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Abstract  Cutting forces are classified among the important technological parameters in machin ing processes due to 

their significant impacts on product quality. A large number of interrelated machin ing parameters have a great influence on 

cutting forces so it is quite difficult to develop a proper theoretical model to describe efficiently and globally a machinin g 

process.In this paper, an artificial neural network (ANN) model is then proposed to predict cutting force components during 

hard turning of an  AISI 52100 bearing steel using CBN cutting tools. This study is based on an experimental dataset of 

cutting forces measured during hard turning. Cutting s peed (Vc, m/min), feed rate (f, mm/rev), cutting depth (ap, mm) and 

workp iece hardness (HRc, MPa) are taken as input parameters in the ANN model, while the three cutting force components 

(feed force Fa, radial force Fr and cutting force Ft, in N) are the output data.The ANN model consists of a mult i-layer 

feed-forward, trained  by a back-propagation (BP) algorithm. The influence of a double hidden layer (instead of a single 

hidden layer) is investigated, and a comparison is carried out between Bayesian Regularization associated with 

Levenberg–Marquardt algorithm (BR/LM) and simple Levenberg–Marquardt algorithm (LM). A various number of 

neurons in the hidden layer are also tested.The best prediction accuracy is found while using a feed forward single hidden 

layer ANN trained by BR/LM and using a sigmoid activation function on hidden layer and a linear one on output layer. The 

best structure uses 11 neurons in the hidden layer and average pred iction errors on the testing dataset are given: 11.47% on 

Fa, 11.47% on Fr and 6.17% on Ft. 
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1. Introduction 

Machining is a major process in manufacture used 

especially to finish mechanical parts. Costs of these 

operations and final products quality are highly constrained 

to take into account an increasingly competit ive 

environment, where investors require h igher returns on their 

investments.  

Hard machining processes produce high cutting forces 

and  temperatu res  that  affect  some cu t t ing  p rocess 

parameters, such as dynamic stability, tool wear, work p iece 

surface integrity, geometrical d imensions. Cutting forces 

modeling is so necessary, as it permits to characterize 

material machinab ility , to get some knowledge on the 

power requ ired  during machin ing ([1]), to  monito r tool 

wear ([2]), to pred ict surface roughness and more ( [3]). 

Cutting forces are related to various  process parameters ([4]) 

such as tool material, workp iece propert ies and  cutting  
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conditions (i.e. feed rate, cutting speed, cutting depth,…)  

([5]). It is then difficult to provide an accurate theoretical 

model to describe complex machining processes such as 

milling and turning. 

Artificial neural network (ANN) approach is routinely  

considered as an accurate and powerful tool fo r machining 

process modeling, as it permits to save much time and 

money generally spent in experimental procedures. A large 

amount of works have been carried out on forces  modeling 

which have shown that ANN approach is more accurate and 

faster than many other analytical and numerical cutting 

force modeling methods. In the working conducted in[6], an 

approach for cutting forces modeling has been developed, 

based on feed-forward mult i-layer neural networks trained 

by BP algorithm, and applied to experimental machining 

data. Szecsi has investigated the effect of two of the main 

parameters which influence error convergence: learn ing rate 

η and momentum term α. While the used analytical model 

gives an average prediction error of 9.5% on cutting forces, 

his neural network provides predict ions in train ing with an 

average error of 3.5%. In[7], Zuperl and Cus have 

investigated supervised ANN approach to estimate forces 

generated during end milling process. They have found that 
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the radial basis network requires more neurons than the 

standard feed forward  neural network with BP learn ing ru le 

and that feed forward neural network g ives more accurate 

results, but takes 70% much time. In milling, using a 

multi-layer perceptron with BP training method provides a 

neural network whose error in training is under 2% for all 

the three force components, and under 4% in testing. As a 

comparison, an 11% average error is found using analytical 

methods. In[8], Hao et al. have introduced a cutting force 

prediction model for self-propelled rotary tool (SPRT). Two 

types of analyses are presented: simple BP algorithm and 

hybrid BP algorithm associated with genetic algorithm 

(GA–BP). Additionally, they have investigated learning rate 

lr, which controls the adaptation speed of connection 

weights between neurons, and the momentum rate m, that 

takes into account the rate of last connection weights 

changes. A comparison led  on the two  numerical models 

shows that GA–BP network predicts SPRT cutting forces 

more accurately than BP network during training, which  is 

very important for real-t ime control. Finally, Aykut et  al. 

