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Abstract. This paper presents the optimal regulator for a linear system with time delay in control
input and a quadratic criterion. The optimal regulator equations are obtained using the duality
principle, which is applied to the optimal filter for linear systems with time delay in observations, and
then proved using the maximum principle. Performance of the obtained optimal regulator is verified
in the illustrative example against the best linear regulator available for linear systems without delays.
Simulation graphs and comparison tables demonstrating better performance of the obtained optimal
regulator are included.
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1 Introduction

Although the optimal control (regulator) problem for linear system states was solved, as well as the
filtering one, in 1960s [1, 2|, the optimal control problem for linear systems with delays is still open,
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depending on the delay type, specific system equations, criterion, etc. Such complete reference books
in the area as (3, 4, 5, 6, 7] note, discussing the maximum principle [8] or the dynamic programming
method [9] for systems with delays, that finding a particular explicit form of the optimal control
function might still remain difficult. A particular form of the criterion must be also taken into account:
the studies mostly focused on the time-optimal criterion (see the paper [10] for linear systems) or the
quadratic one [11, 12, 13]. Virtually all studies of the optimal control in time-delay systems are related
to systems with delays in the state (see, for example, [14]), although the case of delays in control input
is no less challenging, if the control function should be causal, i.e., does not depend on the future
values of the state. A considerable bibliography existing for the robust control problem for time delay
systems (such as [15, 16]) is not discussed here.

This paper concentrates on the solution of the optimal control problem for a linear system with
delay in control input and a quadratic criterion, which is based on the duality principle in a closed-form
situation [17] applied to the optimal filter for linear systems with delay in observations obtained in [18].
Taking into account that the optimal control problem can be solved in the linear case applying the
duality principle to the solution of the optimal filtering problem [1], this paper exploits the same idea
for designing the optimal control in a linear system with time delay in control input, using the optimal
filter for linear systems with delay in observations. In doing so, the optimal regulator gain matrix is
constructed as dual transpose to the optimal filter gain one and the optimal regulator gain equation is
obtained as dual to the variance equation in the optimal filter. The results obtained by virtue of the
duality principle can be rigorously verified through the general equations of the maximum principle
[19, 8] or the dynamic programming method [20, 9] applied to a specific time-delay case, although the
physical duality seems obvious: if the optimal filter exists in a closed form, the optimal closed-form
regulator should also exist, and vice versa [17]. In this paper, the obtained results are proved using the
maximum principle [19, 8]. It should be noted, however, that application of the maximum principle
to the present case gives one only a system of state and co-state equations and does not provide the
explicit form of the optimal control or co-state vector. So, the duality principle approach actually
provides one with the explicit form of the optimal control and co-state vector, which should be then
substituted into the equations given by the rigorous optimality tools and thereby verified.

Finally, performance of the obtained optimal control for a linear system with time delay in control
input and a quadratic criterion is verified in the illustrative example against the best linear regulator
available for linear systems without delays. The simulation results show a definitive advantage of the
obtained optimal regulator in both the criterion value and the value of the controlled variable.

The paper is organized as follows. Section 2 states the optimal control problem for a linear system
with time delay in control input and describes the duality principle for a closed-form situation [17].
For reference purposes, the optimal filtering equations for a linear state and linear observations with
delay [18] are briefly reminded in Section 3. The optimal control problem for a linear system with
time delay in control input is solved in Section 4, based on application of the duality principle to
the optimal filter of the preceding section. The proof of the obtained results, based on the maximum
principle [19, 8], is given in Appendix. Section 5 presents an example illustrating the quality of control
provided by the obtained optimal regulator for linear systems with time delay in control input against
the best linear regulator available for systems without delays. Simulation graphs and comparison
tables demonstrating better performance of the obtained optimal regulator are included.



2 Optimal control problem for linear system with time delay
in control input

Consider a linear system with time delay in control input
dz(t) = (ao(t) + a1 (t)z(t))dt + B(t)u(t — h)dt, (1)

with the initial condition z(s) = ¢(s), s € [—h,0], where z(t) € R" is the system state, u(t) € R™
is the control variable, and ¢(s) is a piecewise continuous function given in the interval [—h,0].
Existence of the unique solution of the equation (1) is thus assured by the Caratheodori theorem (see,
for example, [21]). The quadratic cost function to be minimized is defined as follows:

7 = Sl = e Ul (T) — )+

3w RE s+ 5 [ G L)ss)ds (2)

where z7 is a given vector, R is positive and 1, L are nonnegative definite symmetric matrices, and
T > tg is a certain time moment.

