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Abstract

Five of the six univariate natural exponential families (NEF) with
quadratic variance functions (QVF), meaning their variances are at most
quadratic functions of their means, are the Normal, Poisson, Gamma,
Binomial, and Negative Binomial distributions. The sixth is the NEF-
CHS, the NEF generated from convolved Hyperbolic Secant distributions.
These six NEF-QVFs and their relatives are unified in this paper and in
the main diagram, Figure 1, via arrows that connect NEFs with many
other named distributions. Relatives include all of Pearson’s families of
conjugate distributions (e.g. Inverted Gamma, Beta, F, and Skewed-t),
conjugate mixtures (including two Polya urn schemes), and conditional
distributions (including Hypergeometrics and Negative Hypergeometrics).
Limit laws that also relate these distributions are indicated by solid arrows
in Figure 1.

Keywords: Normal, Poisson, Gamma, Binomial, Pearson families, quadratic
variance functions

1 INTRODUCTION

Statisticians appreciate that the Normal, Poisson, Gamma, Binomial, and Nega-
tive Binomial distributions reach powerfully into every realm of theoretical and
applied statistics. These distributions are five of the six natural exponential
families (NEFs) that have quadratic variance functions (QVF), i.e. the variance
is at most a quadratic function, V(µ), of the mean µ.

Figure 1 shows the six NEF-QVFs in red ellipses, with arrows that connect
them to distributions via 3 different relationships. Section 2 introduces general
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Figure 1: The six NEF-QVF distributions (in ellipses), each with its conjugate (rectangles), conjugate mixture (hexagons), and conditional 
(octagons).  Limit laws are portrayed with solid arrows.
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Table 1: Key facts for the six NEF-QVF distributions.  The mean, µ, variance function, V(µ), natural parameter, η, and cumulant function, 
ψ(η) are given for the elementary distributions (r = 1), Y1.   Convolutions (bottom half of the table) are sums of r iid elementary distributions.
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NEFs as a special subset of exponential families (EFs), and covers the NEF
parameters. Section 3 introduces the variance function (VF), focusing on NEF-
QVF distributions. Besides these famous five distributions, the sixth and only
other NEF-QVF is the NEF generated by convolved (including infinite division)
of Hyperbolic Secant (HS) distributions, labeled the “NEF-CHS” family, with
“C” indicating convolution and division.

Four types of arrows, shapes, and colors in Fig. 1 summarize relationships
among the six univariate NEF-QVFs and other related univariate distributions.
Pearson’s families of distributions, in blue rectangles in Fig. 1, placed directly
below each NEF-QVF and connected by a dotted arrow, arise as conjugate (or
prior) distributions for the six NEF-QVFs (Section 4). Conjugate mixtures
(marginal distributions of NEFs) stemming from these Pearson conjugates are
shown in green hexagons at the lower right of each NEF-QVF and connected
by a dotted and dashed arrow (Section 5). The purple octagons to the upper
right of each NEF-QVF and connected by a dashed arrow are the conditional
distributions of one NEF, given the sum of two independent members of the same
NEF (Section 6). Limits in distribution are displayed with leftward-pointing
solid arrows (←), achieved via simplified variance functions (Section 7).

This paper provides an overview of key ideas most of which are from Morris
(1982, 1983), although there are some new realizations and results, plus Fig. 1
itself. Most proofs and many other results are left to those papers and to the
references. Further details, technicalities, and proofs for the more probabilistic
results presented (sections 2, 3, 7) can be found in Morris 1982, and further de-
tails for the more statistical results (sections 4, 5, 6) can be found in Morris 1983.
These papers are available online along with a longer (unpublished) version of
this paper at http : //www.stat.harvard.edu/People/Faculty/Carl N. Morris/.

A related diagram of Leemis and McQueston (2008) shows 76 named uni-
variate distributions, and some of their relationships, including many of those
in Fig. 1, plus others. While Figure 1 here includes many of their distributions
(including by special cases or by transformations), our purpose is to reveal the
unified structure that connects all six NEF-QVFs and their relatives.

