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A single-degree-of-freedom mechanical model of vibro-impact system is established. Bifurcation and chaos in the system are
revealed with the time history diagram, phase trajectory map, and Poincaré map. According to the bifurcation and chaos of the
actual vibro-impact system, the paper puts forward external periodic force control strategy. The method of controlling chaos by
external periodic force feedback controller is developed to guide chaotic motions towards regular motions. The stability of the
control system is also analyzed especially by theory. By selecting appropriate feedback coefficients, the unstable periodic orbits
of the original chaotic orbit can be stabilized to the stable periodic orbits. The effectiveness of this control method is verified by
numerical simulation.

1. Introduction

In the field of nonlinear, along with people understanding the
nature of chaos, how to control chaos and chaos synchro-
nization has been a hot topic studied by researchers. In the
1990s, Ott et al. proposed the OGY chaos control method [1].
Scholars put forward a lot of modified control methods [2, 3]
based on the OGY method. Although small perturbation of
the system parameters for the control of chaos has been con-
firmed, the method requires detailed information about the
target trajectory and brings a lot of inconvenience to the
practical application. Therefore the domestic and foreign
researchers put the traditional control theory and chaotic
motion characteristics used in chaos control and present a lot
of chaos control method, such as delayed feedback control [4,
5], periodic parameter perturbation control [6], continuous
feedback control [7], pulse feedback control [8], and adaptive
control [9], and so forth. There are also examples of control
on the vibroimpact system [10, 11].

Vibroimpact system as a typical nonsmooth dynamical
system generally exists in practical engineering. Because of
the frequent collision, the system has strong nonlinearity and
discontinuities compared with a smooth nonlinear system,
presents more complex nonlinear phenomena, and causes

hazards on the safe operation of the system. Because of the
collision interface differential discontinuities, the original
method applied to continuous system can not be used for
such system.

This paper puts forward a sine periodic force feedback
controller based on the periodic external force feedback con-
trol strategy and analyzes the stability of control theory.When
selecting the appropriate feedback coefficients, the chaotic
orbits can be controlled onto the stable periodic orbits. A
single-degree-of-freedom vibroimpact system is transformed
into a form of Poincaré map for numerical simulation. The
results of numerical simulation show that the method is
effective in practical engineering, so it has certain practical
significance.

2. Mechanics Model of
the Vibroimpact System

Figure 1 shows a single-degree-of-freedommechanicalmodel
of vibroimpact system. Oscillator 𝑀 is connected to the left
side support by the spring with stiffness 𝐾 and the damper
with damping 𝐶. In the harmonic excitation 𝐹 sin(Ω𝑇 + 𝜃),
motion of the oscillator is in the horizontal direction. 𝑋 is
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Figure 1: Mechanics model of a single-degree-of-freedom vibroim-
pact system.

the displacement of motion. When the oscillator is in the
equilibrium position, the gap between the rigid constraints
on the right side is 𝐷. Considering the collision as the rigid
collision and𝑅 as the coefficient of restitution, the differential
equation of motion of system is

𝑀𝑋̈ + 𝐶𝑋̇ + 𝐾𝑋 = 𝐹 sin (Ω𝑇 + 𝜃) (𝑋 < 𝐵) . (1)

The shock equation of system is

𝑋̇
+

= −𝑅𝑋̇
−

(𝑋 = 𝐵) , (2)

where 𝑋̇
−
and 𝑋̇

+
represent the impacting mass velocities of

approach and departure at the instant of impacting, respec-
tively.

After the dimensionless transformation, when 𝑥 < 𝑑, the
differential equations of motion of the system between two
collisions are as follows:

𝑥̈ + 2𝜁𝑥̇ + 𝑥 = sin (𝜔𝑡 + 𝜃) . (3)

In which, the nondimensional quantities are

𝑥 =
𝑋𝐾

𝐹
, 𝜁 =

𝐶

2√𝑀𝐾

, 𝜔 = Ω√
𝑀

𝐾
,

𝑡 = 𝑇√
𝐾

𝑀
, 𝑑 =

𝐷𝐾

𝐹
.

