,0,0,0,0,0,0,0,0) 17.65 59 (8, 2) 329 (9, 1) 26
(-1,-1,-1) 13.45 134 (-1,-1,-1,-1) 17.94 744 (10, 0) 1 (10, 2) 1867

(0,0,0,0,0,0,0,0,0,0) 13.57 3 (11, 1) 180
(-1,0,0,0,0,0,0,0) 13.98 50

M504
(-1,0,0,0) 8.56 10 (-1,-1,-1) 13.45 159 (3, 3) 159 (4, 2) 5

(-1,0,0,0,0) 9.91 60 (4, 4) 1056 (5, 3) 180
(-1,-1,0,0) 11.68 5074 (6, 2) 20 (7, 3) 380

PEGR
504

(-1,0,0,0,0) 9.91 28 (-1,-1,-1,-1) 17.94 760 (4, 4) 760 (5, 3) 14
(-1,-1,0,0) 11.68 3208 (6, 4) 849 (7, 3) 47

The codes are of lengths 204, 504, and 504, respectively, and
their parity-check matrices are available in [10]. We set the
BITOC parameter values by p1 = 0.2028 and p2 = 0.0089.1

The exhaustive lists of 1-shot and static EPSs of the four
representative codes are summarized in Table I. Column
‘Type’ describes how many bit-flipping bits (‘−1’) and how
many erasures (‘0’) in the 1-shot EPS (resp. static EPSs).
Column ‘Obj’ describes the objective value of the EPS.
Column ‘Num’ describes the number of such 1-shot EPSs
(resp. static EPSs). For example, among all 1-shot EPSs of
M504, the smallest objective value is 8.56. All “smallest” 1-
shot EPSs of M504 have 1 flipped bit and three erasures, and
there are 10 such 1-shot EPSs. As can be seen in the table,
the proposed algorithms are very efficient and can exhaustively
enumerate many types of 1-shot and static EPSs.

A. The topological structure of BITOC EPSs

The topologies of 1-shot and static EPSs are closely
related to other existing FASs. For example, the type-
(0, 0, 0, 0, 0, 0, 0, 0) 1-shot EPS of M204 has 8 erasure bits.
It turns out that these 8 bits are also the support set of the
smallest non-zero codeword. Another example is the type-
(−1, 0, 0, 0, 0) 1-shot EPS of PEGR504. In [8] all 14 (5, 3)
FASs of PEGR504 have been exhaustively enumerated (also
see the right-most columns of Table I). It turns out that the 28
type-(−1, 0, 0, 0, 0) 1-shot EPSs correspond to the 14 (5, 3)
FASs in a way that the position of the flipped bit (−1) of a
1-shot EPS can be chosen from two possible locations in a
given (5, 3) FAS.

By (9), the static EPS is a much more restrictive definition
when compared to that of the 1-shot EPS (8). Therefore there
is a far smaller number of static EPSs. For example, the
smallest static EPS of M204 is of type-(0, 0, 0, 0, 0, 0, 0, 0),
which turns out to be same error pattern as the “third smallest”

1All three codes we examined have error floors at SNR = 5.0dB.
Suppose the input is x ∈ {−1, 1}, the output y = x + n/

√
SNR, and the

quantized output of y with thresholds -0.5 and 0.5 is denoted by ŷ. Then with
probabilities 0.2028 and 0.0089 we will observe ŷ = 0 and −1, respectively,
which gives our p1 and p2 values.

1-shot EPS of M204. From our observations, all BITOC static
EPSs are of one of the following forms: being a codeword,
being a SS, or being a FAS.

B. Properties of the proposed exhaustive search algorithms

• One advantage of the new EPS definition is now we can
order the harmfulness of EPSs using their objective values
instead of their Hamming weights. For example, the type-
(−1, 0, 0, 0) 1-shot EPS of M204 has smaller objective
value than the type-(0, 0, 0, 0, 0, 0, 0, 0) one, the latter of
which consists of erasure bits on the minimum codeword.
This shows that the error probability contributed by the
minimum codeword might not be the dominant cause of
the error floor when compared to the type-(−1, 0, 0, 0)
1-shot EPS.

