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Abstract— In this paper, the feedforward controller design
problem for high-precision electromechanical servo systems that
execute finite time tasks is addressed. The presented procedure
combines the selection of the fixed structure of the feedforward
controller and the optimization of the controller parameters on
the basis of measurement data from iterative trials. A linear
parameterization of the feedforward controller in a two-degree-
of-freedom control architecture is chosen, which for a linear
time-invariant (LTI) plant results in a feedforward controller
that is applicable to a class of motion profiles as well as in a
convex optimization problem with the objective function being
a quadratic function of the tracking error. Optimization by
iterative trials results in the controller parameter values that
are optimal with respect to the actual plant, which leads to
a high tracking performance. The use of iterative trials in
general outperforms techniques that are based on a detailed
a priori plant model only, whereas the fixed structure of the
feedforward controller, i.e., the approximative inverse plant
model, guarantees a high tracking performance for a class of
motion profiles, unlike for example iterative learning control
(ILC). Experimental results on a high-precision wafer stage
illustrate the procedure.

I. INTRODUCTION

The general trend in the field of industrial high-precision

electromechanical servo systems is that the performance

requirements are ever increasing. Examples of such systems

are pick-and-place robots, laser welding robots, and motion

stages. The performance requirements for these systems

typically relate to the throughput and the quality of the

products, which translates to aggressive motion profiles and

high tracking accuracies, respectively. Typical tasks that are

executed by such systems are given by finite time tasks, more

specifically point-to-point motions. Often, a series of point-

to-point motions is executed, in which the motion profile is

not necessarily the same for each task.

To track an aggressive motion profile with high accu-

racy, the machines are typically equipped with a feedback

controller and a feedforward controller. The design of the

feedforward controller is crucial to achieve the performance

requirements in high-precision electromechanical servo sys-

tems, since a transient error is inherently present in case only

a feedback controller is implemented. Several approaches to

feedforward control are discussed next.
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A straightforward approach is given by model-based feed-

forward control. The inverse plant model is used as a feed-

forward controller in a two-degree-of-freedom control archi-

tecture. Various examples can be found in [1], [2], [3], [4],

and [5]. In this approach, the model is only an approxima-

tion of the plant, which hampers or possibly prevents the

achievement of the performance requirements. To improve

the quality of the feedforward controller, it is possible to

adapt the controller parameters either directly or indirectly,

where use is made of measurement data. Various examples

of adaptive feedforward control can be found in [6], [7],

and [8]. However, adaptive feedforward control is less suited

for the application to finite time tasks, due to the adaptation at

each sample instant. In addition, it is generally required that

the persistent excitation condition is satisfied, which imposes

undesired requirements on the motion profile.

The concept of iterative learning control (ILC) applies to

systems that execute the same motion profile over and over

again. Essentially, this technique determines the feedforward

signal that forces the output to track this motion profile

by iterative trials. With learning by trials, the need for

detailed knowledge of the system is avoided, since use is

made of measurement data. Excellent overviews can be

found in [9], [10], [11], and [12], for instance. However,

the strength of ILC, i.e., the possibility to eliminate all de-

terministic components in the tracking error that are constant

in the trial domain, is at the same time its weakness, i.e., the

motion profile is necessarily constant in the trial domain.

Actually, ILC is a specific direct tuning method. In a direct

tuning method, a controller parameter optimization problem

is formulated and the basic idea is to use numerical opti-

mization and to use measurement data from iterative trials

to optimize the controller parameters without intermediate

identification steps. In ILC, the controller parameters are

represented by the individual samples of the feedforward

signal and the tracking error from the previous trial is used

to update the feedforward signal. One possibility is to update

the feedforward signal according to Newton’s method [13],

where the objective function is a quadratic function of the

tracking error.

A direct tuning method with more freedom is given by

iterative feedback tuning (IFT) [14]. This approach optimizes

the controller parameters that appear in arbitrary one-degree-

of-freedom or two-degree-of-freedom control architectures

according to Newton’s method, where the objective function

typically is a quadratic function of the tracking error and

the control effort. The key feature of this approach is that

it only uses measurement data from iterative trials, i.e., no
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model knowledge is required. However, this method does

not provide any directions how to select the structure of the

feedforward controller.