have tried in[9] to predict cutting forces in asymmetric 

milling processes using ANNs. Network training has been 

performed using scaled conjugate gradient (SCG) and 

feed-forward BP algorithm. Main  average percentage errors 

(APEs) between experimental and numerical Fx, Fy and Fz 

values have been found around 2% in training and 10% in 

testing. 

Furthermore, some authors have also used opportunities 

provided by ANN algorithms to predict material behavior in 

machining: Li et al. has developed in[10] a hybrid model 

based on an analytical approach using Oxley’s theory 

combined with a neural network model, in order to predict 

first cutting forces, temperature in the chip region and chip 

geometry and then to evaluate workpiece surface roughness, 

tool wear and chip  break ab ility. They have found errors 

under 5% on tool wear pred iction and 20% on surface 

roughness and chip breaking ability. Özel and Karpat have 

compared in[11] exponential regression models and neural 

network models for tool flank wear and surface roughness 

predictions during AISI H-13 and AISI 52100 hard turning. 

As regression models give as good results as ANN models 

for tool wear p rediction, they have found it ineffective to 

predict surface roughness compared to ANN. At last, 

Umbrello  et al. have developed in[12] a numerical model 

based on an ANN approach to predict  residual stress profile 

in hard turn ing of AISI 52100 bearing steel (HRc between  

50 and 64). They have especially investigated the optimal 

number of neurons in  the hidden layer and then optimized 

their model using a hybrid finite element ANN approach 

([13]). As a result, their model has given satisfactory results 

showing a prediction error ranging between 4 and 10%. 

In the present study, an ANN approach is proposed to 

predict cutting force components in hard turn ing: feed force 

Fa, rad ial force Fr and cutting force Ft.  

1.1. Experimental Background 

This numerical work is based on a dataset provided by 

experimental hard turning of AISI 52100 steel using CBN 

cutting tools ([14]).As shown on Table 1 and 2, three 

cutting force components have been experimentally 

determined for 38 different material hardness and cutting 

condition combinations (cutting speed Vc, feed rate f, 

cutting depth ap): the first 32 ment ioned on Table 1 are 

used to train the network and the other 6 are testing 

conditions (Table 2). The main objective is then to develop 

an ANN model to properly  predict cutting condition 

influence on cutting forces during th is hard turning. This 

model will of course be valuable in the same ranges as 

training cutting conditions. 

Table 1.  Experimental training dataset ([14]) 

 
 

Cutting parameters Experimental forces 

Num. HRc(MPA) 
Vc 

(m/min) 

f 

(mm/rev) 

ap 

(mm) 
Fa(N) Fr(N) Ft (N) 

1 45 100 0,1 0,2 56 104 128 

2 45 150 0,05 0,2 20 51 50 

3 45 150 0,08 0,2 28 69 75 

4 45 150 0,1 0,2 28 71 83 

5 45 150 0,1 0,3 60 118 135 

6 45 150 0,1 0,4 82 129 174 

7 45 150 0,2 0,38 40 120 151 

8 45 200 0,1 0,2 33 79 91 

9 50 100 0,1 0,2 41 111 106 

10 50 150 0,05 0,2 35 103 69 

11 50 150 0,1 0,4 90 158 179 

12 50 150 0,2 0,2 58 193 168 

13 50 200 0,1 0,2 36 97 94 

14 52 50 0,1 0,2 44 103 117 

15 52 50 0,1 0,4 58 115 140 

16 52 100 0,1 0,2 40 97 91 

17 52 150 0,1 0,2 38 102 98 

18 52 250 0,1 0,2 37 97 95 

19 52 300 0,1 0,2 32 89 93 

20 52 300 0,1 0,3 59 112 135 

21 54 100 0,1 0,2 34 85 96 

22 54 150 0,05 0,2 23 58 56 

23 54 150 0,1 0,3 57 115 131 

24 54 150 0,1 0,4 83 142 172 

25 54 150 0,15 0,2 40 110 128 

26 54 150 0,2 0,2 45 140 159 

27 54 200 0,1 0,2 35 91 92 

28 56 50 0,1 0,2 51 141 121 

29 56 150 0,1 0,2 30 75 86 

30 56 200 0,1 0,15 18 58 61 

31 56 250 0,1 0,2 33 78 93 

32 56 300 0,1 0,2 32 97 92 
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Table 2.  Experimental testing dataset ([14]) 

