
AHRB: A High-Performance Time-Composable
AMBA AHB Bus

Javier Jalle†,∗, Jaume Abella†, Eduardo Quiñones†, Luca Fossati?, Marco Zulianello?, Francisco J. Cazorla†,‡
†Barcelona Supercomputing Center, Spain
∗Universitat Politècnica de Catalunya, Spain

?European Space Agency, Netherlands
‡Spanish National Research Council (IIIA-CSIC), Spain

Abstract—Hard real-time systems are moving toward complex
systems comprising chips with different IP components connected
with standard buses. AMBA is one of the most used bus interfaces
and has already been included in processors in the real-time
domain. However, AMBA was not designed to provide time
composable Worst Case Execution Time (WCET) estimates, which
are desirable to reduce timing validation and verification costs.

This paper analyzes and extends the AMBA Advanced High-
performance Bus (AHB) specification to enable time-composable
WCET estimates by design. Concretely, (1) we analyze in detail
the AMBA AHB in the context of hard real-time systems proving
that it fails to provide time composability; (2) we define a
restricted subset of AMBA AHB features, named restricted AHB
(resAHB), that allows deriving time-composable, yet not tight,
WCET estimates; and (3) we define an extension of resAHB,
named Advanced High-performance Real-time Bus (AHRB), that
includes the timing constraints in the specification. This allows
deriving time-composable and tight WCET estimates. Our results
show that AHRB can provide 3.5x tighter estimates than resAHB
on average for EEMBC benchmarks.

I. INTRODUCTION
Computational demands in many Critical Real-Time Em-

bedded System (CRTES) industries such as avionics, space,
automotive and railway have experienced an unprecedented
growth as a consequence of the need to cope with more
sophisticated functionalities at software level. As the num-
ber and complexity of functions implemented in software
in CRTES increases, achieving guaranteed high-performance
is of paramount importance in all these markets. This has
motivated the use of System-on-Chip architectures with high-
performance processor features including cache memories and
multicores (MPSoC).

In CRTES, software units, typically referred as tasks, are
subject to a deadline and they are often characterized by a
computed Worst-Case Execution Time (WCET) estimate as
a means to provide an upper bound to their maximum exe-
cution time. However, the use of high-performance hardware
features in CRTES, such as multicore architectures, challenges
the computation of tight WCET estimates. The source of
this complexity comes from the interferences when accessing
hardware resources shared across the different tasks running
simultaneously, called inter-task interferences.

CRTES increasingly rely on composability as a means
to enable incremental qualification, which allows reducing
verification and validation costs [8]. In this paper we focus
on time composability that exists when the timing properties
of a system software component in isolation, i.e. its WCET
estimate, do not change when the component is combined with
other components when the system is composed. In multicore
execution environments, this means that the WCET estimate
computed for a task is not affected by other tasks running
simultaneously, hence being independent of the potential inter-

task interferences when accessing shared resources. This re-
quires bounding the access time of each request of any task to
any shared resource, regardless of the load the other tasks in
the MPSoC put on that resource.

One of the most important shared resources in current
MPSoC for real-time systems is the backbone bus that con-
nects the different cores with the memory/cache subsystem
(and possibly other devices or subsystems). The Advanced
Microcontroller Bus Architecture (AMBA) [9] is one of the
most – if not the most – broadly used bus interfaces. AMBA
is used in a wide range of architectures, providing flexibility in
the implementation and backward-compatibility with existing
AMBA interfaces.

This paper focuses on the Advanced High-performance
Bus (AHB), one of the distinct buses defined in the AMBA
specification, which aims at high-bandwidth, low-latency, high-
frequency and low-complexity. AMBA AHB (or simply AHB)
is increasingly being used in multicore processors for real-time
industry, e.g. LEON3-based GR712RC [3] and LEON4-based
NGMP [2], so providing tight and time-composable bounds
to the access latency becomes a desirable property for AHB
to deliver. Unfortunately, AHB was not designed with time
composability in mind. In order to make AHB-based MPSoC
systems to fulfill the desired time composability property, this
paper makes three contributions:

Contribution 1. We provide a detailed analysis of the
AMBA AHB features and their impact on the timing behavior
of connected components (i.e. master and slaves), and by
inference, on the applications running on the MPSoC. We
identify the AHB features that affect the timing behavior of
applications and how AHB-compliant masters and slaves can
break time composability.
Contribution 2. We propose to use only a restricted subset

of the AHB features, named restricted AHB (resAHB), such
that if master/slaves adhere to it, the maximum delay that any
bus access may suffer due to inter-task interferences can be
computed, so fulfilling the time-composability property. The
main advantage of resAHB is that it is compliant with the
AMBA AHB specification, providing the same functionality
as the original one. Our results show that this solution is
attractive only when the AHB-connected components have a
considerably higher latency than the AHB arbitration itself.
Contribution 3. We extend resAHB by introducing a new

set of operation modes currently not specified in the AMBA
AHB specification. We call this new AHB specification,
Advanced High-performance Real-time Bus specification or
AHRB. AHRB efficiently isolates the timing behavior of the
different components connected to the AHRB, allowing to
derive tight and trustworthy WCET estimates.

AHRB specification ensures that if all connected compo-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357329989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. AMBA AHB main components: Masters, slaves, arbiter and decoder.
(Picture from AMBA Specification Rev 2.0)

nents follow it, they will enjoy tight and time-composable
bounds for their bus access latency. As a result, although
the timing behavior of any IP component1 may be unknown,
its effect on the bus is bounded under AHRB without any
information or requirement from the component at hardware
and software levels because timing requirements are already
included in the specification. This is of paramount importance
in the context of future multi-IP mixed-criticality MPSoC.

AHRB extends AHB by adding master and slave modes
that allow specifying the use of the bus that each master and
slave does, in such a way that it can be taken into account by
other master/slaves at design time. This results in tighter (and
bound) access times to the bus, which in turn leads to tighter
WCET estimates for the applications running on the MPSoC.

Our results show that, unlike the original AHB, both
resAHB and AHRB enable obtaining time-composable WCET
estimates for all tasks running in the MPSoC. Those estimates
are independent of the other tasks being run simultaneously.
WCET estimates resultant of using AHRB are tighter than those
for resAHB, reducing WCET estimates by 3.5x on average. We
also observe that in our setup inter-task interferences cause an
average performance degradation on the EEMBC benchmarks
ranging from 6% to 35% depending on the workload when
using a conventional AHB bus. Such degradation reduces with
resAHB and AHRB to 1%-5%.

The rest of the paper is organized as follows: Section II
describes AMBA and introduces time composability. Sec-
tion III analyzes the effects of AMBA AHB features on timing.
Sections IV and V describe resAHB and AHRB respectively.
Section VI shows the experimental results. Sections VII and
VIII present the related work and the main conclusions of this
study. Annex I provides examples of how AMBA challenges
time composability. Annex II shows an example of how the
master and slave modes work. Finally, Annex III covers other
AMBA specifications.

II. BACKGROUND
A. The Advanced Microcontroller Bus Architecture: AMBA

AMBA is a standard bus interface for high-performance
embedded microcontrollers, aimed at high-bandwidth, low-
latency, high-frequency and low-complexity on-chip commu-
nication. Several studies have shown that hierarchical buses

1An IP (intellectual property) component is a block of logic or data that is
designed to be ported and reused across different products (ASIC or FPGA).

Fig. 2. AHB transactions consist of an arbitration and a transfer phase. The
latter is divided into beats with an address and control phase and a data phase.

scale, in terms of performance and energy consumption, to sys-
tems with processor counts in the range 32-64 cores [20] [22].
Thus, AMBA is expected to remain in the near future as one
of the standard bus interfaces for real-time MPSoCs.