In this paper, the gap between the selection of the structure

of the feedforward controller and the optimization of the

corresponding controller parameters by iterative trials is

bridged, see also [15]. The contribution of this approach is

that it results in a feedforward controller that 1) is applicable

to a class of motion profiles, in contrast to ILC, 2) has

low complexity to facilitate industrial implementation, in

contrast to model-based feedforward control and IFT in

general, and 3) incorporates the controller parameter values

that are optimal with respect to the actual plant, which is

generally not achieved by, e.g., model-based feedforward

control and manual tuning. This enables the achievement

of the severe performance requirements in high-precision

electromechanical servo systems.

The remainder of this paper is organized as follows. The

feedforward controller design procedure, which consists of

the design of the feedforward controller itself in combination

with the design of the direct tuning method, is considered in

Section II. In Section III, this design procedure is applied to

a high-precision wafer stage, where experimental results are

shown. Finally, conclusions are drawn in Section IV.

II. FEEDFORWARD CONTROLLER DESIGN PROCEDURE

The goal of the feedforward controller is to attenuate

the tracking error that appears during the execution of a

finite time task by the realization and the application of a

feedforward signal. To obtain a feedforward controller that

is applicable to a class of motion profiles, a two-degree-

of-freedom control architecture is considered, see Figure 1.

Here, P denotes the plant, which is considered to be discrete

time, single input single output (SISO), and linear time-

invariant (LTI). Furthermore, Kfb represents the feedback

controller and Kff represents the feedforward controller. The

position setpoint is denoted by r, the tracking error by e, the

feedback signal by ufb, the feedforward signal by uff , the

plant input by u, the disturbances by w, and the plant output

by y. The feedback controller Kfb is designed to stabilize

the plant P and to suppress the disturbances w.

r e ufb

uff

u

w

y
Kfb

Kff

P
−

Fig. 1. System with a two-degree-of-freedom control architecture.

The transfer function between e and r is given by:

e

r
=

1 − P (z)Kff (z)

1 + P (z)Kfb(z)
, (1)

where w is omitted for convenience. Obviously, the transfer

function (1) is zero if the feedforward controller is equal

to the inverse of the plant. Essentially, the feedforward

controller design procedure consists of the design of the feed-

forward controller itself in combination with the design of the

direct tuning method that is used to optimize the controller

parameters in the feedforward controller by iterative trials.

The design of the feedforward controller itself involves the

steps “Fixed Structure Feedforward Controller Parameteriza-

tion” and “Initial Controller Parameters”. The design of the

direct tuning method involves the steps “Objective Function”

and “Optimization Algorithm”.

Once this design procedure is completed, the operation

of the direct tuning method is as follows. First, a finite

time task is executed by the system. This is called a trial

and the trial number is denoted by l. Then, a signal-based

objective function is evaluated. If the objective function

value is satisfactory, the system is allowed to operate again.

Otherwise, the optimization algorithm utilizes measurement

data to adjust the controller parameters, after which the

system is allowed to operate again.

A. Fixed Structure Feedforward Controller Parameterization

The parameterization of the feedforward controller results

in a fixed structure of the feedforward controller, which

incorporates one or more controller parameters. Attention is

restricted to a so-called linear parameterization of the feed-

forward controller. This restriction is motivated in Section II-

C. A familiar linear parameterization of the feedforward

controller for high-precision electromechanical servo systems

is found in [16], [17], and [18]. There, the feedforward signal

is given by:

uff = kfs · s + kfj · j + kfa · a + kfv · v, (2)

which is a linear function of the constant, real controller

parameters kfs, kfj, kfa, and kfv. In (2), s, j, a, and v

denote the snap setpoint, the jerk setpoint, the acceleration

setpoint, and the velocity setpoint, respectively. Actually, s,

j, a, and v correspond to the fourth-, third-, second-, and

first-order derivative of the position setpoint. This linear

parameterization of the feedforward controller provides a

good description of the low-frequency behaviour of the

inverse of the plant for high-precision electromechanical

servo systems [17]. The system that is obtained with the

application of snap feedforward, jerk feedforward, acceler-

ation feedforward, and velocity feedforward is depicted in

Figure 2.