  
Cutting parameters Experimental forces 

Num. 
HRc 

(MPA) 

Vc 

(m/min) 

f 

(mm/rev) 

ap 

(mm) 
Fa(N) Fr(N) Ft(N) 

1 45 150 0,15 0,2 42 115 136 

2 50 150 0,1 0,3 66 154 143 

3 50 150 0,15 0,2 46 139 137 

4 52 200 0,1 0,2 36 95 96 

5 54 150 0,1 0,2 32 91 94 

6 56 100 0,1 0,2 33 81 96 

 

 

 

Figure 1.  Cutting force components as a function of: 

a.Cutting speed Vc(f=0.1 mm/rev; ap=0.2 mm, 45HRc) 

b.Cutting depth ap (Vc=150 m/min; f=0,1 mm/rev; 45HRc) 

c.Feed rate f (Vc=150 m/min; ap=0,2 mm; 45HRc) 

As an example, Figure 1 illustrates experimental cutting 

forces variations with cutting speed, cutting depth, feed rate 

and workpiece hardness. As mentioned in introduction, 

many process parameters have a great and complex 

influence on cutting forces, which can be observed on the 

provided curves. It is therefore natural to prefer numerical 

techniques (such as ANN, mult iple regressions or genetic 

algorithm) to analytical modeling to describe efficiently the 

process complexity. 

1.2. Neural Network Modeling 

An artificial neural network (Figure 2) consists of simple 

processors called neurons which are interconnected. This 

hierarchical network structure has an input layer receiving 

data e from the outside and an output layer which sends 

final informat ion to users. In the middle, hidden layers have 

no direct contact with the environment.  

As it has proved its efficiency for approaching non-linear 

functions ([15]), only BP algorithm has been used for the 

neural network training. Using notations given on Figure 2, 

output response is calculated as follow (eq. 1), ([16]): 

  b)w.ef(s             (1) 

During t rain ing, weights and biases are initialized to 

small random values to avoid sharp saturation in activation 

functions. 

Generally, the optimal network configuration is found 

through statistical error calculation ([17]), between target 

data c and output data s. The aim is to minimize these errors 

during training and testing. First, SSE (Sum Squared Error) 

and SSW (Sum Squared Weights) are evaluated using 

MATLAB Neural Networks Toolbox. And additionally, 

two coefficients are calcu lated to evaluate statistical 

network performance and reinforce the choice of the best 

network:  

●  Linear regression coefficient R (eq. 2).  
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Where Q is the number of cutting conditions, 𝑐 and 𝑠 are 

mean target and output values. 

●  Mean absolute percentage error (MAPE) (eq. 3)  
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Figure 2.  ANN Multi-layer feed-forward structure 

2. Optimal Choice of an ANN Model 

This study is not only focused on its main objective, 

namely the development of an ANN model to properly 

predict cutting condition in fluence on cutting force 

components. Some major parameters used in the final ANN 

model have first been optimized : 

●  The type of activation functions in hidden and output 

layers 

●  The number of hidden layers  

●  The type of training algorithm (Levenberg–Marquardt 

(L M)  or L ev enb erg – M arqu ar dt  using B ay esian Regularization 

(BR/LM) ([18]) 

●  The number of neurons in the hidden layer 

In all the fo llowing cases, ANNs t rain ing are performed  on 

32 experimental cutting results (Table 1) and their 

generalization capacit ies are evaluated on 6 fu rther test data 

(Table 2), that have of course not been used in training. In 

each case, input and target values are normalized in the 

range[-1 -1] to perform an efficient training ([19]). 