• We are able to further distinguish which bits (within a
given EPS) are more prone to error. For example, for
type-(−1, 0, 0, 0, 0) 1-shot EPSs of PEGR504, the 1-shot
error occurs when the bit corresponding to ‘−1’ needs to
be flipped but the other four bits corresponding to 0 need
only to be erased. Therefore the four other bits are more
susceptible to error.

• By using pairs of binary integer variables to represent the
quantized 3-level messages in BP decoding, we are able
to convert the non-linear sgn and parity-sum functions
into linear integer constraints. Such a problem can then
be solved efficiently by a linear IP solver. We believe
such an approach could be extended to the more general
binary-input m-ary output channel.

• In our implementation, the new exhaustive search al-
gorithm runs slower than the existing SS and FAS ex-
haustive algorithms [6], [8]. This is probably inevitable
since our algorithm searches for more intricate decoding
structures over BITOCs. It is likely that if we generalize
the results to binary-input m-ary output channels, the re-
sulting exhaustive search algorithm will run even slower.
On the other hand, the search of EPSs only needs to be
performed in the code design and analysis stage.

4 5 6
10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

The second most
dominant (4,2) FAS

The second most
dominant one-shot EPS

The most dominant
one-shot EPS

The most dominant
(4,2) FAS

 Fixed 50
 One-shot EPSs
 (4,2) FASs

 FE
R

SNR

Fig. 2. FER contribution of different FASs and 1-shot EPSs for the M504
code. The curve “Fixed 50” corresponds to the 5-bit fixed point decoder with
50 iterations. The error contribution of the 10 type-(−1, 0, 0, 0) 1-shot EPSs
and 5 (4, 2) FASs is also plotted.

V. SIMULATION RESULTS

The goal of this work is by no means to provide a complete
solution to the error-floor characterization problem but rather
to propose a new methodology that could better approximate
and explain the BP decoding behavior and thus enhance our
understanding of the problem. In this section, we discuss
several observations of ours.

Even with the sorted objective values, some EPSs are
more harmful than the others. It is well known [11] that
among all (s, t) FASs of the same topology, say among all
(4, 2) FASs, some contribute to the error floor more than
the others. We first observe that even among the BITOC
EPSs of the same topology (and thus the same objective
value), again some are much more detrimental than the others
when considering BP decoding over AWGNCs. To illustrate
this observation, we use the importance sampling method
developed in [1] to estimate the error floor contribution of
different EPSs of the same topology. In addition, we use the
5-bit decoder of [12] to accelerate the simulation so that we
can look into the low Frame Error Rate (FER) with range
10−9–10−13. In Fig. 2, we plot the error floor contribution of
5 (4, 2) FASs and 10 1-shot EPSs of type-(−1, 0, 0, 0) for the
M504 code. As can be seen, among FASs and 1-shot EPSs of
the same topologies, some of them contribute much more to
the error floor (around 10−9) than the others (around 10−13).
This thus prompts further investigation of the harmfulness of
the EPSs of the same topology, which will be discussed later.

On the other hand, significant overlaps between a 1-shot
EPS and the FASs seem to be a good indicator of how
dominant a 1-shot EPS could be. We observe that a 1-
shot EPS overlaps significantly with a (4, 2) FASs, which
are the dominant 1-shot EPS and FAS in the top-right corner
of Fig. 2. All other 1-shot EPSs do not overlap much with
any small FASs and their contribution is much smaller. The
same phenomenon is also observed in several other benchmark
LDPC codes, which are not reported herein due to space

constraint. One heuristic explanation is that the 1-shot EPSs
are the structures for which the refinement of the decisions
proceeds only slowly (not able to correct the error after one
iteration). Therefore if there are a lot of bad FASs structures
that overlap with a 1-shot EPS, then with high probability the
refinement of the decision is not fast enough and the decision
will thus “fall into one of the overlapped FAS structures” and
cause errors.