The power of Figure 1 is its parallelism for the six NEF-QVFs. Figure 1
shows each NEF’s distributional relatives via conjugacy (rectangles), mixtures
(hexagons), and conditioning (octagons). Relatives are illustrated by different
shapes, as summarized in the “General” box on Figure 1. This “General” pat-
tern is repeated six times, once for each NEF-QVF. This paper’s goal is to
explain each diagrammatic shape and the connecting arrows so readers can use
Figure 1 as a quick reference when working with these distributions, and to
provide insight into their intertwined relationships. We hope readers will appre-
ciate this powerful glimpse into the beautiful unification of these distributions
we all encounter regularly and love to work with.
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2 NATURAL EXPONENTIAL FAMILIES

2.1 Defining an NEF

Natural exponential families are a subclass of all exponential families. The
distributions of a random variable X form a univariate exponential family (EF)
if their densities or probability mass functions (PMF) have the form

exp{ A(x)B(θ) + C(x) + D(θ)}, (2.1)

with θ as the parameter of interest. Special subclasses of these are the natural
exponential families (NEF), where A(·) is linear. If X ∼ EF , then Y = A(X)
is termed the natural observation and Y ∼ NEF . Some authors have used the
terminologies linear (Patil 1985), and canonical or standard (Brown 1986), as
synonyms for natural.

To segue into NEF language, define η as the natural parameter, and ψ(·)
as the cumulant function, where η ≡ B(θ) and ψ(η) ≡ −D(θ). Define dF0(x) ≡
d(eC(x)). Then the distribution of the natural observation Y = A(X), (2.1) can
be written in the general form for all NEFs:

P (Y ∈ B) =
∫

B

exp{ ηy − ψ(η) } dF0(y) =
∫

B

dFη(y). (2.2)

A univariate NEF is a parametric family of distributions with random vari-
ables Y satisfying (2.2). The natural parameter, η, lies in the natural parameter
space, H (the Greek capital eta), a nondegenerate interval that contains 0 iff
F0(·) is a CDF. Note that if F0(·) is a CDF, then ψ(0) = 0. Taking B = (−∞, y],
(2.2) yields the family of CDFs, Fη(y). If 0 is in H, the CDF F0 has moment
generating function (MGF) M0(t) = exp(ψ(t)), and H is the interval on which
M0(t) is finite. The MGF of the NEF for each η is Mη(t) = exp{ [ψ(η+t)−ψ(η)]}

In NEF terms, ψ(η) is the cumulant function for the NEF (not to be
confused with the cumulant generating function, log(Mη(t))) because for NEFs
the kth cumulant of Y , Ck for k = 1, 2, ..., is

Ck = ψ(k)(η) =
dkψ(η)

dηk
. (2.3)

The kth derivative of the cumulant generating function evaluated at t = 0 equals
the kth derivative of the cumulant function, ψ(η), justifying (2.3). The first two
cumulants, the mean and variance, are

µ ≡ EY = ψ′(η) ≡ C1(µ) ≡ C1, and (2.4)
V (µ) ≡ Var(Y ) = ψ′′(η) ≡ C2(µ) ≡ C2. (2.5)

The mean, µ, lies in the mean space Ω ≡ ψ′(H), whose closure is the smallest
interval that contains the sample space. The variance function V (µ) is central
to NEF-QVF theory, see Section 3.
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NEFs have several advantages over EFs. Derivatives of ψ(η) yield cumu-
lants of Y = A(X), the natural observation, but not the moments of X (unless
A(X) is linear). Convolutions of NEFs extend the NEF family by this 2nd
(convolution) parameter, and preserve the cumulant function up to a constant,
but convolutions of EFs that are not also NEFs usually are complicated. Suf-
ficient statistics for independent NEFs are sums of the natural observations
Yi = A(Xi), and not of Xi.