The AMBA specification [4] defines three distinct buses:
the Advanced High-performance Bus (AHB), the Advanced
System Bus (ASB) and the Advanced Peripheral Bus (APB)2.
In this paper we focus on the AHB, which is used in several
existing architectures such as the Aeroflex Gaisler GR712RC
and the NGMP (Next Generation MicroProcessor). AHB has
been designed to be a high-performance backbone bus that effi-
ciently connects cores, on-chip memories and IP components3.
The AHB basic architecture, shown in Figure 1, comprises
four different components: a set of masters, a set of slaves, an
arbiter and a decoder. These components use or control three
main buses: the address and control (HADDR in the Figure),
read data (HRDATA) and write data (HWDATA) buses.

Figure 2 shows an AHB transaction between a master and
a slave. A master initiates a read/write transaction to a slave by
requesting to the arbiter the access to the address and control
bus. During the arbitration phase, the arbiter handles the con-
tention across masters by granting access to the bus only to one
master at a time according to a predefined arbitration policy
(not defined by the AMBA specification), so that concurrent
transfers are not allowed. Once a master is granted access to
the bus by the arbiter, the transfer phase starts. The transfer is
split into several beats if data cannot be sent through the bus
all at once (i.e. burst transfers). For instance, the transfer in
Figure 2 requires three beats. Every AHB transfer beat consists
of two subphases that overlap across beats, as defined in the
specification: an Address-and-Control phase that lasts for one
cycle in the absence of contention, and a Data phase that lasts
one or more cycles (in case the master/slave cannot provide the
data at that moment). The decoder controls the multiplexers
to send the address to the appropriate slave, and two data
buses are used to send/receive data to/from the slave. When
the transaction finishes, the master relinquishes the buses.

B. Time Composability
Several industries such as automotive, avionics and space

industries have moved toward an Integrated Architecture
paradigm: A modular approach in which multiple functions
can be assigned to a single hardware unit. Examples of
integrated architectures are the Integrated Modular Avionics
(IMA) [23] in the avionics domain, the Automotive Open
System Architecture (AUTOSAR) [12] [7] in automotive or
IMA for spacecraft [25] for the space domain.

2AMBA 3 specification also includes Advanced eXtensible Interface (AXI),
an interconnection protocol independent from the interconnection network
topology used. It is later covered in Section VI.

3In a multicore based real-time system, in addition to the on-chip intercon-
nection network, we find other networks for the communication of boards.
For instance, FlexRay in automotive or AFDX in avionics. This paper focuses
on on-chip communication and, in particular, on AMBA.



A key design principle for integrated architectures is the
incremental qualification, whereby each software component
is verified and validated in isolation, including functional and
timing analysis, such that no misbehaving function may corrupt
other components. At timing level, which is the focus of this
paper, this requires time composability such that the timing
behavior of a function is not affected by the execution of other
functions. Time composability determines that the timing
behavior of an individual component does not change in the
face of composition when the system is integrated, and so the
timing analysis performed in isolation remains valid at system
integration. Time composability therefore reduces the cost of
system integration and qualification, which is one of the most
critical challenges faced by system developers.

III. AMBA AHB AND TIME COMPOSABILITY
As MPSoCs integrate an increasing number of IP blocks

coming from different suppliers and the functionality provided
by MPSoCs keeps diversifying, the trend towards MPSoC
comprised of multi-party IPs will further exacerbate. Moreover,
it is also the case that real-time system IPs may be subject to
different safety and security levels. Hence, in order to enable
mixed-criticality functionalities to be run on the same MPSoC,
the impact that one IP component can create on the timing
behavior of the others must be limited and this cannot be left
to the IP provider, especially to those subject to less-restrictive
criticality levels. The safety of the integrated system in terms of
timing behavior should be provided by design (construction),
in our view, and thus by the bus protocol specification itself.
Since time composability is the central element for reducing
timing verification and validation costs, it should be provided
by design.

Time composability imposes that the maximum time any
request of any task waits to be granted access to the bus is
bounded and the bound does not depend on the particular co-
running tasks in the MPSoC [15][16]. This requires that (1)
the arbitration phase for every transaction is bounded and this
bound does not depend on the behavior of other components;
and (2) the duration of the transfer phase of every transaction
is also bounded. Note however, that the arbitration-time and
transfer-time bounds may depend on hardware implementation
details, such as the number of cores contending for the
bus. This however does not jeopardize time composability,
since those features are known at design time, when WCET
estimates are computed for each task.

If every access to hardware shared resources fulfills the
time composability property defined above, WCET estimation
for a task, either with static timing analysis or measurement-
based techniques [24], is independent of the accesses that
other co-running tasks may do on the same hardware shared
resources. This effectively enables the computation of WCET
estimates for each task in isolation, bringing the benefits of
reducing time validation and verification costs as explained
in the previous section. Unfortunately, at the time AHB was
released, time composability was not one of its design goals.
As a result, AHB-compliant master/slaves lead to non time-
composable behavior that makes difficult analyzing the timing
properties of an AHB-based MPSoC. In Annex I, we illustrate
some non time-composable behavior of AMBA AHB through
an example.

In this section we review AHB features and classify them
according to their effect on timing. Table I summarizes the
features we analyze.

TABLE I. LIST OF AHB FEATURES ANALYZED

ID Feature Breaks TC? Affects WCET bounds?
1 Number of Masters No Yes
2 Handover No No
3 Back-to-back No No
4 Burst operation Yes Yes
5 Flow control Yes Yes
6 Split transactions No Yes
7 Locked transfers Yes Yes
8 Bus width No Yes
9 Protection control No No

10 Error response No No
11 Retry response No No
12 Idle transfers No No
13 Early burst termination No No
14 Arbiter Yes Yes

1) Number of masters: AHB allows up to 16 bus masters
contending in one bus. The number of masters does not
break time composability because it is a feature known at
design time, like the number of cores in a multicore platform.
However, it affects the tightness of WCET estimates. In real-
time scenarios, the worst-case situation to consider happens
when, on the event of a master trying to get access to the bus,
all the other masters want to access the bus the same cycle,
all of them having higher priority.

2) Handover: Changing the ownership of the bus from one
master to another is called handover. AHB has a one-cycle
master handover, so a master being granted access to the bus in
a given cycle, gets the bus in the next cycle, so the minimum
arbitration time is one cycle. This effect can be taken into
account for each request of a task by adding this extra cycle of
delay to the arbitration time. This feature is time-composable
and has negligible effect on timing tightness.

3) Back-to-back execution: Back-to-back execution occurs
when two transfers from different tasks are executed consec-
utively one after the other, without any idle cycle in between.
This is feasible because of the pipelined execution of AHB,
where address and data phases of different transfers overlap.
This feature has neither an effect on timing nor on time
composability.

4) Burst operation: Burst operation allows to perform
transactions composed of more than one beat. AHB allows to
have undefined-length bursts, 4-beat, 8-beat or 16-beat burst
transactions. Undefined-length burst can be of any length,
although its limit is constrained by the fact that the address
cannot cross a 1 KB boundary. The burst length affects WCET
estimates since, to compute them, it is needed to assume
always the maximum burst length allowed in the system, even
though it might be too pessimistic to be useful.

5) Flow control: Flow control in AMBA AHB can be
performed by both the master and the slave. The slave can
extend the data phase of a transfer by inserting wait states
if, for instance, it needs extra time to process the transaction.
Similarly, the master can insert busy transfers with the same
purpose of extending the time between data transfers.

The original AHB specification states that the number of
wait states is limited, but it does not set any specific limit.
The absence of a specific limit breaks time composability
because it eliminates the possibility of computing how long
a transaction can take, so how many other tasks in the system
can be delayed because of such transaction. Further note that
both, wait states and busy transfers, increase WCET estimates
since for every transaction, the maximum number of wait states
and busy transfers must be assumed.