VI. CONCLUSION

We have introduced two new types of EPSs, termed the 1-
shot EPSs and static EPSs, based on the simplified BP decoder
over the BITOC, which is closer to the AWGNC model. We
have also proposed a new algorithm that exhaustively enu-
merates such EPSs. The proposed algorithm has been applied
to several LDPC codes and new exhaustive lists of BITOC
EPSs have been found. The exhaustive lists of small BITOC
EPSs enables us to order the harmfulness of EPSs and also
distinguish which bits are susceptible to what type of errors.
The proposed algorithm can also be regarded as a unified
search method for the existing EPSs including codewords, SSs,
and FASs. The proposed solution is potentially generalizable
to the binary-input m-ary output channels.

ACKNOWLEDGMENT

This work is supported by NSF Grant No. CCF-0845968.

REFERENCES

[1] T. Richardson, “Error floors of LDPC codes,” in Proc. 41st Annu.
Allerton Conf. on Commun. Contr. and Computing. Monticello, IL,
Oct. 2003.

[2] C. Di, D. Proietti, E. Telatar, T. Richardson, and R. Urbanke, “Finite
length analysis of low-density parity-check codes,” IEEE Trans. Inform.
Theory, vol. 48, no. 6, pp. 1570–1579, Jun. 2002.

[3] D. MacKay and M. Postol, “Weakness of Margulis and Ramanujan-
Margulis low-density parity-check codes,” Electronic Notes in Theoret-
ical Computer Science, vol. 74, 2003.

[4] L. Dolecek, Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolic,
“Analysis of absorbing sets and fully absorbing sets of array-based
LDPC codes,” IEEE Trans. Inform. Theory, vol. 56, no. 1, pp. 181–
201, Jan. 2010.

[5] C.-C. Wang, S. R. Kulkarni, and H. V. Poor, “Finding all small error-
prone substructures in LDPC codes,” IEEE Trans. Inform. Theory,
vol. 55, no. 5, pp. 1976–1998, May 2009.

[6] E. Rosnes and Ø. Ytrehus, “An efficient algorithm to find all small-size
stopping sets of low-density parity-check matrices,” IEEE Trans. Inform.
Theory, vol. 55, no. 9, pp. 4167–4178, Sept. 2009.

[7] A. Keha and T. M. Duman, “Minimum distance computation of LDPC
codes using a branch and cut algorithm,” IEEE Trans. Commun., vol. 58,
no. 4, pp. 1072–1079, Apr. 2010.

[8] G. B. Kyung and C.-C. Wang, “Exhaustive search for small fully
absorbing sets and the corresponding low error-floor decoder,” in Proc.
IEEE Int’l. Symp. Inform. Theory. Austin, TX, USA, Jun. 2010, pp.
739–743.

[9] G. B. Kyung, Design & Analysis for Practical LDPC-Coded Systems
from Broadcast Channel to Low Error-Floor Applications. Ph.D. thesis,
Purdue University, West Lafayette, IN, Aug. 2011.

[10] D. J. C. MacKay, “Encyclopedia of spase graph codes,” [Online].
Available: http://www.inference.phy.cam.ac.uk/mackay/codes/data.html.

[11] D. V. Nguyen, S. K. Chilappagari, M. W. Marcellin, and B. Vasić,
“LDPC codes from Latin squares free of small trapping sets,” Aug.
2010, preprint-arXiv:cs.IT/1008.4177.

[12] T. J. Richardson, H. Jin, and V. Novichkov, “Methods and apparatus for
decoding LDPC codes,” United States Patent 6,633,856, Oct. 2003.