(4)

When 𝑥 = 𝑑, shock equation of the system at collision
transient is given by

𝑥̇
+

= −𝑅𝑥̇
−
, (5)

where 𝑥̇
−
and 𝑥̇

+
represent the impacting mass velocities of

approach and departure at the instant of impacting, respec-
tively.

By (1), the general solution of the system between two
collisions between is

𝑥 = 𝑒
−𝜁𝑡

(𝑎 cos𝜔
𝑑
𝑡 + 𝑏 sin𝜔

𝑑
𝑡) + 𝐴 sin (𝜔𝑡 + 𝜃)

+ 𝐵 cos (𝜔𝑡 + 𝜃) ,

(6)

where 𝜔
𝑑

= √1 − 𝜁2. 𝐴 and 𝐵 are amplitude constants. By the
initial conditions of the system: 𝑥(𝑡

0
) = 𝑥
0
and 𝑥̇(𝑡

0
) = 𝑥̇
0
, let

𝑡
0

= 0; the integral constants 𝐴 and 𝐵 can determined

𝑎 = 𝑥
0

− 𝐴 sin 𝜃 − 𝐵 cos 𝜃,

𝑏 =
(𝑥̇
0

+ 𝜁𝑥
0

+ (𝐵𝜔 − 𝐴𝜁) sin 𝜃 − (𝐴𝜔 + 𝐵𝜁) cos 𝜃)

𝜔
𝑑

,

𝐴 =
1 − 𝜔
2

(1 − 𝜔2)
2

+ (2𝜁𝜔)
2
,

𝐵 =
−2𝜁𝜔

(1 − 𝜔2)
2

+ (2𝜁𝜔)
2
.

(7)

Periodic motion of the system under certain parameter
conditions can be expressed as 𝑛−𝑝, 𝑛 represents a force cycle
number, and 𝑝 represents the number of collisions. Consid-
ering the 𝑛 − 1 periodic motion, the collision instantaneous
dimensionless time 𝑡 = 0, and next collision time 𝑡

𝑧
= 2𝑛𝜋/𝜔,

then boundary conditions of the 𝑛 − 1 periodic motion are
𝑥(0) = 𝑥(𝑡

𝑧
) = 𝑑 and 𝑥̇(0) = −𝑅𝑥(𝑡

𝑧
). With (6) applying to

the boundary conditions, the existence conditions of periodic
motion system are

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝐻 tan 𝜃 − √1 + tan2 𝜃 − 𝐻2

1 + tan2 𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 1, (8)

where 𝜃 = arc tan(−𝐻
2
/𝐻
1
), 𝑐 = cos𝜔

𝑑
𝑡
𝑧
, 𝑒 = 𝑒

−𝜁𝑡
𝑧 , 𝑠 =

sin𝜔
𝑑
𝑡
𝑧
,

𝐻 =
𝑑

𝐻
1

((𝜁 + Re (𝜔
𝑑
𝑠 + 𝜁𝑐)) 𝑒𝑠

+ (𝜔
𝑑

+ Re (𝜔
𝑑
𝑐 − 𝜁𝑠)) (𝑒𝑐 − 1)) ,

𝐻
1

= 𝐴 (𝜁 + Re (𝜔
𝑑
𝑠 + 𝜁𝑐)) − 𝐵𝜔 (1 + 𝑅) 𝑒𝑠

+ 𝐴 (𝜔
𝑑

+ Re (𝜔
𝑑
𝑐 − 𝜁𝑠)) (𝑒𝑐 − 1) ,

𝐻
2

= 𝐵 (𝜁 + Re (𝜔
𝑑
𝑠 + 𝜁𝑐)) − 𝐴𝜔 (1 + 𝑅) 𝑒𝑠

+ 𝐵 (𝜔
𝑑

+ Re (𝜔
𝑑
𝑐 − 𝜁𝑠)) (𝑒𝑐 − 1) .