Two activation functions need first to be chosen: one 

applied in hidden layers and the second used in output layer 

to determine on the one hand the appropriate number of 

hidden neurons and on the other hand output values. Table 3 

illustrates results of a preliminary analysis: it g ives linear 

regression coefficients obtained in t rain ing (R-train ing) 

using two couples of activation functions for a various 

number of hidden neurons: 

●  Sigmoid function (    xexf  1/1 ) in hidden layer 

and Linear function (   xxf  ) in output layer (S.L.) 

●  Sigmoid function in hidden layer and Sigmoid  

function in output layer (S.S.) 

Table 3.  R-training values using S.L. and S.S. activation functions 

ANN Structure R-Training(S.L.) R-Training(S.S.) 

4-4-3 0.952 0,812 

4-5-3 0.988 0,805 

4-6-3 0.988 0,797 

4-7-3 0.993 0,797 

4-11-3 0.999 0,785 

4-19-3 0.999 0,778 

4-24-3 0.999 0,739 

It can be noticed that (S.L.) g ives more accurate results in 

each case. This type of activation functions have then been 

chosen for further study.  

Levenberg-Marquardt (LM) optimization algorithm has 

been used all along this study, in order to find out weights 

and biases. This training algorithm adjusts them iteratively to 

reduce error between experimental and predicted output 

values. It has been shown in literature ([20]) that LM can 

quickly  provide accurate results if the number of neurons in 

hidden layers is well chosen. Figure 3 illustrates a 

performance analysis led on this number and based again on 

R-training values. 
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Figure 3.  R-training variation with the number of hidden neurons (in a 

single hidden layer configuration) 

It can be noticed that using LM algorithm, R-train ing 

converges toward a value close to 1 when the number of 

neurons in the hidden layer reaches 6. However, this 

algorithm has one major defau lt that should be mentioned: it 

tends indeed to overfit pred icted data in t rain ing, which 

prevents it from accurately generalizing. In this case, the 

network tends to memorize train ing examples too well and as 

a consequence it is not able to give efficient predictions for 

new cutting conditions. So users need to test their ANN 

model on a new dataset during the training process, to verify 

first that the chosen structure gives good results on random 

cutting conditions and to adjust eventually the structure 

choice. A solution to improve generalizat ion consists in 

using Bayesian Regularizat ion, in combination with 

Levenberg–Marquardt (BR/LM). This algorithm modifies 

the performance function, which causes the network to have 

smaller weights and biases and forces the response to be 

smoother. Moreover, th is method is particu larly well adapted 

when the dataset is small.  

Figure 4 illustrates MAPE values obtained in testing for a 

various number o f h idden neurons, using an ANN model 

trained by LM algorithm in black and BR/LM algorithm in 

grey. 

 

Figure 4.  MAPE values in testingwith the number of hidden neurons 

It can be noticed on Figure 4 that BR/LM gives better 

MAPEs in testing for all cases when the number of h idden 

neurons is greater than 7. Moreover, LM algorithm provides 

very poor results in testing when the number is equal to 9, 10, 

11, 12, 14 and 15. This clearly illustrates the overfitting 

phenomenon mentioned earlier. It is then obvious that 

Bayesian Regularization should be definitely associated with 

LM algorithm, as 6 hidden neurons are at least necessary to 

train correct ly the ANN. 

Finally, an analysis has been performed to evaluate the 

value of using two  hidden layers instead of one. Various 

combinations of h idden layers have been investigated in 

order to build the best network and Figure 5 illustrates 

representative results provided by a 4-11-3 and a 4-6-8-3 

ANN structures (using BR/LM algorithm).  

Predicted cutting force components shown on Figure 5 fit  

experimental values very well in both single and double 

hidden layers cases. This numerical analysis has shown no 

advantage in using double hidden layers network. 

For further study, a BR/LM training algorithm will 

consequently be used associated with a single hidden layer 

and S.L. activation functions. 