To illustrate, consider Y ∼ N(µ, σ2) with σ known. In (2.2), η = µ/σ2,
ψ(η) = σ2η2/2 and dF0(y) = 1√

2π
e−y2/(2σ2)dy, so Y belongs to an NEF. Differ-

entiating the cumulant function, ψ(η), yields the mean ψ′(η) = ησ2 = µ, and
variance ψ′′(η) = σ2. Convolutions of Y s will still be Normal. Alternatively,
when X is LogNormal, X = exp(Y ), then X follows (2.1) with A(x) = log x, so
X lies in an EF but not in an NEF. X does not have a corresponding cumulant
function (in fact it doesn’t even have a moment generating function), and the
density function of a convolution of even two LogNormals is intractable.

2.2 NEF Parameters

The definition of a one-dimensional NEF given in (2.2) may be extended to in-
clude three other (sometimes coincident) parameters in addition to the natural
parameter, so that distributions also can involve a convolution parameter, a lo-
cation parameter, and a scale parameter. However we still have a one parameter
NEF, as these other three usually are considered to be fixed and known. We
choose one “simplest” family by choosing the three additional parameters to
take the simplest values for each NEF-QVF, naming this choice the elementary
family: Normal(µ, 1), Poisson(µ), µ Exponential(1), Bernoulli(p), Geometric(p),
and NEF-HS(µ). Starting with any of these elementary families, their convolu-
tions (and divisions, whenever possible) add in the convolution parameter, r > 0.
If r is an integer, r is the number of convolved elementary distributions. For
example, NBin(r, p) is the convolution (sum) of r i.i.d. Geom(p) distributions
and Bin(r, p) is the convolution of r i.i.d Bern(p) distributions. When infinite
division holds for the family, i.e. all NEF-QVFs other than Binomials, r can be
any positive real number. Convolutions of members within an NEF then stay
within the 1-parameter NEF, with a different value of r, provided the convolved
distributions have the same natural parameter η.

The convolution parameter r is considered known throughout this paper,
except for the Poisson case, when it is a function of the natural parameter, and
thus it is convenient to separate r from η, the natural parameter, or equivalently
from µ. Let Yi

iid∼ Elementary Family, Y ≡ ∑r
i=1 Yi, and Y = Y/r. In general,

we choose to let µ and V (µ) pertain to Yi. To keep the expectation as µ we
choose to write densities in terms of Y , in preference to Y , and then

dFη,r(y) = exp{r[ηy − ψ(η)]}dF0,r(y). (2.6)

When r = 1, this simplifies to (2.2). However, if (2.2) is more convenient, one
may use (2.2) even if r 6= 1 by absorbing the known constant r into η, with ψ(η)
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altered accordingly. Table 1 gives µ, V (µ), η, and ψ(η) for each elementary
distribution (r = 1).

NEF location and scale parameters arise via linear transformations. If
Y ∼ NEF , Y ∗ ≡ a0 ± a1Y also belong to another NEF, as determined by
the known location parameter a0 ∈ R and known scale parameter a1 > 0.
This allows, for example, for Poisson or Binomial distributions with non-integer
support.

Sometimes parameters play dual roles, as displayed in the last column of
Table 1. For the Normal, the mean is both the natural parameter and the
location parameter, while the standard deviation is the scale parameter while
its square, the variance, is the inverted convolution parameter. Each column in
Figure 1 is headed by the number of unique parameters, with successively larger
values to the right.

3 NEF-QVFs

3.1 Variance Functions

The variance function (VF), V (µ), expresses the variance of a distribution in
terms of its mean, µ. By (2.4) and (2.5),

dµ

dη
=

dψ′(η)
dη

= ψ′′(η) = V ar(Y ) > 0, (3.1)

so µ is 1-1 in η, increasing monotonically making V ar(Y ) = ψ′′(η) be a function
of µ.