(9)

At the same time, theory fixed point of the 𝑛 − 1 periodic
motion is given by

𝜃
𝑑

= arc cos(
−𝐻 tan 𝜃 − √1 + tan2 𝜃 − 𝐻2

1 + tan2 𝜃
) , 𝑥

𝑑
= 𝑑,

𝑥̇
𝑑

=
(𝑑 − 𝐴 sin 𝜃

𝑑
− 𝐵 cos 𝜃

𝑑
) ((1 − 𝑒𝑐) 𝜔

𝑑
− 𝑒𝑠𝜁)

𝑒𝑠

+ 𝐴𝜔 cos 𝜃
𝑑

− 𝐵𝜔 sin 𝜃
𝑑
.

(10)
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Figure 2: Bifurcation diagram of the system.
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Figure 3: Poincaré map, phase portrait, and time course diagram of the system with 𝜔 = 2.55.

Define the following section: 𝜎 = {(𝜃, 𝑥, 𝑥̇) ∈ 𝑅
2

× 𝑆
1
|𝑥 =

𝑑}. In the paper, we choose the section 𝜎 to establish the
Poincaré map

𝜃
𝑘+1

= 𝜔𝑡 + 𝜃
𝑘
, (11)

𝑥
𝑘+1

= 𝑒
−𝜁𝑡

(𝑎 cos𝜔
𝑑
𝑡 + 𝑏̂ sin𝜔

𝑑
𝑡) + 𝐴 sin (𝜔𝑡 + 𝜃

𝑘
)

+ 𝐵 cos (𝜔𝑡 + 𝜃
𝑘
) ,

(12)

𝑥̇
𝑘+1

= −𝑅 (𝑒
−𝜁𝑡

((𝑏̂𝜔
𝑑

− 𝑎𝜁) cos𝜔
𝑑
𝑡 − (𝑏̂𝜁 + 𝑎𝜔

𝑑
) sin𝜔

𝑑
𝑡)

+𝐴𝜔 cos (𝜔𝑡 + 𝜃
𝑘
) − 𝐵𝜔 sin (𝜔𝑡 + 𝜃

𝑘
) ) ,

(13)

where 𝑎 = 𝑥
𝑘

− 𝐴 sin 𝜃
𝑘

− 𝐵 cos 𝜃
𝑘
, and 𝑏̂ = (𝑥̇

𝑘
+ 𝜁𝑥
𝑘

+ (𝐵𝜔 −

𝐴𝜁) sin 𝜃
𝑘

− (𝐴𝜔 + 𝐵𝜁) cos 𝜃
𝑘
)/𝜔
𝑑
. In which, initial iteration

value of the Poincaré map of the 𝑛 − 1 periodic motion is

𝜃
0

= 𝜃
𝑑
, 𝑥

𝑘+1
= 𝑥
𝑘

= 𝑥
0

= 𝑥
𝑑

= 𝑑, 𝑥̇
0

= 𝑥̇
𝑑
. (14)

3. Chaos and Bifurcation

The single-degree-of-freedommechanical model of vibroim-
pact system, with system parameters 𝜁 = 0.01, 𝑑 = 0.05,
and 𝑅 = 0.8, has been chosen to be analyzed. The system
parameter 𝜔 is taken as the bifurcation parameter.The global
bifurcation diagram can be obtained with the 𝜔 changing
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Figure 4: Poincaré map, phase portrait, and time course diagram of the system with 𝜔 = 2.6.
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Figure 5: Poincaré map, phase portrait, and time course diagram of the system with 𝜔 = 2.635.
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Figure 6: Poincaré map, phase portrait, and time course diagram of the system with 𝜔 = 2.42.
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Figure 7: Poincaré map, phase portrait, and time course diagram of the system with 𝜔 = 2.644.