Due to the utilization of iterative trials, it is convenient

to package the information in each trial together. All signals

in Figure 2 are discrete time signals, which suggests the

application of the lifted signal description [19], [20]. In the

lifted signal description, a discrete time signal x(k) in trial

l is defined by:

xl =
[

x(0) · · · x(N − 1)
]T

, (3)

for k = 0, . . . , N−1. Here, k denotes the sample instant and

N denotes the number of samples in trial l. Furthermore, the

following abbreviation is introduced to facilitate the notation:

θl =
[

kfsl kfjl kfal kfvl

]T
. (4)
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Fig. 2. System with snap feedforward, jerk feedforward, acceleration
feedforward, and velocity feedforward.

B. Initial Controller Parameters

The initial controller parameter values are typically given

by zeros, unless explicit knowledge with respect to the

optimal controller parameter values is available.

C. Objective Function

The direct tuning method relies on the optimization of a

certain objective function. It is required that the objective

function is representative of the machine performance. To

obtain a high tracking accuracy, the signal-based objective

function V is chosen equal to:

V (θl) = eT
l (θl)el(θl), (5)

which is the square of the 2-norm of the tracking error.

The objective function (5) in combination with the struc-

ture of the feedforward controller (2) results in a convex

optimization problem, which implies that the global optimal

solution is achievable, see [21]. The essential observation

for this conclusion is that the tracking error is a linear

(affine) function of the controller parameters. As a result,

the objective function is a quadratic function of the controller

parameters, which implies that the Hessian of the objective

function is independent of the controller parameters. Under

the assumption that the plant is LTI, the Hessian of the

objective function is positive definite and the optimization

problem is convex.

D. Optimization Algorithm

It is assumed that no constraints are present on the

controller parameters, i.e., the optimization problem is un-

constrained, although this is not essential. A well-known

optimization algorithm in the context of unconstrained op-

timization is given by Newton’s method. The definition of

Newton’s method is given by:

θl+1 = θl − αl

(
∇

2V (θl)
)−1

∇V (θl), (6)

see [21]. Here, α is the step length, ∇V is the gradient of the

objective function, and ∇2V is the Hessian of the objective

function. Many ways exist to compute α and to approximate

∇V and ∇2V . Approximations are inevitable, since the

actual system is unknown. Apart from the differences, the

quantities that result are used in the same algorithm.

Algorithm 1 (Direct tuning method):

1) Set the trial number l equal to l = 0.

2) Set the initial controller parameter values θ0.

3) Execute a finite time task rl and measure the tracking

error el.

4) Evaluate the objective function (5). Proceed with Step

5 if the objective function value is not satisfactory.

Otherwise, proceed with Step 6.

5) Execute the optimization algorithm (6).

6) Set the trial number l equal to l = l +1. Proceed with

Step 3.

A constant value for α is employed, because the applica-

tion of line search optimization results in a more complex

algorithm, see [21]. Two approaches to approximate ∇V

and ∇2V are considered. The gradient of the objective

function (5) with respect to the controller parameters is given

by:

∇V (θl) = 2∇eT
l (θl)el(θl), (7)

whereas the Hessian of the objective function (5) with respect

to the controller parameters is given by:

∇
2V (θl) = 2∇eT

l (θl)∇el(θl). (8)

The approaches to approximate (7) and (8) are named

the model-based approach and the data-based approach. In

both approaches, el(θl) is obtained from measurement data,

which requires the execution of one finite time task. In

the model-based approach, ∇el(θl) is obtained from model

knowledge (cheap, less accurate), see Section II-D.1. In the

data-based approach, ∇el(θl) is obtained from measurement

data (expensive, more accurate), which requires the execution

of another finite time task, see Section II-D.2. Furthermore,

the optimization of the so-called delay correction is easily

incorporated in both approaches, which is discussed in

Section II-D.3 for the model-based approach.

1) Model-based Approach: Consider the discrete time

system in Figure 2, to which the lifted system description

is applied [19], [20]. In the lifted system description, a

state-space representation of a certain transfer function is

considered:

x(k + 1) = Ax(k) + Bu(k) (9)

y(k) = Cx(k) + Du(k), (10)

where u(k) denotes the input and y(k) denotes the output,

which are both arbitrary. Then, the lifted system description

is defined by:

yl =












D 0 · · · · · · 0

CB D
. . .

...
... CB

. . .
. . .

...
...

...
. . .