Cumulants are computable recursively as functions of µ,

Ck+1 =
dCk

dη
=

dCk

dµ
· dµ

dη
= C ′k(µ)V (µ). (3.2)

Denoting V ′ as dV (µ)/dµ, cumulants are expressible in terms of V as C2 = V ,
C3 = V ′ · V, C4 = V · (V ′)2 + V 2 · V ′′, and higher cumulants derived via (3.2).
Cumulants are convertible to central moments, Mk for k ≥ 2, by M2 = C2,
M3 = C3, M4 = C4 + 3C2

2 , and for k ≥ 4, Mk = Ck +
∑k−2

i=2

(
k−1

i

)
MiCk−i.

Therefore, the variance function and it’s domain, Ω (the mean space, which is
the convex closure of the sample space), completely determine the NEF via it’s
MGF (of course, no specific µ is determined). The VF characterizes an NEF
uniquely among NEFs (it does not do so among EFs), which makes meaningful
the notation Y ∼ NEF [µ, V (µ)], where square brackets always denote [mean,
variance]. Together with its domain Ω, V (µ) uniquely specifies an NEF family.

3.2 The Six NEF-QVFs

Quadratic variance functions (QVFs), satisfy

V (µ) = v2µ
2 + v1µ + v0. (3.3)
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Precisely six NEF-QVFs exist, displayed as red ellipses in Figure 1. The
VF for each elementary NEF-QVF is shown in Table 1, and is multiplied by r
for convolutions and divided by r when we divide the convolution by r. Figure
1 indicates whether the support of each distribution is continuous or discrete,
is bounded, semi-bounded (bounded only above or below), or unbounded, and
whether the distribution is infinitely divisible or not. Table 1 provides further
details.

The first five NEF-QVFs serve at the core of statistics, as sampling dis-
tributions, although the 6th is largely unknown. Each of the first five has a
“story” that can identify its use. Normal distributions arise from the central
limit theorem. Poisson distributions count the occurrence of rare events. Gam-
mas arise as convolutions and divisions of Exponentials, which are memoryless.
Binomials, Bin(r, p), count the number of successes in r i.i.d. Bernoulli(p) trials.
Negative Binomials, NBin(r, p), being convolutions of r i.i.d. Geometrics, each
count the successes before r failures in successive Bernoulli(p) trials.

The 6th NEF-QVF, the NEF-CHS, arises from the Hyperbolic Secant (HS)
distribution. The HS is a continuous, infinitely divisible distribution, Y ∈ R,
with a symmetric, bell-shaped density function, the hyperbolic secant, as its
PDF f(y) = 0.5 · sech(πy/2) = 0.5/cosh(πy/2). It has a finite MGF, exponen-
tially decaying tails, mean 0 and unit variance, and a distributional representa-
tion of (2/π)log(|Cauchy|) (see Johnson and Kotz (1970); Morris (1982), and
Manoukian and Nadeau (1988)). Convolutions and divisions of this distribution
yield all the Convolved Hyperbolic Secant (CHS) distributions. The CHS histor-
ically has been called the Generalized Hyperbolic Secant (GHS), Harkness and
Harkness (1968), however, “convolved” is more descriptive than “generalized”,
as the latter can take many meanings. Exponential family generation of the
CHS produces the NEF-CHS (Morris 1982, Sec. 5). Statisticians lack conve-
nient skewed sampling distributions with support on all reals, and the NEF-CHS
provides one.