6) Split transactions: Split transactions provide a mecha-
nism for slaves to release the bus when they need some more
time to respond. This allows other masters to get access to the
bus rather than waiting for the slave to finish. When a slave
signals a split transaction, the arbiter masks the request of its
corresponding master until the slave indicates that the response
is ready, so the master is considered again in the arbitration.
Note that the master has to wait again for arbitration, and only
when the arbiter grants the bus access, the slave can respond
to the request. Signaling a split transaction needs a two-cycle
response. This effectively adds two cycles to the size of a
transfer for WCET estimates.

Therefore, a split transaction only affects the timing be-
havior of the master that received it, as two arbitration phases
occur: the first one when the request is issued, and the second
one when the slave is ready to respond. This is not the case
for the rest of masters, in which a split transaction is seen as
two independent transactions. It is important to remark that,
although the master can keep the slave component busy during
a split transaction, thus affecting others, this contention is not
because of the bus, but because of the slave.

7) Locked transfers: Locked transfers allow a master to
keep the ownership of the bus until the locked sequence has
been completed. Locked transfers ensure that a transfer is
done without disturbance, which is necessary, for instance, in
the case of read-modify-write requests to an AHB connected
cache or memory device. However, locked transfers can be
very harmful for time composability, because a master can
issue a locked transfer and keep the bus busy indefinitely, thus
affecting other masters. Section IV-A provides a discussion
of how the functionality provided by locked transfers can be
implemented avoiding the issue of affecting the other tasks in
a timing unpredictable way.

8) Bus width: AMBA AHB allows different bus widths:
8, 16, 32, 64, 128, 256, 512 and 1024 bits-wide buses. It
is recommended a minimum of 32 bits. This feature does
not affect time composability but it has an effect on timing,
because the wider the bus, the fewer the number of transfers
needed. Note that the bus width is known at design time, like
the number of masters.

9) Protection control: AMBA AHB has protection control
signals that provide information about a bus access, to be
used by any module that implements some level of protection.
These signals indicate whether the access is instruction or data
access; user or privileged access; bufferable and cacheable.
Since no functionality is attached to these signals, because
it is something optional and for higher level protocols, it is
completely harmless for time composability.

10) Error response: A slave can respond to a transfer with
an error, to indicate that something went wrong. Although
errors may break timing behavior of a task, it is a responsibility
of the master-slave higher level communication protocols to
take care of errors and it does not affect other masters. Hence,
it does not affect time composability. Errors require two extra
cycles for signaling, as in the case of split transactions.

11) Retry response: A slave can respond also with a retry
response, to indicate the master to perform the transfer again.
Like error responses, retries may also break timing behavior
of a task, but this is again responsibility of the master-slave
higher level communication protocols and does not affect
other masters. Hence, it does not affect time composability.
Retries also require two extra cycles for signaling, as in the

case of error responses and split transactions. Retry responses
can also be used as an alternative to split transactions when
the slave is unable to provide the response (e.g., due to its
high latency). The difference is that with retry response, the
normal arbitration priority scheme will be maintained. With
split transactions, the arbiter masks the request of the split
master until the slave indicates that the response is ready,
which improves performance, since that master will not be
granted access unless the response is ready.

12) Idle transfers: Idle transfers are used to indicate that no
data transfer is required. AMBA uses a default master when
all other masters are unable to use the bus. When granted, the
default master must only perform idle transfers. Idle transfers
can also be used in case a master cannot continue a burst. It
is completely harmless for time-composability.

13) Early burst termination: Early burst termination is a
mechanism that allows slaves to detect when a burst transfer
is incomplete. If during a burst transfer, a slave detects an idle
transfer or a non-sequential transfer, it means that the previous
transfer finished before it was completed. This may occur if
the arbiter changes the ownership of the bus, or if the master
cannot finish the burst. This feature is completely harmless for
time composability.

14) Arbiter: AMBA does not define any restrictions on the
arbiter, which means that any arbitration policy can be used.
This can completely break time composability as we show
in the example in Annex I. The arbitration policy affects the
timing behavior of all masters, because it defines how much
time a master has to wait to be granted access to the bus, which
indirectly depends on the other masters’ behavior.

In summary, in order to achieve time composability several
features of AMBA AHB must be either limited or disabled. In
particular, unrestricted locked transfers must be avoided, only
time-composable arbitration policies must be considered, and
burst length, wait states and busy cycles must be limited.

IV. RESTRICTED TIME COMPOSABLE AHB: RESAHB
As shown in previous section, AMBA AHB specification

does not guarantee time composability at bus transaction level.
This section defines a restricted usage of a subset of the
AHB features, such that if every master and slave follow
this restricted AHB specification (resAHB), time composability
can be guaranteed by construction at transaction level. The
main goal of resAHB is to derive tight upper bounds for
every bus transaction, regardless of the actual behavior of
other master/slaves components, while keeping AMBA AHB
functionality.

In order to achieve time composability, the AHB features
that must be considered are burst length, wait states and busy
cycles (i.e. flow control), locked transfers and the arbitration
policy.

Burst length: AHB allows defining burst sizes of 4-
beat, 8-beat, 16-beat and undefined length. Undefined burst
sizes break time composability as they prevent bounding the
impact of a bus transaction on other transactions belonging to
different tasks. Therefore, we enforce maximum burst length
to be 16 beats, which will be compatible with existing AHB
components. Components needing bus transactions larger than
16 beats must split the transaction in several transactions. It is
important to remark that the burst sizes of undefined length can
still be set assuming any length smaller than 16 beats. If the
burst length of an undefined transaction is above 16 beats, the
corresponding master or slave will have to split the transaction.



Flow control: Flow control defines the number of wait
states and busy transfers. As we have seen in the previous
section, the original AHB specification states that the number
of wait states has to be limited, recommending not to insert
more than 16 wait states but it does not specify any limit.
In order to provide time-composable AHB transactions, we
restrict the number of wait states to 16, which is the maximum
recommended by the specification and corresponds to 16 bus
cycles. In case a slave needs more than 16 wait states, it can
signal either a split transaction or a retry (in case the resource
is busy).

On the master side, busy transfers need also to be limited.
Similar to wait states, we enforce masters not to introduce
more than 16 busy transfers, which corresponds to 16 bus
cycles. If a master needs more than 16 busy transfers, e.g.
it cannot continue the current transfer, it will have to signal an
early burst termination which releases the bus. The transaction
can then be performed once the master is ready.

It is worth noting that both, wait states and busy transfers,
introduce pessimism in WCET estimates as the worst-case
scenario must be considered, i.e. every transfer incurs 16 wait
states and busy cycles.

Arbiter. The AMBA AHB specification does not put any
restriction on the arbitration; this is not suitable for time
composability, so resAHB constraints the timing behavior of
the selected arbiter.

On the one hand, resAHB restricts the arbitration policy
to those that allow to derive upper bounds on the time a
master needs to wait to be granted to use the bus, e.g. TDMA
(Time Division Multiple Access) and Round-robin [15]. For
example, under round-robin arbitration policy, in the worst
case a master waits N − 1 rounds of arbitration before it
gets the bus, where N is the number of masters. Hence, the
longest arbitration latency a master suffers due to inter-task
interferences is bounded by BoundRR = (N−1)×(ttran−1),
where ttran is the bus transfer time from which one cycle is
subtracted because in consecutive transfers address and data
phases overlap. Any other arbitration policy that allows to
derive time composable upper bounds on the arbitration time
can be considered.

On the other hand, the arbiter must not change bus own-
ership during a transaction. That is, under resAHB a master
cannot be preempted once it has been granted access to the
bus.