. . . 0
CAN−2B CAN−3B · · · CB D












︸ ︷︷ ︸

T

ul, (11)
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for k = 0, . . . , N − 1. Here, the N × N Toeplitz matrix

T contains N impulse response coefficients, i.e., Markov

parameters. In Figure 2, the map between rl and el is

defined by the sensitivity Toeplitz matrix S, whereas the

map between uffl
and yl is defined by the process sensitivity

Toeplitz matrix PS. In addition, the following abbreviation

is introduced to facilitate the notation:

ξl =
[

sl jl al vl

]
. (12)

With these definitions, the tracking error in the trial

domain is approximated by:

el(θl) = S(rl − wl) − PSξlθl, (13)

where S and PS are based on model knowledge. Using (13),

it is possible to derive the gradient of the error signal with

respect to the controller parameters:

∇el(θl) = −PSξl. (14)

Subsequently, (14) is substituted into (7) and (8). Hence,

the gradient of the objective function is approximated by

using both model knowledge (∇el) and measurement data

(el), whereas the Hessian of the objective function is approx-

imated by using model knowledge (∇el) only. This implies

that the model-based approach requires the execution of one

finite time task per trial.

The model-based approach for the approximation of the

gradient of the objective function and the Hessian of the

objective function has similarities with the utilization of basis

functions in lifted ILC, see [22]. Here, the basis functions are

given by the snap setpoint, the jerk setpoint, the acceleration

setpoint, and the velocity setpoint.

Convergence to a (local) minimum of the objective func-

tion is guaranteed if a certain stability condition is satisfied.

This stability condition applies to the linear discrete time

system that is obtained after substitution of (7) and (8)

into (6), using (14). It is required that this linear discrete time

system is stable, which implies that 0 < αl < 2, see [23].

2) Data-based Approach: Consider the discrete time sys-

tem in Figure 1, where the discrete time feedback controller

Kfb(z) is fixed. The discrete time feedforward controller

Kff (z, θl) is defined by:

Kff (z, θl) = kfslβs + kfjlβj + kfalβa + kfvlβv, (15)

where:

βs =
z4 − 4z3 + 6z2 − 4z + 1

T 4
s z4

(16)

βj =
z4 − 3z3 + 3z2 − z

T 3
s z4

(17)

βa =
z4 − 2z3 + z2

T 2
s z4

(18)

βv =
z4 − z3

Tsz4
, (19)

where Ts denotes the sample time.

The transfer function (1) is rephrased as follows:

el(θl) =
1 − P (z)Kff (z, θl)

1 + P (z)Kfb(z)
rl, (20)

where wl is omitted for convenience. In the situation under

consideration, the following expressions hold for the deriva-

tives of Kfb(z) and Kff (z, θl) with respect to the controller

parameters:

∂Kfb(z)

∂θ
=

[
0 0 0 0

]
(21)

∂Kff (z, θl)

∂θ
=

[
βs βj βa βv

]
. (22)

Using these derivatives, it is possible to derive the gradient

of the error signal with respect to the controller parameters:

∇el(θl) = −
∂Kff (z, θl)

∂θ

1

Kfb(z) + Kff (z, θl)

P (z)(Kfb(z) + Kff (z, θl))

1 + P (z)Kfb(z)
rl. (23)

Next, it is observed from Figure 1 that the following expres-

sion holds for the plant output:

yl(θl) =
P (z)(Kfb(z) + Kff (z, θl))

1 + P (z)Kfb(z)
rl, (24)

where wl is omitted again. Substitution of (24) into (23)

leads to the following expression:

∇el(θl) = −
∂Kff (z, θl)

∂θ

1

Kfb(z) + Kff (z, θl)
yl(θl). (25)

Since the actual plant output yl(θl) is contaminated with

the disturbance wl, (25) is only an approximation of the

gradient of the error signal with respect to the controller

parameters. Subsequently, (25) is substituted into (7) and (8).

Hence, the gradient of the objective function is approximated

by using measurement data from both the first finite time

task (el) and the second finite time task (∇el), whereas the

Hessian of the objective function is approximated by using

measurement data from the second finite time task (∇el)

only. This implies that the data-based approach requires the

execution of two finite time tasks per trial. Of course, instead

of a renewed approximation of the gradient of the error signal

with respect to the controller parameters during each trial, it

is also possible to perform this approximation only once.

The data-based approach for the approximation of the

gradient of the objective function and the Hessian of the

objective function has similarities with the approach that is

used in IFT, see [24] and [14]. Here, the so-called dedicated

experiment is not required, since the feedback controller

Kfb(z) is fixed.