 

 

 

Figure 5.  Experimental and predicted cutting force components for ANN 

structures 4-11-3 and 4-6-8-3 



 Science and Technology 2013, 3(1): 24-32 29 

 

 

3. Prediction of Cutting Force 
Components 

As explained in introduction, experimental cutting force 

components have been determined for 38 cutting conditions 

in which 32 have been used to train the ANN. In order to 

define the best structure, a various number of neurons in the 

hidden layer have been tested, from 1 to 35. To evaluate 

accuracy of the selected structure, cutting force components 

are calculated for the 6 additional cutting conditions. It can 

be noticed that testing cutting conditions have to be in the 

same ranges that the ones used in training.  

A key point in  the choice of the best ANN structure is the 

selection of statistical criteria. It is not efficient to limit the 

study to one criterion. So five representative criteria have 

been calculated for each structure and representative results 

have been collected in Table 4: 

●  SSE and SSW in t rain ing 

●  Linear regression coefficients R in train ing and testing 

●  MAPE in testing 

Table 4.  Statistical criteria values for various ANN structures 

ANN 

Structure 
SSE SSW R-Training R-Testing 

MAPE- 

Testing 

4-1-3 22.700 0.10 0.221 0.853 20.82 

4-2-3 4.200 33.40 0.908 0.966 8.23 

4-3-3 2.370 59.40 0.949 0.960 8.83 

4-4-3 2.260 54 0.952 0.960 8.67 

4-5-3 0.584 134 0.988 0.972 10.40 

4-6-3 0.586 115 0.988 0.972 11.04 

4-7-3 0.339 156 0.993 0.979 9.04 

4-8-3 0.207 173 0.996 0.980 8.32 

4-9-3 0.139 182 0.997 0.979 6.81 

4-10-3 0.140 176 0.997 0.978 8.28 

4-11-3 0.047 219 0.999 0.963 9.71 

4-12-3 0.053 222 0.999 0.965 9.68 

4-13-3 0.028 223 0.999 0.928 12.28 

4-14-3 0.031 215 0.999 0.947 11.57 

4-15-3 0.028 222 0.999 0.928 12.81 

4-16-3 0.031 213 0.999 0.945 11.25 

4-17-3 0.029 218 0.999 0.928 12.42 

4-19-3 0.033 213 0.999 0.938 11.19 

4-21-3 0.033 211 0.999 0.935 13.13 

4-24-3 0.029 217 0.999 0.930 11.18 

4-28-3 0.030 216 0.999 0.929 12.69 

4-30-3 0.029 220 0.999 0.934 11.58 

4-35-3 0.030 217 0.999 0.931 12.25 

    
AVE 10.96 

SSE as a function of SSW is plotted on Figure 6. A 

convergence area can be noticed, as the number of neurons in 

hidden layer reaches 11. As a result, the best structure had to 

be chosen in this area where SSE is closed to 0 and SSW 

around 220.  

In detail, 4-13-3 structure provides the minimum SSE 

(0.028) and an optimal R-training of 0.999. But further 

observations show that this structure doesn’t give the best 

performance in testing (R-testing=0.928; MAPE-Test = 

12.28). It is reasonable to assume that 4-13-3 structure has a 

litt le overfitted training data. 4-11-3 and 4-12-3 structures 

provide accurate predictions in training as well 

(R-training=0.999), but better results in testing: 

R-testing=0.963 and MAPE-test=9.71 for the 4-11-3 

structure. 

So, this analysis leads to select the 4-11-3 ANN structure 

and the corresponding numerical model has been expressed 

on equation (4): 

)).(.( ijijjkjkk xwbfwbfOutput   (4) 

where wji and wkj are respectively the weights that 

connect input i to h idden layer j and h idden layer j to output 

layer k, b are biases and f are activation functions. 

 

Figure 6.  SSE and SSW convergence 

Weights and biases values are given in Table 5.  