Locked transfers. Under resAHB, locked transfers are not
allowed to take longer than the maximum transaction latency,
that is 50 cycles as shown in Section IV-B. Locked transfers
are used to eliminate disturbance when doing an access or
a sequence of accesses. If the accesses can be served with
a single transfer, locked transfers are not needed, since, as
pointed above, bus transactions are not preempted, i.e., other
masters cannot use the bus until the current transaction finishes.
In the case of a sequence of accesses that require more than
one transfer, e.g. read-modify-write accesses, the atomicity
provided for individual transfers does not suffice to provide
the same functionality as locked transfers. In Section IV-A
we present a mechanism to provide this functionality without
requiring locks.

A. Providing the same functionality as AHB
resAHB restricts the use of locked transfers to avoid

masters to lock indefinitely the bus, which would simply

kill time composability. However, locked transfers provide a
functionality that may be required by masters. For instance,
cores (masters) may want to perform an atomic operation on
a shared memory to enable the use of higher level locking
protocols, like the priority ceiling protocol [18], for which
masters use locked transfers. In order to be able to maintain
this functionality, we propose two different approaches.

The first approach benefits from the fact that under resAHB
the arbiter cannot relinquish the access to a master once it
is granted access. Hence, if the sequence of accesses requir-
ing an atomic operation (e.g rmw) fits within the maximum
possible transaction length (i.e. 50 cycles) it will be carried
out correctly. This is normally the case, since (1) at software
level locking time is reduced as much as possible to improve
performance and (2) locked transfers are usually issued to
cache memories which have short latency. Note that the first
time the master asks for a data with an ‘atomic’ request (which
can be identified using the HMASTLOCK signal), the slave has
to fetch it, which can take longer than 50 cycles. In that case
the slave simply responds with a split or retry response and
starts fetching the data. Once the datum is cached, the atomic
operation can be carried out in less than 50 cycles.

The second approach consists in moving some functionality
to the slave component (e.g., a cache). For instance, in the
case of the SPARCv9 architecture, rmw operations can be
implemented with the compare-and-swap (CAS) operation that
works as follows:

i n t 6 4 CAS ( i n t 6 4 ∗word , i n t 6 4 t e s t v a l u e , i n t 6 4 new value )
{

i n t 6 4 o l d v a l u e ;

a t om ic {
o l d v a l u e = ∗word ;
i f ( ∗word == t e s t v a l u e )
∗word= new value ;

}

r e t u r n ( o l d v a l u e ) ;
}

The core (master) sends a read operation of address ∗word
to the cache. While handling this request, the cache must
prevent any other request from accessing ∗word. Once the core
receives the answer, i.e. the data in ∗word, it relinquishes the
bus. Then the core compares the content of ∗word with the
test value provided in the CAS operation. In case of match, the
core starts a new transfer on the bus to write the new value
to ∗word. Otherwise, if there is no match, the core starts a
new transfer to write the old value to ∗word. The cache will
not accept new accesses to ∗word until the write operation is
served. Note that the AHB signal HMASTLOCK indicates the
slave that the transfer is a locked transfer, allowing the slave
to be aware of locked transfers.

In any case, the only restriction is that any locked transac-
tion cannot exceed the maximum transaction length.

B. Deriving bounds to access latency
The resAHB specification allows deriving upper bounds on

the time an AHB bus transaction takes. The upper bound is
defined as τ = tarb + ttran, where tarb is the longest time it
takes a master to be granted access to the bus since the cycle
in which it requests access to the bus. ttran is the transfer
time, the longest time a master is entitled to use the bus once
it is granted access by the arbiter.

tarb depends on the arbitration policy, the number of
masters and the maximum time each master can use the bus



once it is granted access, i.e., ttran. For instance, for round-
robin this time is tarb = 1 + (N − 1) × (ttran − 1), which
corresponds to the bound of round-robin plus one extra cycle
needed for the initial handover 4. ttran is given by the longest
possible transfer that corresponds to a 16-beat burst transfer
with 16 wait states and 16 busy transfers. It also includes two
extra cycles for signaling an error/retry/split response. This
totals 50 bus cycles, regardless of the specific hardware and
software details of master and slave components. Note that
ttran is decreased by 1 cycle since data and address phases
across transactions overlap in 1 cycle.

For instance, in a 4-master bus with round-robin policy,
the maximum, time-composable arbitration time is tarb = 1+
(4− 1)× (50− 1) = 148. By computing the WCET estimate
for a task assuming this arbitration time, will make its WCET
estimate independent of the other tasks it runs with. This is
so, because the worst effect that other tasks can cause on the
bus is already taken into account by the maximum arbitration
time.

V. ADVANCED HIGH-PERFORMANCE REAL-TIME BUS

AMBA AHB can be made time composable by construc-
tion by restricting the use of some AHB features. Though this
is an attractive proposition since it keeps compatibility with
AMBA, it leads to pessimistic WCET estimates. For instance,
we have seen that with 4 masters and round-robin arbitration
policy, the arbitration time that a given request has to assume
in order to be time composable is as big as 148 cycles.

In this section we extend the AHB specification in the
form of extra features that improve AHB time composability
properties. Obviously these extended features make the new
specification non AMBA-compliant. We call our AHB spec-
ification extension AHRB Advanced High-performance Real-
time Bus.

A. Master and Slave modes
The focus of AHRB is on reducing τ which in turn requires

reducing tarb, the arbitration time, in order to produce tighter
WCET estimates. tarb directly depends on ttran which is the
maximum allowed transfer length, which was 50 cycles under
resAHB. ttran depends on the duration of (1) the burst length,
(2) the wait states and (3) the busy transfers that are allowed to
be inserted. Busy transfers and burst length are introduced by
the master and depend on the amount of data to transfer (e.g., a
cache line) and the master internal behavior; Meanwhile, wait
states are introduced by the slave and are used to cover the
latencies of the slave components.

If ttran could be determined taking into account the
specific timing requirements of the particular masters and
slaves using the bus in terms of their burst lengths, wait and
busy states, the value of ttran would certainly reduce with
respect to the upper bound value used under resAHB. For
instance, let us assume a 4-core processor with a shared L2
cache, 16-byte cache lines and a 128-bit wide bus, so that
each transfer needs 1-beat to send a whole cache line. L2
cache hit latency is 4 cycles. In this scenario, by defining a
maximum transfer length of 1-beat plus 4 wait states to allow
the cache to serve the access, we cover all L2 hit accesses
with one transaction with the minimum required length. The
maximum transfer time will be ttran = 1 + 4 + 1 + 1 = 7

4The worst-case corresponds to every master accessing the bus at the same
cycle which requires an initial cycle for handover. The rest of handovers are not
consuming any extra cycle because of the back-to-back execution of requests.

cycles5, and the maximum arbitration time under round-robin
policy tarb = 1 + (4 − 1) × (7 − 1) = 19 cycles. These
values are less pessimistic than the ones we would obtain
with resAHB, i.e, tarb = 148, which significantly improves
worst-case performance. In case of a L2 miss, the L2 cache
signals a split transaction, spends all the required latency to
bring the data and pays another arbitration penalty whenever
the response is ready. However, if the access to main memory
takes in the order of dozens or even hundreds of cycles, the
relative overhead of two arbitration rounds is low. Moreover,
the benefit of issuing a split transaction for L2 misses is that
the bus is free while the miss is being resolved, enabling other
masters to use it. Conversely, putting a lower limit on the
number of wait states, for example only 2, would make that
any hit in the L2 signals a split transaction, since the hit latency
is at least 4 cycles. This would mean that any L2 hit access
would have to perform 2 arbitrations, the regular one and an
extra one when the L2 has the data ready to be sent, which
would deteriorate performance, because hits are frequent. In
Section VI-E we show this behavior with experimental results.