Numberings 1-5 of the columns of Fig. 1 index parameter complexity.
These count the number of parameters (including location and scale) needed
to identify a single distribution within each type. The six NEF-QVFs have
two parameters (Normal), three parameters (Poisson and Gamma), or four pa-
rameters. Fig. 1 also recognizes sample space complexities, with discrete (d)
distributions placed higher up, and continuous (c) distributions placed lower
down. Boundedness complexities are: (b) bounded both above and below, e.g.
Binomial; (s) semi-bounded (e.g. Gamma); and (u) unbounded in both direc-
tions (e.g. Normal). Bounded distributions lie closer to the upper right of Fig.
1, and unbounded distributions are toward the left or bottom. These three
complexities help suggest a useful ordering for these six NEFs: NEF-1 Normal
(constant VF); NEF-2 Poisson (linear VF); NEF-3 Gamma; NEF-4 Binomial;
NEF-5 Negative Binomial, and NEF-6 NEF-CHS.
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4 PEARSON CONJUGATES

4.1 Conjugate Families

Distributions conjugate to an NEF, “conjugate priors” in Bayesian terminology,
take the form of the NEF’s likelihood function, with parameters r0 > 0 and
µ0 ∈ Ω replacing the convolution parameter r and the sufficient statistic y in
(2.6). If r0 > 0 and µ0 are such that the integral is finite with respect to
Lebesgue measure on η ∈ H, this is a density function on η

g1(η)dη = K exp ( r0[ηµ0 − ψ(η)] ) dη, so (4.1)

g(µ)dµ = K exp
(
−r0

[∫
(µ− µ0)/V (µ) dµ

])
dµ/V (µ) (4.2)

with K = K(r0, µ0) as the normalizing constant. The main interest here con-
cerns these conjugate densities g(µ) as functions of the NEF mean µ.

For example, starting with Y ∼ (1/r)Bin(r, p), the conjugate distribution
replaces y with µ0 (or Y with r0µ0) and r with r0, and uses the measure dp/V (p),
leading to the density Kpr0µ0(1− p)r0(1−µ0)dp/p(1− p). This is a Beta density,
so that µ = p ∼ Beta(r0µ0, r0(1− µ0)) arises as conjugate to Binomial NEFs.

Figure 1 exhibits the six conjugate families by blue rectangles directly below
each NEF-QVF (follow the dotted arrows). No arrow is shown for the Normal,
which is its own conjugate, so the Normal conjugate is earmarked by the rectan-
gle inside the Normal’s ellipse. Other conjugate families on µ are: Gammas for
Poisson NEFs, Inverted Gammas (reciprocals of Gamma random variables) for
Gamma NEFs, Betas for Binomials, F-distributions for Negative Binomials, and
Skewed-t distributions (Skates 1993; Esch 2003) for the NEF-CHS. Symmetric
Skewed-t conjugates are Student’s tn distributions, which include the Cauchy,
t1. We have renamed as “Skewed-t” here what was originally labeled Skew-t
(e.g. Skates 1993) because the term “Skew-t” more recently has been taken to
refer to certain other distributions, and not Pearson’s original Type IV, Skew-t
distributions.

Karl Pearson a century ago characterized all continuous distributions for
which the derivative of the log density is a linear function divided by a quadratic
function. These distributions became known as Pearson families (Johnson and
Kotz, 1970; Kendall, Stuart, and Ord, 1987). Remarkably, the six NEF-QVF
conjugates derived above correspond precisely to all of Pearson’s families. Thus,
to honor Pearson, we refer to these NEF-QVF conjugates as “Pearson Conju-
gates” (PC). Besides the Normal, Gammas are Pearson’s type III, Inverted
Gammas are Pearson’s type V, Betas are Pearson’s type I, Fs are Pearson’s
type VI, and Skewed-ts are Pearson’s type IV. All other Pearson distributions
are special cases of these six.

Pearson derived moment expressions for all his distributions. The means
and variances of these Pearson conjugates, in our notation, are such that

µ ∼ PC

[
µ0,

V (µ0)
r0 − v2

]
. (4.3)
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Remarkably, the conjugate distribution’s VF in (4.3), with V (µ0) = v2µ
2
0 +

v1µ0 + v0, is the same VF as that of the NEF. Of course µ may not exist, and
r0 > v2 is required for the variance to exist. All finite higher Pearson moments
also are expressible in terms of the VF.