Convergence to a (local) minimum of the objective func-

tion is guaranteed if certain conditions are satisfied. These

conditions apply among other things to the disturbance wl,

e.g., wl has zero mean and sequences of wl are mutually

independent. Then, (7) is an unbiased approximation of

the gradient of the objective function, which is essential

for the convergence proof. All conditions and the formal

convergence proof can be found in [14].
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3) Delay Correction Optimization: The purpose of the

delay correction τ is to advance the feedforward signal

in such a way that the delay in the system between the

feedforward signal and the position setpoint is compensated

for. Several sources contribute to this delay, e.g., the actuator

system, the sensor system, and the hold circuit. An initial

estimate of the delay correction τ0 is obtained from the phase

plot of the Bode diagram of the frequency response function

(FRF) measurements. Using τ0, it is possible to optimize the

delay correction τ for each of the setpoints that comprise

the feedforward signal. This is illustrated for the acceleration

setpoint.

Consider the illustration in Figure 3. Two acceleration set-

points am
l and an

l are considered, which are identical to the

acceleration setpoint al. However, am
l leads rl in time by m

samples, whereas an
l leads rl in time by n = m+1 samples.

Here, m is chosen in such a way that τ0 is in between

m samples and n samples. Next, the controller parameters

kfam
l and kfan

l are introduced, which correspond to am
l and

an
l , respectively. Then, the actual controller parameter kfal

and the actual delay correction τl are given by:

kfal = kfam
l + kfan

l (26)

τl =

(

m +
kfan

l

kfam
l + kfan

l

)

Ts. (27)

Here, it is assumed that the timing of al and rl is identical.

Hence, the definition of the acceleration setpoints am
l and

an
l with the controller parameters kfam

l and kfan
l allows

for the simultaneous optimization of the controller parameter

kfal and the delay correction τl. Actually, it is possible to

generate any delay correction value in between m samples

and n samples. Generalization of the algorithm to incorporate

the optimization of the delay correction is obvious.

an
l

am
l

al

rl

τl k

Fig. 3. Optimization of delay correction for acceleration setpoint.

III. APPLICATION TO A WAFER STAGE

The feedforward controller design procedure from Sec-

tion II is applied to a high-precision wafer stage that is part

of a wafer scanner. A wafer scanner is used in the mass pro-

duction process of integrated circuits (ICs), see [25], where

it is responsible for the photolithographic process in which

the IC pattern is printed onto a silicon disk, i.e., a wafer.

In a wafer scanner, the wafer stage is the high-precision

electromechanical servo system that positions the wafer with

respect to the imaging optics. As a result, the wafer stage

determines the throughput and the quality of the products

to a large extent and it is subject to severe performance

requirements. Typical velocities and accelerations are 0.5 m/s

and 10 m/s2, respectively, whereas the tracking accuracy is

in terms of nanometers and microradians, which demands

for a sound feedforward controller design.

The wafer stage is actuated and controlled in six degrees of

freedom: three translations (x, y, and z) and three rotations

(Rx, Ry , and Rz , where the subscripts refer to the rotation

axis). Use is made of six Lorentz actuators and a laser

interferometer measurement system. Here, the wafer stage

dynamics in the y-direction is considered, which is the

main scan direction. The frequency response function (FRF)

measurements and the corresponding second-order discrete

time transfer function model are depicted in Figure 4. The

feedback controller is of the proportional integral derivative

(PID) type with high-frequency roll-off, which is designed

in the continuous time domain, see [26]. Afterwards, it is

discretized on the basis of a first-order hold discretization

scheme. A typical finite time task that is executed in the

y-direction is given by a point-to-point motion, see Fig-

ure 5, which is generated by a third-order setpoint generator,

see [16].
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Fig. 4. Bode diagram of the wafer stage dynamics in the y-direction,
where the figures on the right are close-ups of the figures on the left (solid:
frequency response function measurements; dashed: second-order discrete
time transfer function model).