Overall, adapting ttran to the specific needs of the masters
and slaves reduces the overhead required to achieve time
composability. The challenge lies on defining in the bus speci-
fication a mechanism that allows masters and slaves specifying
their needs in the use of the bus. To that end, we introduce the
concept of master and slave modes, which we will call simply
modes. In the AHRB specification we define modes from 1 to
32, according to the number of busy transfers and burst beats
in the case of the master (up to 16 each), and the number of
wait states in the case of the slave (up to 16).

The arbiter assigns a master and slave mode when granting
the bus to a master that forces the master and the slaves to
operate in that mode. Under each master and slave mode of
operation, we can easily derive tight bounds for ttran and
hence tarb. For instance, a master i with master mode 4
(mm(i) = 4) will insert at most n-beat bursts and m busy
transfers where n + m ≤ 4, and slaves with slave mode 4
(sm(i) = 4) will insert at most 4 wait states, plus the two
extra cycles for signaling an error/retry/split response:

ttran(i) = mm(i) + sm(i) + 2 = 4 + 4 + 2 = 10 (1)

Under round-robin deriving the maximum arbitration time
for a master i, tarb(i), is straightforward. tarb(i) is the addition
of ttran(k) for every master k 6= i, i.e., with round-robin
policy:

tarb(i) = 1 +

N−1∑
k=0
k 6=i

(ttran(k)− 1)

= 1 +

N−1∑
k=0
k 6=i

(mm(k) + sm(k) + 1) (2)

B. Deriving tight WCET estimates
For each task a WCET estimate is computed under (1) each

of the modes of the master and slaves that the task uses and (2)
each of the modes the other masters/slaves may have. For a task
k running on master i, under each combination of (1) and (2)
a different WCET estimate is obtained, WCET

tarb(i),ttran(i)
k .

51 cycle to send the address, 4 cycles to read the data from L2, 1 cycle
to transfer the data, and 1 cycle in case the slave asks for retry or signals an
error.



TABLE II. ttran(0)-ttran(1)-ttran(2)-ttran(3)/tarb(0) UNDER
DIFFERENT MASTER AND SLAVE MODES IN A 4-MASTER CONFIGURATION.

tarb(0) IS FOR MASTER 0 AND ttran(i) FOR MASTER i.

Master modes
slave mode 1-1-1-1 1-1-1-4 1-1-4-4 1-4-4-4

2 5-5-5-5/13 5-5-5-8/16 5-5-8-8/19 5-8-8-8/22
4 7-7-7-7/19 7-7-7-10/22 7-7-10-10/25 7-10-10-10/28

For instance, Table II shows ttran and tarb for an example
with 4 masters and a slave where different modes are assumed
for each master and slave. In particular we use 2 modes for
the masters, 1 and 4, and modes 2 and 4 for the slave. ttran
and tarb are computed with Equations 1 and 2 respectively.
Obviously, not all combinations of all potential master and
slave modes have to be considered, but only those combina-
tions with the lowest values that still upper bound the most
common requests.

At integration time, the scheduler selects the mode that
each task will have for each master and slave. Task k does not
violate its deadline for any master i such that:

WCET
tarb(i),ttran(i)
k ≤ dk (3)

where dk is the deadline of task k. Tasks are not allowed
to change the mode of any master or slave. Only the Operating
System scheduler is allowed to change those modes, for which
we envisage a privileged instruction such as writing to a special
purpose register. This prevents, tasks with different criticality
levels affecting each other timing behavior beyond the setup
set by the scheduler. An example illustrating how the scheduler
interacts with the master/slave modes is provided in Annex II.

C. Providing the same functionality as AHB
As shown in Section IV-A, only the functionality provided

by locked transactions is affected when using the restricted
version of AHB. In AHRB, we keep the same principle to deal
with locked transactions, however, the timing restrictions now
depend on the master and slave modes. This means that any
locked transaction has to fit these restrictions, i.e., a master
contribution to a transfer must never exceed its operation
mode limit (the same applies for slaves). The best solution
to provide the same functionality as locked transactions, is
to implement the functionality of atomic operations in the
slave, as shown in Section IV-A. This is so because in order to
provide tighter WCET estimates, AHRB may have more severe
timing restrictions that make more difficult to perform locked
transactions within the allowed maximum transaction time.

D. AHRB architecture
In addition to the AHB architecture shown in Figure 1,

AHRB needs some extra hardware support. Every master and
slave requires knowing the mode it is allowed to operate. The
arbiter keeps the information about the mode of every master
and the slave mode associated to each master. This information
can be changed by software (in supervisor mode), in order to
allow the scheduler to change master and slaves modes so it
can use different WCET estimates for any given task. This can
be done through special purpose registers, which is a common
mechanism in current processor architectures.

We introduce two new signals that define the master mode,
HMMODE, and the slave mode, HSMODE. These signals are
generated in the arbiter and reach the master or slave compo-
nent respectively. The extended bus architecture is shown in
Figure 3.

Fig. 3. AHRB extended architecture with HMMODE and HSMODE signals.

VI. EVALUATION
In this section we quantitatively compare the time compos-

able AHB proposals, resAHB and AHRB against the original
AMBA AHB in terms of time composability, WCET estimates
and average performance.

A. Experimental setup
Chip Setup. We use SoCLib [21] simulator to model a

multicore architecture with 4 cores connected through a bus to
the L2 cache and a I/O controller.

Each core is a pipelined processor core comprising fetch,
decode, execute and commit stages. Each core has its own
private instruction (IL1) and data (DL1) caches, which is
common in current high-performance and real-time embedded
processor designs [1] [10]. 16KB 4-way 16-byte-line IL1
and DL1 caches have been considered. The shared second
level (L2) cache is 256KB with 8 banks, 8 ways and 16-
byte lines. IL1 and DL1 hit and miss latencies are 1 and
2 cycles respectively. L2 hit and miss latencies are 4 and 6
cycles respectively. DL1 is write-through and L2 write-back.
All caches use LRU replacement policy. The bus connecting
the cores to the L2 and the I/O device is 128-bit wide, which
means that a cache line can be transferred in a single-beat
transfer and no burst transfers are needed. The I/O controller
has 20 cycle latency.

The L2 cache deploys a cache partitioning technique, way
partitioning, that deals with inter-task interferences [15] and
has been implemented in real chips like the ARM Cortex
A9 [5]. For the memory controller we use the low-overhead
solution proposed in [16], which upper bounds the effect
of inter-task interferences on the requests of a core to the
memory controller. Overall, the only source of inter-task
interferences that jeopardizes time-composability, potentially
affecting WCET estimation, is the AMBA AHB bus.

Benchmarks. We use the EEMBC Autobench suite [17]
as reference programs, which behave as some real-world
automotive critical applications. In particular we use: a2time,
aifftr, aifirf, aiifft, basefp, cacheb, canrdr, idctrn, iirflt, matrix,
pntrch, puwmod, rspeed, tblook and ttsprk.

We also develop a set of synthetic kernels that carry out
a fixed number of accesses to the bus, either to the L2 or
to the I/O device. We vary the percentage of accesses of the
benchmark to the L2 and to the I/O device, such that, if a kernel
makes X% of access to the I/O, the remaining 100% −X%
of the accesses go to the L2.

B. Achieving Time Composability
As MPSoCs integrate an increasing number of IP blocks

coming from different suppliers and those IPs may be sub-
ject to different safety and security levels, enabling mixed-
criticality functionalities to be run on the same MPSoC re-
quires limiting the impact that one IP component can create



on the timing behavior of the others. Leaving this to the IP
provider, especially to those subject to less-restrictive critical-
ity levels, may jeopardize the whole system time composability
property. AHRB is precisely designed to provide trustworthi-
ness in terms of timing behavior by design (construction), so
that any misbehaving IP component does not affect the time
composability of the other components. Hence, we evaluate
our proposal in a setup in which time composability can be
broken, as it is shown to happen with AHB.