4.2 Pearson Conjugates as Prior Distributions

The term “conjugate distribution” without “prior” is adopted here since the
Pearson distributions are widely used in statistics, and because they arise as
conjugate priors for the means of NEF-QVF distributions. Conjugate prior
distributions give rise to posterior distributions in the same family, so with y
distributed as (2.6),

µ|y, µ0, r0 ∼ PC

[
µ∗y ≡

r0µ0 + ry

r0 + r
,

V (µ∗y)
r + r0 − v2

]
. (4.4)

The PC here is in the same family as that in (4.3), so the posterior VF again
agrees with that of the NEF. The conjugate prior also is convenient because
the posterior mean, µ∗y, is linear in y, a result that characterizes conjugate
distributions of all NEFs (Diaconis and Ylvisaker, 1979). A new and useful
fact, easily proved, is that Jeffrey’s prior for an NEF mean µ has posterior
mean as a linear function of y if and only if the VF is quadratic. Thus the
Jeffrey’s posterior is easiest to work with (only) for NEF-QVF distributions.

Conjugate priors allow a range of choices of the mean and variance, via
choosing µ0 and r0 in (4.3). If the data have NEF-QVF distributions, then
among all distributions with a pre-specified prior mean and variance, Pearson
conjugates achieve the minimax risk for estimating µ with squared error loss.
Thus Pearson conjugates are the simple, safe, and robust choices among prior
distributions with the same prior mean and variance. (Jackson et al, 1970; Mor-
ris, 1983, Theorem 5.5). Walter and Hamedani (1991), Consonni and Veronese
(1992), and Diaconis, Khare, and Saloff-Coste (2008) have studied other aspects
of these PC distributions from a unified perspective, as have Gutierrez-Pena and
Smith (1997) in a multivariate setting.

5 CONJUGATE MIXTURES

A Pearson conjugate mixture refers to the marginal distribution of Y , when
Y |µ ∼ NEF [µ, V (µ)/r] and µ|µ0, r0 ∼ PC[µ0, V (µ0)/(r0 − v2)], as in (4.3)
with r0 > v2. Conjugate mixtures are shown as green hexagons in Figure 1,
each at the lower right of its associated NEF-QVF; follow the green dotted and
dashed arrows.

The six NEF-QVFs, mixed with their Pearson conjugates, have “Pearson
mixtures” (PM) as marginal distributions, with the VF determining the family.
Then

Y ∼ PM

[
µ0,

r + r0

r(r0 − v2)
V (µ0)

]
, (5.1)
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where means and variances of Y follow directly from Adam’s Law (E(Y ) =
E[E(Y |X)]) and from Eve’s Law (V ar(Y ) = E[V ar(Y |X)] + V ar[E(X|Y )]).
Once again, the PM inherits the VF of the originating NEF.

In NEF-1 through NEF-5 order, NEF-QVF conjugate mixtures are well-
known distributions: Normals; Negative Binomials; F distributions; Polya I (or
Beta-Binomial); and Polya II distributions (explained next). NEF-CHS mix-
tures, with µ having a Skewed-t, form a continuous unbounded five parameter
family of distributions, labeled “Skewed-t - CHS” in Fig. 1.

Polya’s urn schemes involve sampling from a binary urn, initially with
B blue and W white balls, under double replacement sampling (Feller 1950).
Polya I sampling, continues until a prescribed number r balls are drawn. Polya
II sampling only continues until r blue balls have been drawn. The random
variable Y in each case is the number of white balls drawn. Bin(r, p) and
NBin(r, p) distributions mixed with p ∼ Beta(W,B) (so for the Negative Bi-
nomial, µ = p/(1 − p) ∼ B

W F2W,2B) produce these Polya I and Polya II dis-
tributions, respectively. More generally, W and B need not be integers. The
marginal distribution includes a new population parameter N = W + B that
emerges to produce a 5th parameter. As N →∞, these revert back to the four
parameter Binomial and Negative Binomial.