A. Fixed Structure Feedforward Controller Parameterization

For the wafer stage, the structure of the feedforward

controller consists of acceleration feedforward and snap

feedforward. The motivation for this specific structure of

the feedforward controller is found in [17]. There, it is

shown that acceleration feedforward exactly compensates

for the rigid body mode, whereas snap feedforward ex-

actly compensates for the low-frequency contributions of all

residual plant modes. As a result, acceleration feedforward

and snap feedforward allow for the exact description of the

low-frequency behaviour of the inverse of the plant. This

implies that acceleration feedforward and snap feedforward

are particularly effective in case of position setpoints that

contain mostly low-frequency energy, such as the position

setpoint from Figure 5. As a result, the abbreviations reduce
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Fig. 5. The position r, the velocity v, the acceleration a, the jerk j, and
the snap s of the point-to-point motion.

to:

ξl =
[

sl am
l an

l

]
(28)

θl =
[

kfsl kfam
l kfan

l

]T
. (29)

B. Initial Controller Parameters

An initial estimate of the controller parameter kfa0 is

obtained from the fit of a second-order differentiator through

the inverse of the original frequency response function mea-

surements. An initial estimate of the controller parameter

kfs0 is obtained from the fit of a fourth-order differentiator

through the frequency response function measurements that

result after subtraction of the aforementioned fit from the

inverse of the original frequency response function measure-

ments. See also [17].

C. Experimental Results

Utilization of Algorithm 1 in combination with either the

model-based approach or the data-based approach allows for

the optimization of the controller parameters. In addition,

the delay correction τ is optimized for the acceleration

setpoint. Only the results for the model-based approach are

considered, since similar results are obtained for the data-

based approach.

Each finite time task is executed at the same position in

the operating area of the wafer stage, i.e., the horizontal xy-

plane. More specifically, the finite time task from Figure 5

is executed in the y-direction, across the centre position,

where y(0) = −0.05 m and y(N − 1) = 0.05 m. In

the model-based approach, the process sensitivity Toeplitz

matrix PS is based on the second-order discrete time transfer

function model and the discretized feedback controller. The

step length is equal to αl = 0.8 and the number of trials is

equal to six. The tracking errors are depicted in Figure 6,

the controller parameters are depicted in Figure 7, and the

objective function is depicted in Figure 8.

From Figures 6 and 8, it is concluded that the tracking

error decreases and the machine performance increases as a

function of the trial number. From Figure 7, it is concluded

that convergence is achieved for all controller parameters.

It is observed that the controller parameter kfa and the

delay correction τ converge monotonically, where the ex-

ponential behaviour is due to the choice of the step length.

Obviously, the controller parameter kfs does not converge

monotonically. This is due to the fact that the process

sensitivity Toeplitz matrix PS is based on the second-order

discrete time transfer function model from Figure 4, where

the resonant dynamics is not taken into account. When

the resonant dynamics is taken into account, the controller

parameter kfs converges monotonically.
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Fig. 6. Experimental tracking errors obtained with model-based approach
in trial 0 (top), 1 (middle), and 5 (bottom) (solid: tracking error; dashed:
scaled acceleration setpoint). Notice the scales!
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Fig. 7. Experimental controller parameters obtained with model-based
approach.
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IV. CONCLUSIONS

A feedforward controller design procedure for high-

precision electromechanical servo systems that execute finite
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time tasks is presented. The procedure consists of the selec-

tion of the fixed structure of the feedforward controller in

a two-degree-of-freedom control architecture in combination

with the optimization of the controller parameters by iterative

trials. It is successfully applied to a high-precision wafer

stage, where high tracking accuracies are achieved.

This paper has shown that the use of iterative trials in

general outperforms techniques that are based on a detailed

a priori plant model only, i.e., model-based feedforward

control, whereas the fixed structure of the feedforward con-

troller guarantees a high tracking performance for a class

of motion profiles, unlike for example ILC. It is shown

that the chosen linear parameterization of the feedforward

controller is applicable to the common class of fourth-order

position setpoints and has low complexity, which facilitates

industrial implementation. Furthermore, a convex controller

parameter optimization problem is obtained, since the ob-

jective function is a quadratic function of the tracking error.

It is shown that optimization of this objective function by

iterative trials provides a high accuracy, which is generally

not obtained on the basis of a detailed a priori plant model

only. Convergence of the algorithm is guaranteed, which is

experimentally demonstrated. The experiments show a high

tracking performance as well.

The present paper has motivated the choice of a fixed

structure of the feedforward controller under the assumption

that it enables the application to a class of motion profiles.

Further research is required to validate this assumption and

to characterize this class of motion profiles. In this context,

the relation between the choice of the fixed structure of

the feedforward controller and the class of motion profiles

deserves further attention.
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