In our experimental setup, the I/O controller has 20-cycles
latency and, under AHB, it benefits from unrestricted timing by
keeping the bus busy for those 20 cycles when needed. In the
case of the time composable AHRB, we configure the slaves in
slave mode 4 (L2 hit latency is 4) and masters in master mode
1 (only 1 beat is required to transfer a cache line), so that
all L2 hit requests are served with only one bus transaction.
The I/O component has to relinquish the bus on each request
because the bus is configured in slave mode 4, which means
that a component can only insert 4 wait state cycles, which is
less than the latency of the I/O component (20 cycles). Hence,
the I/O component issues a split transaction on every access,
and so every request goes through two arbitrations.

In order to understand the potential contention that a trans-
action can suffer in the bus, we run one EEMBC benchmark
in one core while the other three cores run 3 copies of the
synthetic kernel that continuously accesses memory and the
I/O controller, so that they affect significantly the EEMBC
benchmark execution time. Different fractions of memory and
I/O accesses are considered for this synthetic kernel. Figure 4
shows the normalized execution time of each EEMBC bench-
mark when running against 3 copies of the synthetic kernel
with respect to its execution time in isolation (running alone in
the MPSoC). Results are shown for both the regular AHB and
the time-composable AHRB scenarios. Note that the execution
times in isolation are the same under both setups since cache
hits are handled in one transaction while misses require two
transactions using split transactions. The I/O device is not
accessed by EEMBC benchmarks which only access the L2
cache.

Bars show the results as we increase the percentage of I/O
requests sent by the synthetic kernel. Figure 4(a) shows the re-
sults for the standard AMBA AHB. As shown, bus contention
significantly affects the execution time of EEMBC benchmarks
(6% to 35% in average). This is so because every I/O access
keeps the bus busy for 20 cycles and as the percentage of
I/O accesses grows, this saturates the bus, thus delaying L2
cache accesses for EEMBC benchmarks due to bus contention.
Note that for cacheb, which makes the most intensive use
of the bus across all EEMBC benchmarks, the impact of the
synthetic kernels is high (up to 72%) when the percentage of
I/O accesses grows. Eventually, a slave component could be
in place with unspecified or arbitrarily long latency. In such
case no WCET estimate could be provided for any program,
or such estimate would be so high that it would be of no use.

Figure 4(b) shows the results for the time-composable
AHRB. We observe that bus contention becomes negligible (1%
to 5% in average), since I/O accesses become split transactions,
thus letting L2 cache accesses of the EEMBC benchmarks
to proceed. As the fraction of I/O accesses of the 3 copies
of the synthetic kernel increases, their bus access frequency
decreases. This is so, because for this kernel, the accesses
to L2 frequently hit so they have shorter latency than I/O
accesses. As a result, with low L2 access rate, and hence
with high I/O access rate, the kernel access less frequently

(a) Normal AHB

(b) Time composable AHRB

Fig. 4. Execution times of EEMBC benchmarks against 3 synthetic kernels
that continuously access memory and the I/O controller for AHB and AHRB.
The percentage indicates the amount of accesses to the I/O controller.

to the bus. Hence, in the presence of I/O intensive kernels, the
EEMBC benchmark is granted access to the bus quickly and
competes with fewer requests in memory in case of a L2 miss,
thus executing faster. This effect is particularly noticeable for
cacheb and canrdr that have slightly higher execution time
when the kernels execute low percentage of I/O operations.

Our results show that the potential effect that tasks can
suffer due to inter-task conflicts can be reduced using AHRB.
AHRB also provides time-composable upper bounds by con-
struction, without any requirements on the components at
hardware or software level (apart from being compliant with
the AHRB specification), which significantly simplifies WCET
estimation. This allows using components that otherwise would
degrade significantly WCET estimates or simply would not
allow to obtain such estimates. The main limitation of the
standard AMBA AHB is that WCET estimates depend on
the actual behavior of components in place. If such timing
behavior changes, for example due to a firmware update that
changes the I/O component latency to 25 cycles, or simply
other applications make a different use of the component
triggering higher latencies, the timing analysis of all tasks
running on the system is invalidated, even if those tasks do
not ever use such component. By putting the timing restrictions
on the bus interface instead of on the components, we avoid
this issue because the timing upper bounds are set by the bus
interface itself and not by the IP component.

C. Average performance
With time composable AHRB, I/O transactions are split into

two transactions. This, on the one hand, increases the latency
of each transaction as it has to pay two arbitration rounds. On
the other hand, however, each arbitration round is much shorter
since the bus cannot be locked for long time. Our results show
that the benefits of shorter arbitration rounds largely offset the
extra latency due to the fact that I/O transactions have to pay
two arbitration rounds.

Figure 4 show that EEMBC benchmarks have higher
average performance, i.e. shorter execution time, under AHRB
than under AHB. To complement the average performance
study, we measured the performance of the synthetic kernel
under all percentages of I/O and L2 operations (i.e. 0%,



Fig. 5. Average IPC improvement of AHRB over AHB, for the 3 copies of
the synthetic kernel when running in a 4-workload setup with each EEMBC.

Fig. 6. WCET estimates comparison for resAHB and AHRB.

20%, 40%, 60% and 80%). Figure 5 shows the average
throughput improvement of AHRB over AMBA AHB, i.e., the
average of IPCAHRB/IPCAHB (IPC stands for instructions
per cycle) for all 3 kernels, when they run with each EEMBC
under all I/O-L2 percentages. Results confirm the benefits of
short arbitration periods over several arbitration phases, hence
making AHRB to provide higher average performance than
AMBA AHB. These improvements range from 4% to 9%.

D. WCET estimates
Regular AMBA AHB does not allow deriving time-

composable WCET estimates. Instead, they can only be de-
rived with resAHB or AHRB. For both, resAHB and AHRB,
we have to assume that every access to the bus experiences
the maximum arbitration latency [15] and also every memory
access experiences the longest request inter-task delay [14]
(i.e., the maximum possible delay due to requests from the
other cores), since they are the only sources of inter-task
interferences in our platform. For the bus, we take 148 bus
cycles as the maximum arbitration latency for resAHB as ex-
plained in Section IV-B and 19 for AHRB, applying Equation 2
with master modes being 1 and slave modes 4 (also shown in
Table II).

Figure 6 shows the normalized WCET estimates of each
EEMBC benchmark with respect to its WCET when running in
isolation for both resAHB and AHRB. It can be clearly seen that
AHRB leads to much tighter WCET estimates than resAHB, in
average 3.5x tighter. This is so because the arbitration latency
bound is high for resAHB, whereas such bound is much tighter
for AHRB since we fit the bound to the master and slave
characteristics with the master and slave modes. Although
resAHB allows deriving WCET estimates, those estimates are
so high (above 4x the ones in isolation) that it would be better
to use just one core in the platform to schedule all tasks.
Instead, AHRB provides WCET estimates largely below 4x,
thus providing higher guaranteed performance when exploiting
the 4 cores in the 4-core platform than when using just one
core.

E. AHRB: Master & Slave modes
In order to show the effect of the master and slave modes

on WCET, we compute WCET estimates for EEMBC under
AHRB with different modes. In particular, we show results for

(a) Slave Mode 2

(b) Slave Mode 4

Fig. 7. WCET estimates for AHRB with different master modes (1 and 4)
and slave modes (2 and 4).

slave modes 2 and 4. With slave mode 4 (equal to the L2 hit
latency) we cover each hit request with one transaction. Instead
for the slave mode 2, we need to issue split transactions and
pay two arbitrations for every L2 hit. Hence, in slave mode
2, L2 accesses suffer lower bus contention due to the shorter
transactions in the other cores, but suffer higher arbitration
delay in case of a hit due to the split transaction. Therefore,
depending on the L2 access frequency and L2 hit rate, the net
effect in WCET estimates will vary.