Table 5.  Statistical criteria values for various ANN structures 

a. In hidden layer 

wji 

-3,95 1,95 0,03 -1,35 

-1,41 -1,56 -0,42 1,33 

-1,25 -1,14 -1,59 -0,40 

0,50 0,65 0,57 2,28 

0,04 0,58 1,86 0,15 

-1,91 -0,73 1,84 -1,25 

1,94 -0,12 2,09 -0,26 

0,70 4,30 -1,47 -1,97 

-0,56 -0,66 2,24 2,01 

-2,12 -4,10 0,08 0,33 

-1,21 1,75 -1,00 -0,73 

 

bj 

1,77 

0,67 

-1,98 

-1,04 

-0,18 

1,01 

-1,29 

1,38 

2,84 

-1,96 

1,60 

b. In output layer 
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wkj 

1,10 -0,37 1,63 -0,15 -1,46 -1,23 1,20 -2,42 2,35 -1,86 0,76 

2,43 1,36 -0,02 -1,59 -0,72 -1,97 1,96 -1,63 1,27 -1,44 -1,31 

0,60 -0,71 1,62 -0,17 0,12 -0,85 0,67 -2,26 2,26 -1,50 0,63 

 

bk 

-0,29 

0,35 

-0,22 

Table 6.  Experimental and predicted cutting force components in training 
for the 4-11-3 ANN structure 

 
Experimental forces Predicted forces MAPE 

Num. Fa(N) Fr(N) Ft (N) Fa(N) Fr(N) Ft(N) Fa Fr Ft 

1 56 104 128 55 105 128 1.79 0.96 0.00 

2 20 51 50 20 54 51 0.00 5.88 2.00 

3 28 69 75 27 65 74 3.57 5.80 1.33 

4 28 71 83 29 72 85 3.57 1.41 2.41 

5 60 118 135 60 117 136 0.00 0.85 0.74 

6 82 129 174 83 129 173 1.22 0.00 0.57 

7 40 120 151 40 120 151 0.00 0.00 0.00 

8 33 79 91 32 79 90 3.03 0.00 1.10 

9 41 111 106 42 111 103 2.44 0.00 2.83 

10 35 103 69 35 102 68 0.00 0.97 1.45 

11 90 158 179 89 158 180 1.11 0.00 0.56 

12 58 193 168 57 193 169 1.72 0.00 0.60 

13 36 97 94 37 97 95 2.78 0.00 1.06 

14 44 103 117 45 102 116 2.27 0.97 0.85 

15 58 115 140 58 115 140 0.00 0.00 0.00 

16 40 97 91 38 98 98 5.00 1.03 7.69 

17 38 102 98 38 102 94 0.00 0.00 4.08 

18 37 97 95 36 97 96 2.70 0.00 1.05 

19 32 89 93 32 90 93 0.00 1.12 0.00 

20 59 112 135 59 112 135 0.00 0.00 0.00 

21 34 85 96 35 86 95 2.94 1.18 1.04 

22 23 58 56 23 58 56 0.00 0.00 0.00 

23 57 115 131 57 115 130 0.00 0.00 0.76 

24 83 142 172 83 142 172 0.00 0.00 0.00 

25 40 110 128 40 111 127 0.00 0.91 0.78 

26 45 140 159 45 140 159 0.00 0.00 0.00 

27 35 91 92 36 90 93 2.86 1.10 1.09 

28 51 141 121 51 141 121 0.00 0.00 0.00 

29 30 75 86 30 75 86 0.00 0.00 0.00 

30 18 58 61 17 58 63 5.56 0.00 3.28 

31 33 78 93 32 79 90 3.03 1.28 3.23 

32 32 97 92 33 96 92 3.13 1.03 0.00 

      
AVE 1.52 0.77 1.20 

Experimental and predicted cutting force components are 

compiled in  Table 6. Detailed MAPEs are also given in this 

Table in o rder to evaluate the model accuracy.  

As expected, this ANN model gives precise results in 

training: average MAPEs of 1.52%, 0.77% and 1.20% are 

respectively noted on Fa, Fr and Ft  predict ions. Figure 7 

completes the examples given on Figure 1 with predicted 

forces. It  reinforces the efficiency of ANN pred ictions in 

training, as a very  good global match is noticed between 

experimental forces and numerical predict ions on all the 

curves. 