6 Journal of Control Science and Engineering

x
2

x1

3 4 5

−0.1

−0.2

−0.3

−0.5

−0.4

(a)

x
2

x1

1

−1
−1

0

0−0.5

−0.5

0.5

0.5

(b)

0.2

0

−0.2

−0.4

−0.6

t

−0.8

0 50 100

x
2

(c)

Figure 8: Poincaré map, phase portrait, and time course diagram of the system with 𝜔 = 2.52.
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Figure 9: Poincaré map, phase portrait, and time course diagram of the controlled system with 𝛾 = 0.05 and ℎ = 4.6.
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Figure 10: Poincaré map, phase portrait, and time course diagram of the controlled system with 𝛾 = 0.05 and ℎ = 5.6.

in the range of [0, 6] as shown in Figure 2. As you can see
from Figure 2, the system has stable 𝑛 − 1 periodic motion in
a certain range. But in different period of single touch move-
ment, the system will produce double periodic bifurcation,
from periodic motion to chaos in the process of transition.
But with the increase in 𝜔, the system will degenerate to
the periodic motion. The Figures 2(b) and 2(c) are a partial
enlargement of Figure 2(a). It can be seen that, when 𝜔 =

2.5585, the vibroimpact systemwill be fromperiodic 1motion
to periodic 2 motion by bifurcation and when 𝜔 = 2.624, the
vibroimpact system will be from periodic 2 motion to
periodic 4 motion by double periodic bifurcation. When 𝜔 =

2.641, the vibroimpact systemwill be from periodic 4motion
to periodic 8 motion by double periodic bifurcation. When
𝜔 = 2.644, the vibroimpact system will be from periodic 8
motion to periodic 16 motion by double periodic bifurcation.
With the vibration frequency𝜔 increasing further, the system
leads to chaotic motion.

The excitation frequency 𝜔 takes 2.55, 2.6, 2.635, 2.642,
2.644, and 2.652. Poincaré map, phase portrait, and time
course diagram of the system are shown in Figures 3, 4, 5, 6, 7,
and 8.The system is, respectively, periodic 1 motion, periodic
2 motion, periodic 4 motion, periodic 8 motion, periodic 16
motion, and chaotic motion.

4. Chaos Control

Thepaper chooses the sine driving force for the periodic force
excitation. Periodic force is easy to produce and control the
external driving force in the actual project, so the sine driving
force is used to suppress the bifurcation and chaoticmotion of
single-degree-of-freedom vibroimpact system. Based on the
principle of parameter perturbation, periodic force excitation
method can stabilize the chaotic motion by applying distur-
bance directly into the system. An unstable periodic motion
of the chaotic system can produce resonance with external
periodic force.The system can be from its unstable limit cycle
to a stable limit cycle by resonating with external driving
signal. So the chaos is controlled.

Periodic force excitation can be expressed as

𝑓 = ℎ sin (𝛾𝜔𝜃) . (15)

In the formula, ℎ and 𝛾 are adjustable parameters.
As the previous analysis, when 𝜔 = 2.652, the system

is in chaotic motion. After the introduction of the external
periodic force feedback controller, using the fourth-order
Runge-Kutta method of numerical simulation, the Poincaré
map, phase portrait, and time course diagram of the con-
trolled system are obtained, as shown in Figures 9 and 10.



8 Journal of Control Science and Engineering

When 𝛾 = 0.05 and ℎ = 4.6, the system is controlled to
periodic 1 motion. When 𝛾 = 0.05 and ℎ = 5.6, the system is
controlled to periodic 2 motion. The simulation results show
the effectiveness of themethod. Because themethod does not
change the original system parameters, it can be applied to a
2-DOF and multiple-DOF vibroimpact mechanical system.

5. Conclusion

Based on a single-degree-of-freedom vibroimpact system
as the research object, bifurcation and chaos have been
researchedwith the systemparameters changing. By adopting
an external periodic force excitation method for suppressing
its chaotic behavior, it delayed the occurrence of fault.
Because this method does not change the original system
parameters, it is easy to implement in engineering. This
method is not limited to this kind of mechanical system
with clearance collision and can also be used in other similar
nonlinear system.
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