The maximum arbitration time also depends on the other
masters’ mode. The lower the other masters’ mode is, the
smaller the arbitration time is. In this evaluation we assume
that the master that runs the EEMBC is in master mode 1 and
it runs with three other masters, either in mode 1 or mode
4, which correspond to masters that need only 1 transfer per
access (e.g., cache line size matches bus width) and masters
that need 4 transfers per access (e.g., cache line size is 4
times larger than bus width so a 4-beat burst is needed)6.
In this case it is clear that the lower the addition of the
transfer sizes of the other masters, the tighter the WCET
estimate we will be able to derive. The possible combinations
and the associated maximum arbitration time computed with
Equation 2 are shown in Table II.

Figure 7 shows the results of two slave modes (2 and
4) for the EEMBC benchmarks, varying the master modes,
shown as MM x-x-x-x in Figure 7. The first master, which
is used by the EEMBC benchmark, is always in mode 1.

We observe that WCET estimates depend on the rest of
the masters modes. The higher the other master modes, the
larger the WCET estimate is. We also observe that there are
benchmarks that are barely affected by the modes, like matrix,
because of the reduced use of the bus, and others are, however,
significantly affected like cacheb. Finally, our results show
that under sm 2, WCET estimates increase by 6% to 19% on
average for the different master setups, because L2 hits, which
are very frequent for many benchmarks, need 2 transactions to
be completed, because the slave (cache) needs to perform split
transactions. For instance, we observe that cacheb is severely
affected when lowering the slave mode to 2 because it makes
an intensive use of the L2 cache. For matrix the effect is

6Note that a high master mode might be useful to enable efficient (large)
DMA transfers performed by a DMA master.



negligible because it barely accesses L2 cache.

F. AHRB principles in AMBA3 (AXI)
AXI is a specification in AMBA3 which only defines inter-

faces between (1) the master and the slave, (2) the master and
the interconnect and (3) the slave and the interconnect, allow-
ing the chip designer to use potentially any interconnect. On
the one hand, in order to determine whether time-composable
access delays for the interconnect can be achieved, a specific
interconnect has to be defined and analyzed. For instance,
crossbars are time-composable by design. However, the fact
that AXI does not define the timing aspects in the master-slave-
interconnect communication provides full freedom to define an
AXI-compliant time-composable interconnect (tcAXI).

In our view, this offers an excellent opportunity to real-
time industry to define a tcAXI enjoying a well-defined and
standardized interface such as AXI, while adding specific
restrictions to make it time-composable. The principles that
rule the definition of tcAXI should be in line with those we
define in this paper.

Besides AHB and AXI, the AMBA specification defines
other interfaces that we qualitatively analyze in terms of time
composability in Annex III.

VII. RELATED WORK
Most of the previous work on bus architectures for real-

time multicores like [19] [15] [11] focuses on the bus arbitra-
tion policies. Such work assumes a generic simple bus that has
a bounded (or fixed) transaction latency, which is not always
the case in real implementations, as shown for the AHB bus.

There exist some real-time buses, like FlexRay used in
automotive, AFDX used in avionics and the Time-Triggered
Architecture [13]. Those buses are designed to connect dif-
ferent processing units and peripherals. Transactions on those
buses are visible to the software. This enables scheduling the
requests of the different running tasks, so that interferences
in the use of the bus are prevented, hence removing the need
for arbitrating them at hardware level. AMBA, however, is
used at much lower granularity, for instance to communicate
cores and the L2 cache in a multicore. At this granularity, the
requests (e.g., L2 cache accesses) of the different tasks cannot
be scheduled to prevent interferences. The responsibility to
handle interferences is left to the hardware, in this case to the
arbiter of the AMBA bus.

To our knowledge, existing studies on AMBA buses focus
on RTL models and efficient implementations of the differ-
ent AMBA interfaces. As an example, [6] analyzes several
arbitration algorithms for AHB in terms of latency and power
dissipation. However, no work considers adapting the AMBA
specification for real-time time-composable systems, as it is
the focus of our study.

VIII. CONCLUSIONS AND FUTURE WORK
MPSoCs have become a must in critical real-time embed-

ded systems (CRTES) since they deliver high performance
needed for increasingly computational intensive applications.
Integrating different IP components in those processors re-
quires a standard specification for the communication bus, and
AMBA AHB has been proven to be a suitable interface in
embedded systems. Unfortunately, the need for incremental
qualification poses requirements regarding time composability
in the AMBA AHB.

In this paper we thoroughly review AHB features identify-
ing those that make AHB fail to provide time composability
and those that, although time-composable, lead to non-tight

WCET estimates. Then, we propose a time-composable AHB
(resAHB) specification, which enables computing application’s
WCET, though with large overestimations. Finally, we intro-
duce a new bus specification based on AHB, AHRB, which
achieves both, time composability and tight WCET estimates.
Our experiments show that WCET estimates can be derived
on top of resAHB and AHRB, and AHRB improves WCET
estimates by 3.5x w.r.t. resAHB with negligible average per-
formance degradation over single-core execution.

ACKNOWLEDGEMENTS
The research leading to these results has received fund-

ing from the European Space Agency under NPI Con-
tract 40001102880 and the European Community’s Seventh
Framework Programme under grant agreement no. 287519
(parMERASA). This work has also been supported by Spanish
Ministry of Science and Innovation grant TIN2012-34557.

REFERENCES
[1] NGMP Preliminary Datasheet Version 2.1, May 2013.
[2] Aeroflex Gaisler. Quad Core LEON4 SPARC V8 Processor - LEON4-

NGMP-DRAFT - Data Sheet and Users Manual, 2011.
[3] Areroflex Gaisler. Leon3 Processor. http://www.gaisler.com/.
[4] ARM Ltd. AMBA specification (rev. 2), 1999.
[5] ARM Ltd. The ARM Cortex-A9 processors (white paper), 2009.
[6] M. Conti, M. Caldari, G. Vece, S. Orcioni, and C. Turchetti. Perfor-

mance analysis of different arbitration algorithms of the AMBA AHB
bus. In Design Automation Conference, 2004. Proceedings. 41st, pages
618–621, 2004.

[7] M. Di Natale and A. Sangiovanni-Vincentelli. Moving from federated to
integrated architectures in automotive: The role of standards, methods
and tools. Proceedings of the IEEE, 98(4):603–620, April.

[8] J. Elmqvist, S. Nadjm-Tehrani, K. Forsberg, and S. Nordenbro. Demon-
stration of a formal method for incremental qualification of IMA
systems. In Digital Avionics Systems Conference, 2008.

[9] D. Flynn. AMBA: enabling reusable on-chip designs. Micro, IEEE,
17(4):20–27, 1997.

[10] Infineon. AURIX Safety joins Performance.
[11] J. Jalle, J. Abella, E. Quinones, L. Fossati, M. Zulianello, and F. J.

Cazorla. Deconstructing bus access control policies for real-time mul-
ticores. In International Symposium on Industrial Embedded Systems,
pages 31–38, 2013.

[12] F. Kirschke-Biller. AUTOSAR - a global standard. 4th AUTOSAR Open
Conference, June 2012.

[13] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings
of the IEEE, 91(1):112–126, 2003.

[14] M. Paolieri, E. Quiñones, and F. J. Cazorla. Timing effects of DDR
memory systems in hard real-time multicore architectures: Issues and
solutions. ACM Trans. Embed. Comput. Syst., 12(1s), 2013.