 

 

 

 

Figure 7.  Experimental and predicted cutting force components as 

functions of: a.Cutting speed Vc (f =0.1 mm/rev; ap =0.2 mm, 45HRc) 

b.Cutting depth ap (Vc=150 m/min; f=0,1 mm/rev; 45HRc) 

c.Feed rate f (Vc=150 m/min; ap=0,2 mm; 45HRc) 

Table 7 illustrates experimental and predicted cutting 

force components obtained in testing, as well as MAPE 

values. 
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Table 7.  Experimental and predicted cutting force components in testing 
for the 4-11-3 ANN structure 

 
Experimental forces Predicted forces MAPE 

Num. Fa(N) Fr(N) Ft(N) Fa(N) Fr(N) Ft(N) Fa(N) Fr(N) Ft(N) 

1 42 115 136 27 93 108 35.71 19.13 20.59 

2 66 154 143 66 152 139 0.00 1.30 2.80 

3 46 139 137 43 135 127 6.52 2.88 7.30 

4 36 95 96 39 102 96 8.33 7.37 0.00 

5 32 91 94 33 81 89 3.13 10.99 5.32 

6 33 81 96 38 103 97 15.15 27.16 1.04 

      
AVE 11.47 11.47 6.17 

Average MAPE values of 11.47%, 11.47%, and 6.17% 

have been respectively found on Fa, Fr and Ft predict ions. 

This ANN model accuracy is similar to what is found in 

literature ([7]). Figure 8 illustrates finally a graphical 

comparison between experimental and predicted cutting 

forces in testing. As shown on Table 7, a  good global match 

is found between numerical and experimental, as 72% of the 

predicted forces MAPEs are under 11%. However a large 

discrepancy is noticed on the results, as MAPE ranges from 0 

to 36%. Especially, a large error is found with the first set of 

cutting conditions (HRc=45MPa; Vc=150m/min; 

f=0.15mm/rev; ap=0.2mm). It  seems nevertheless that the 

ANN model has proven its efficiency, but its accuracy could 

be further reinforced by optimizing some more ANN 

parameters, such as learning rate and momentum.  

 

 

Figure 8.  Experimental and predicted cutting force components in testing 

for the 4-11-3 structure 

4. Conclusions and Perspectives 

The main objective of this study has been to develop a 

robust numerical model to pred ict cutting force components 

in AISI 52100 bearing steel hard  turning using CBN cutting 

tools using an ANN approach. 

A precise study has been led to select the more suitable 

algorithm and methodology: 

●  The number of hidden layers has been tested. Neither 

using double hidden layer has shown advantage over single 

hidden layer. 

●  The type of transfer functions in hidden and output 

layers has been investigated. A sigmoid activation function 

has been chosen in hidden layer and a linear one in output 

layer. 

●  Levenberg–Marquardt (LM) algorithm has been 

compared to Levenberg–Marquardt using Bayesian 

Regularization (BR/LM). It has appeared that using 

Bayesian Regularization permits to avoid overfitting in 

training, which gives thus a major advantage over simple LM 

algorithm. 

●  And finally, a various number of neurons in hidden 

layer have been tested, from 1 to 35. It has been noticed first 

that the algorithm converges when this number reaches 11, 

and second that a minor overfitting appears when the number 

of neurons exceeded 13. 

For the selected 4-11-3 ANN structure, which uses 

BR/LM algorithm, S.L. activation functions and a single 

hidden layer, an excellent agreement has been found 

between numerical pred ictions and experimental data for the 

32 cutting conditions used in train ing (average MAPE under 

2%). And a quite large discrepancy has been noted on the 6 

tested cutting conditions: MAPE ranges from 0 to 36% on 

the 18 cutting force components dataset. Globally, the 

developed ANN model remains nevertheless efficient and as 

accurate as what is found in literature and should be 

recommended in machin ing process modeling. 

As a perspective, it seems essential to  expand this 

approach. It could be first possible to compare the proposed 

numerical approach with analytical models, and then 

propose hybrid methods based on an analytical approach 

combined with numerical technics. Moreover, some major 

ANN parameters such as learning rate and momentum term 

need to be investigated in order to reinforce the model 

accuracy. Finally, some other algorithms such as SCG could 

provide some improvements to the ANN model too.  
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