6 CONDITIONAL DISTRIBUTIONS

Let Yi
ind∼ NEF − QV F [µ, V (µ)/ri], i = 1, 2. Denote the uniformly minimum

variance unbiased estimator (UMVUE) of µ as µ̂ ≡ (r1Y 1 + r2Y 2)/(r1 + r2) ∼
NEF −QV F [µ, V (µ)/(r1 + r2)]. The conditional distribution then has first two
moments

Y 1| µ̂ ∼
[

µ̂,

(
r2

v2 + r1 + r2

)
V (µ̂)
r1

]
. (6.1)

This can be proved simply and simultaneously for all NEF-QVF distributions
by using the completeness and sufficiency of µ̂, (Morris 1983, Sec. 4). Again,
conditional distributions inherited their VF V (·) from the NEF-QVF.

Figure 1 uses dashed arrows to locate these conditional distributions, in the
purple octagons at the upper right of each NEF-QVF. The conditional distribu-
tions for Normals are Normals, conditional Poissons are Binomials, conditional
Gammas are (multiples of) Betas, conditional Binomials are Hypergeometrics
(e.g. for Fisher’s Exact Test), and conditional Negative Binomials are Nega-
tive Hypergeometrics. Formula (6.1) provides the first two moments for the
NEF-CHS, a distribution not yet named or studied.

In Figure 1, the Polya I and Negative Hypergeometric distributions coin-
cide, under appropriate re-parameterizations. To see this, consider Polya’s urn
scheme. Let X be the number of white balls drawn from an urn starting with
W white and B blue balls, drawing until r blue balls appear, so X ∼ NegHG(r,

W
W+B ). Alternatively, consider an urn with r white and B − r + 1 blue balls,
draw W balls from the urn with double replacement, and let Y be the number
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of white balls drawn, so Y ∼ Polya I. Then Y ∼ X, i.e. Pr(X = a) = Pr(Y = a)
for all a.

7 LIMITS IN DISTRIBUTION

Limits of distributions (as parameter values converge toward a boundary of the
parameter space) are indicated by solid arrows in Figure 1. Limits always reduce
parameter complexity, so all arrows are left-directed. Many more limits exist,
but Figure 1 reduces clutter by not showing transitive limits. E.g. Negative
Binomials have Poisson limits, and Poissons have Normal limits, so Negative
Binomials must have Normal limits, but that is not shown with a separate
arrow.

7.1 NEF Convergence via Variance Functions

Because a VF characterizes an NEF family, convergence of NEF VFs implies
convergence of distributions. For example, for Bin(r, p), when r → ∞ and
p → 0 with mean λ ≡ rp held constant, the variance rp(1 − p) = λ(1 − λ/r)
asymptotes to λ. Since this limiting variance λ equals the mean for this NEF, the
asymptotic distribution must be the NEF with that VF, i.e. Poisson. Likewise,
a NBin(r, p) with mean λ = rp/(1 − p) held constant as r → ∞ and p → 0,
has variance rp/(1 − p)2 = λ(1 + λ/r) → λ. Hence, Binomials and Negative
Binomials also have Poisson limits in distribution.

Negative Binomials and NEF-CHS distributions have Gamma limits when
r stays fixed and µ → ∞. The mean of NBin(r, p)/r is µ = p/(1 − p), and its
variance is (µ2 +µ)/r, while the NEF-CHS has mean µ and variance (µ2 +1)/r.
For large µ, both of these VFs approximate (in ratio) µ2/r, the VF of the
Gamma family.

7.2 Convergence of NEF-QVF Relatives

Each conditional distribution (octagons in Figure 1) has its NEF-QVF (Figure
1 ellipses) as a limit. Let Y1 and Y2 ∼ NEF-QVF, with convolutions parameters
r1 and r2 respectively. As r2 → ∞ with r1 fixed, Y2 dominates Y1 + Y2, so
Y1|Y1 + Y2 → Y1|Y2 ∼ Y1 ∼ NEF-QVF.