The optimal control problem is to find the control u(t), ¢ € [to, T], that minimizes the criterion .J
along with the trajectory z*(t), t € [to, T], generated upon substituting «*(¢) into the state equation
(1). To find the solution to this optimal control problem, the duality principle [1] can be used. For
linear systems without delay, if the optimal control exists in the optimal control problem for a linear
system with the quadratic cost function .J, the optimal filter exists for the dual linear system with
Gaussian disturbances and can be found from the optimal control problem solution, using simple
algebraic transformations (duality between the gain matrices and between the gain matrix and vari-
ance equations), and vice versa (see [1]). Taking into account the physical duality of the filtering
and control problems, the last conjecture should be valid for all cases where the optimal control (or,
vice versa, the optimal filter) exists in a closed finite-dimensional form [17]. This proposition is now
applied to the optimal filtering problem for linear system states over observations with delay, which
is dual to the stated optimal control problem (1),(2), and where the optimal filter has already been
obtained (see [18]).

3 Optimal filter for linear state equation and linear obser-
vations with delay

In this section, the optimal filtering equations for a linear state equation over linear observations with
delay (obtained in [18]) are briefly reminded for reference purposes. Let the unobservable random
process x(t) be described by an ordinary differential equation for the dynamic system state

dx(t) = (ao(t) + a(t)x(t))dt + b(t)dWi(t), x(to) = o, (3)
and a delay-differential equation be given for the observation process:

dy(t) = (Ag(t) + A(t)z(t — h))dt + F(£)dWa(t), (4)
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where x(t) € R" is the state vector, y(t) € R™ is the observation process, the initial condition
xo € R™ is a Gaussian vector such that z, Wi(t), Wy(t) are independent. The observation process
y(t) depends on the delayed state z(t —h), where h is a fixed delay shift, which assumes that collection
of information on the system state for the observation purposes is possible only after a certain time h.
The vector-valued function ag(s) describes the effect of system inputs (controls and disturbances). It
is assumed that A(t) is a nonzero matrix and F(t)FT(t) is a positive definite matrix. All coefficients
in (3)—(4) are deterministic functions of appropriate dimensions.

The estimation problem is to find the estimate of the system state x(¢) based on the observation
process Y (t) = {y(s),0 < s < t}, which minimizes the Euclidean 2-norm

J = E[(a(t) = ()" (x(t) — 2(t))]
at each time moment ¢. In other words, our objective is to find the conditional expectation
m(t) = &(t) = E(z(t) | F}').
As usual, the matrix function
P(t) = B[(x(t) — m(t))(x(t) = m(t))" | F']

is the estimate variance.
The solution to the stated problem is given by the following system of filtering equations, which
is closed with respect to the introduced variables, m(t) and P(t):
t

dm(t) = (ao(t) + a(t)m(t))dt + P(t) exp (—/ a’(s)ds) AT (t) x (5)

(FOFT(®)) " (dy(t) — (Ao(t) + Atym(t — h)de).
dP(t) = (P(t)a™ (t) + a(t)P(t) + b(t)b" (t)— (6)

Pt)esp (- [ ih o ()ds) AT () (FOF7 (1)) '

A(t) exp (— /tiha(s)ds)P(t))dt

The system of filtering equations (4) and (5) should be complemented with the initial conditions
m(ty) = Elz(to) | Fi'] and P(tg) = E[(x(to) — m(to)(x(to) — m(te)” | F}]. As noted, this system is
very similar to the conventional Kalman-Bucy filter, except the adjustments for delays in the estimate
and variance equations, calculated due to the Cauchy formula for the linear state equation.

In the case of a constant matrix a in the state equation, the optimal filter takes the especially
simple form (exp (— [, a”ds) = exp (—a”h))

dm(t) = (ao(t) + am(t))dt + P(t) exp (—a’ h) AT (t)x (7)
(FOFT(®) " (dy(t) — (Ao(t) + A(tym(t — h))d),
dP(t) = (P(t)a’ + aP(t) + b(t)b" (t)— (8)

P(t) exp (—a"h)AT (1) (F(t)FT(t))_lA(t) exp (—ah) P(t))dt.

Thus, the equation (5) (or (7)) for the optimal estimate m(¢) and the equation (6) (or (8)) for its
covariance matrix P(t) form a closed system of filtering equations in the case of a linear state equation
and linear observations with delay.



4 Optimal control problem solution

Let us return to the optimal control problem for the linear state (1) with time delay in linear control
input and the cost function (2). This problem is dual to the filtering problem for the linear state (3)
and linear observations with delay (4). Since the optimal filter gain matrix in (5) is equal to

Ky = P(t)exp (— /t a’(s)ds) AT (1) (F(t)FT (1)),

t—h
the gain matrix in the optimal control problem takes the form of its dual transpose

t

Ko = (R) B W exp ([ a"(s)ds)Q(1),

t—h

and the optimal control law is given by

woplt) = et = (RO B (O exp ([ o (5)d5)Q0)a (1), )

where the matrix function Q(t) is the solution of the following equation dual to the variance equation
(6)
dQ(t) = (—a" ()Q(t) — Q(t)a(t) + L(t)—

t

Q(t) exp ( / a(s)ds)B(1) R} (£) x

t—h
t

BT (t) exp ( / a” (5)ds)Q(t))dt, (10)

t—h
with the terminal condition Q(T") = .