[15] M. Paolieri, E. Quinones, F. J. Cazorla, G. Bernat, and M. Valero.
Hardware support for WCET analysis of hard real-time multicore
systems. In International Symposium on Computer Architecture, pages
57–68, 2009.

[16] M. Paolieri, E. Quinones, F. J. Cazorla, and M. Valero. An analyzable
memory controller for hard real-time CMPs. Embedded System Letters
(ESL), 2009.

[17] J. Poovey. Characterization of the EEMBC Benchmark Suite. North
Carolina State University, 2007.

[18] R. Rajkumar, L. Sha, and J. Lehoczky. Real-time synchronization
protocols for multiprocessors. In Real-Time Systems Symposium, 1988.

[19] J. Rosen, A. Andrei, P. Eles, and Z. Peng. Bus access optimization for
predictable implementation of real-time applications on multiprocessor
systems-on-chip. In Real-Time Systems Symposium, 2007.

[20] E. Salminen, T. Kangas, V. Lahtinen, J. Riihimäki, K. Kuusilinna, and
T. D. Hämäläinen. Benchmarking mesh and hierarchical bus networks
in system-on-chip context. Journal of Systems Architecture, 2007.

[21] SoCLib. -, 2003-2012. http://www.soclib.fr/trac/dev.
[22] A. N. Udipi, N. Muralimanohar, and R. Balasubramonian. Towards

scalable, energy-efficient, bus-based on-chip networks. In International
Symposium On High Performance Computer Architecture, 2010.

[23] C. Watkins and R. Walter. Transitioning from federated avionics
architectures to integrated modular avionics. In Digital Avionics Systems
Conference, 2007.

[24] Wilhelm R. et al. The worst-case execution-time problem overview
of methods and survey of tools. ACM Transactions on Embedded
Computing Systems, 7:1–53, May 2008.

[25] J. Windsor, M.-H. Deredempt, and R. De-Ferluc. Integrated modular
avionics for spacecraft - user requirements, architecture and role defi-
nition. In Digital Avionics Systems Conference (DASC), 2011.



Fig. 8. Example of non time-composable behavior.

ANNEX I:EXAMPLE OF NON TIME-COMPOSABLE
BEHAVIOR UNDER AMBA

Figure 8 shows an example that illustrates three AHB-
compliant non-time composable behaviors of a master/slave
communication. Concretely, it shows the timing diagram of
the AHB bus of two masters, M1 and M2, each sending
transactions A and B respectively, both with a burst transfer
size of 4 beats. The transfer part of the transaction from master
M1 occurs between cycles n+2 and n+6. In those transfers,
phases overlap across beats. For instance, address phase of
transfer A1 overlaps with the data phase of transfer A0 given
that they use separate buses. Non time-composable behaviors
are as follows:

1) M1 requests the bus in cycle n+1 and gets it in cycle
n + 2, thus having an arbitration time of 1 cycle. Master
M1 issues a locked transaction at cycle n + 2. As defined
in the AMBA specification the arbiter cannot relinquish the
bus during a locked transaction, so that this transaction from
M1 can affect the timing of other masters in an unpredictable
manner potentially preventing them from using the bus indefi-
nitely (4 cycles in the example). Hence, the existence of locked
transactions is a feature that breaks time composability.

2) Masters can issue unspecified-length burst transfers,
which does not allow bounding the latency of a transaction.
For instance, in Figure 8, M1 issues a burst length of 4,
which means that for WCET estimation we have to assume that
every possible transaction from M1 is at least 4 beats long.
However, if a new master is connected with a burst-length of
8, it invalidates the previous analysis.

3) Finally and more revealing, AHB specification does not
put any requirements on the arbiter behavior, and only the
arbiter interface is specified. For instance, the arbiter can take
away the bus grant from a master, as occurs in cycle n + 2
when M2 is sending a burst transfer and the arbiter changes
the bus ownership to M1. This can happen due to the fact
that any arbitration policy to select the next master to grant
access to the bus can be used. Under some arbitration policies,
there may not be an upper bound on the time one master
can delay the others to access the bus, thus, breaking time
composability. For instance, if M1 has higher priority than
M2 and both tasks attempt to access the bus simultaneously,
M2 is stalled until M1 finishes. However, if before the first
request from M1 finishes, another request from M1 becomes
ready, M2 will also wait for the second M1 request to finish
as well. Thus, the bus contention that M2 suffers depends on
M1. Even though this effect can have an upper bound and be
computed knowing M1, it breaks time composability, because
if we change M1 behavior (e.g., the task running on top of
such master) it invalidates the timing analysis for M2.

TABLE III. WCET (IN MILLISECONDS) FOR THREE TASKS
UNDER SEVERAL MM/SM

mm/sm modes
Tasks 111-2 114-2 141-2 411-2 144-2 414-2 441-2 444-2

t0 1.2 1.4 1.4 1.4 1.6 1.6 1.6 1.8
t1 1.3 1.4 1.4 1.4 1.5 1.5 1.5 1.7
t2 1.7 1.3 1.9 1.9 1.5 1.5 2.3 2.1

ANNEX II: TASK SCHEDULER AND THE MASTER/SLAVE
MODES, AN EXAMPLE

The following synthetic example details how the scheduler
interacts with the arbiter and the master/slave modes. For sim-
plicity we focus on the case in which each master can be used
by only one task. In our example we assume three tasks (t0, t1
and t2) scheduled in three different cores (masters) and using
one or more slaves. Each master can operate under mode 1 or
4, and all slaves operate always under mode 2. The deadline
and period for all tasks is 2ms. Table III shows the WCET
estimate in milliseconds for each task under each master/slave
mode combination. For instance, 114-2 corresponds to the case
where t0 and t1 operate in master mode 1, t2 in master mode
4 and the slave in mode 2.

In the example, t0 and t1 send short transfers, so master
mode 1 provides them good performance. Conversely, t2
achieves lower WCET estimates under master mode 4 since
its transfers are longer and master mode 1 produces split
transactions. Therefore, the lowest WCET estimates for t0 and
t1 occur under 111-2 modes, and for t2 under 114-2 modes.

Different approaches can be followed to choose the proper
modes for each task. However, in all cases 441-2 and 444-2 are
not eligible because t2 would violate its deadline (2ms). Out
of the other combinations of modes, 114-2 would be the one
minimizing the WCET estimates for all tasks, 1.4+1.4+1.3 =
4.1, hence reducing the CPU capacity used by those tasks,
which can be left to other tasks. 111-2 modes minimize the
CPU capacity required by t0 and t1.

Once a particular combination of modes is selected (e.g.,
114-2), the arbiter is in charge of properly configuring masters
and slaves on each arbitration every time it grants access to
a master. For instance, if the master where t0 runs is granted
access, the arbiter sets it to master mode 1 and the slaves as
slave mode 2. Similarly, when the arbiter grants access to t2
master, it enforces such master to operate in mode 4.

In the general case, unlike in our example above where
each task is bound to a master, masters and slaves can be used
by several tasks. However, the same principles drawn in this
example rule the allocation of modes to task master and slaves.

ANNEX III: OTHER AMBA SPECIFICATIONS
Besides AHB, the AMBA specification defines other in-

terfaces that we qualitatively analyze next in terms of time
composability.

AHBLite/APB. APB and AHBLite are intended for a sin-
gle master, which prevents inter-task interferences and hence
the need of time-composable access delays.

ASB. ASB was designed to be the main system bus, like
AHB. However, AMBA recommends AHB for all new designs
because AHB provides improved features. Anyway, the same
approach explained in this paper can be carried out in ASB.

ACE. ACE adds system-level coherence support to AXI,
which does not have any impact on timing.

ATB. ATB is a trace bus for on-chip debug, which is free
of real-time constraints.