As the convolution parameter for the conjugate (r0) goes to infinity, the
conjugate mixture distribution (hexagons on Figure 1) limits back to the NEF-
QVF from which it came. If r0 → ∞, we essentially know µ exactly, so Y →
Y |µ ∼ NEF-QVF. Alternatively, as the convolution parameter for the NEF-
QVF (r) goes to infinity, the conjugate mixture distribution limits to the mean
parameter’s Pearson conjugate distribution. As r → ∞, then Ȳ → µ by the
LLN, so Ȳ → µ ∼ PC.

The remaining limit arrows in Figure 1 follow the “Four Color Rule” for
NEF-QVFs. If one red ellipse (NEF-QVF) limits to another red ellipse, then
each distributional relative (blue square, green hexagon, and purple octagon)
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also limits (leftward) to the corresponding color relative of the limiting NEF-
QVF.

8 CONCLUSION

This paper has reviewed unifications of the six univariate one-parameter NEF-
QVF families. Additional probabilistic results and proofs that unify NEF-QVFs
are in Morris (1982, 1983, 1985). Many of their properties can be proved for all
six of these families by using the quadratic nature of their VFs. These include
proofs of probabilistic results for infinite divisibility, cumulant and moment
formulae, orthogonal polynomials, and large deviation bounds (Morris 1982).
Statistical results, also provable in a unified way include unbiased estimation,
Bhattacharyya bounds (via orthogonal polynomials), and additional results for
Pearson conjugate distributions (Morris 1983).

Infinitely many univariate NEFs exist, but almost none are named, besides
those with QVFs. The most beautiful NEF with a non-quadratic VF has a
cubic monomial VF, V (µ) ∝ µ3, this being the Tweedie’s and Wald’s Inverse
Gaussian distribution (Shesadri 1993, Tweedie 1957). Letac and Mora (1990)
identified all possible NEFs with cubic VFs, showing that there are exactly six
that are not QVFs. See also Letac (1992).

The Multivariate Normal is the only multivariate NEF with a fully-parameterized
covariance matrix. Patil (1985) and Brown (1986) adopted the term ”Linear
Exponential Family” (LEF) to refer to multivariate NEFs. The Multinomial
distribution is a multivariate NEF (LEF) with a quadratic covariance matrix,
but with a very restrictive covariance parameterization. Also see Bar-Lev et.
al. (1994) on multivariate NEFs.

NEFs lead naturally to quasi-likelihood methods, as pioneered by Wedder-
burn (1974), who originated the term ”variance function”. The VF is central
to quasi-likelihood methods and to generalized linear models (McCullagh and
Nelder 1989).

The distributions and relationships in Figure 1 form the core for probability
and statistics courses because five of the NEF-QVFs arise widely as sampling
distributions for real data. One beautiful aspect of Figure 1 is that once one
realizes that the relationship between a particular NEF-QVF and its relatives is
understood (for example, Binomial, the Beta conjugate, the Polya I conjugate
mixture (Beta-Binomial), and the Hypergeometric conditional distribution), one
realizes that the other five NEF-QVFs enjoy parallel relationships. A student
that learns how to do Bayesian inference with a Normal likelihood with Normal
priors can use Figure 1 and the results summarized here to see how to make
parallel inferences for Gamma likelihoods with their Inverted Gamma priors, or
for any other NEF-QVF likelihoods with their conjugate distributions. Once
one understands the conditional distribution for Binomials is Hypergeometric,
then one also realizes from Figure 1 that the conditional distribution of Negative
Binomials is Negative Hypergeometric. We offer Figure 1 here, believing that
it will aid and deepen insights and understanding for students, for faculty, and
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for practitioners of probability and statistics.
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