Upon substituting the optimal control (9) into the state equation (1), the optimally controlled
state equation is obtained

dr(t) = (ao(t) + a(t)z(t) + B(t)(R(t)) BT (t)x

esp ([ ih o7 (s)ds)Q(O)z(t)dt,  x(to) = o,

The results obtained in this section by virtue of the duality principle are proved (the proof is given
in Appendix) using the general equations of the Pontryagin maximum principle [19, 8]. (Bellman
dynamic programming [20, 9] could serve as an alternative verifying approach). It should be noted,
however, that application of the maximum principle to the present case gives one only a system of
state and co-state equations and does not provide the explicit form of the optimal control or co-state
vector. So, the duality principle approach actually provides one with the explicit form of the optimal
control and co-state vector, which should be then substituted into the equations given by the rigorous
optimality tools and thereby verified.



5 Example

This section presents an example of designing the optimal regulator for a system (1) with a criterion
(2), using the scheme (9)—(10), and comparing it to the regulator where the matrix @ is selected as
in the optimal linear regulator for a system without delays.

Let us start with a scalar linear system

#(t) = 2(t) + u(t — 0.1), (11)

with the initial conditions z(s) = 0 for s € [-0.1,0) and 2(0) = 1. The optimal control problem is to
find the control u(t), t € [0,T], T = 0.25, that minimizes the criterion

J:%hﬁﬁ—ﬁf+%ﬁ?f@ﬁ, (12)

where T'= 0.25, and z* = 10 is a large value of z(t) a priori unreachable for time T'. In other words,
the optimal control problem is to maximize the state z(¢) using the minimum energy of control u.

Let us first construct the regulator where the optimal control law and the matrix Q(¢) are calculated
in the same manner as for the optimal linear regulator for a linear system without delays in control
input, that is ue(t) = (R(t))"'BT(t)Q(t)x(t) (see [1] for reference). Since B(t) = 1 in (11) and
R(t) =1 in (12), the optimal control is actually equal to

u(t) = Q(t)x(t), (13)
where Q(t) satisfies the Riccati equation
Q) = —a" (HQt) — Qt)a(t) + L(t) — Q) BHR™ ()BT ()Q(1),

with the terminal condition Q(7") = . Since a(t) = 1, B(t) = 1in (11), and L = 0 and ¢y = 1 in
(12), the last equation turns to

Qt) = —2Q(t) - (Q(t))*, Q(0.25) =1. (14)
Upon substituting the optimal control (13) into (11), the controlled system takes the form
o(t) = z(t) + Q(t)x(t — 0.1). (15)

The results of applying the regulator (13),(14) to the system (11) are shown in Fig. 1, which
presents the graphs of the controlled state (15) z(¢) in the interval [0, 77, the shifted ahead by 0.1
criterion (12) J(¢t—0.1) in the interval [0.1, 7'+0.1], and the shifted ahead by 0.1 control (13) u(t—0.1)
in the interval [0, T]. The values of the state (15) and the criterion (12) at the final moment 7" = 0.25
are z(0.25) = 1.5097 and J(0.25) = 36.2598.

Let us now apply the optimal regulator (9)—(10) for linear systems with time delay in control input
to the system (11). Since a(t) = 1 and h = 0.1 in (11) and, therefore, exp ([} , a(s)ds) = exp (0.1),
the optimal control law takes the form

o () = exp (0.1) Q1) (2), (16)



where Q(t) satisfies the Riccati equation

Q(t) = =2Q(t) — (exp (0.1)Q(1))*,  Q(0.25) =1. (17)
Upon substituting the optimal control (16) into (11), the optimally controlled system takes the form
2(t) = 2(t) + exp (0.1)Q(t — 0.1)z(t — 0.1). (18)

The results of applying the regulator (16),(17) to the system (11) are shown in Fig. 2, which
presents the graphs of the optimally controlled state (18) x(¢) in the interval [0, T, the shifted ahead
by 0.1 criterion (12) J(¢t — 0.1) in the interval [0.1,7" + 0.1], and the shifted ahead by 0.1 optimal
control (16) up(t—0.1) in the interval [0, T]. The values of the state (18) and the criterion (12) at the
final moment 7" = 0.25 are 2(0.25) = 1.668 and J(0.25) = 35.3248. There is a definitive improvement
in the values of the controlled state to be maximized and the criterion to be minimized, in comparison
to the preceding case, due to the optimality of the regulator (16),(17) for the linear system (11) with
time delay in control input.

6 Appendix

Proof of the optimal control problem solution. Define the Hamiltonian function [19, 8] for the
optimal control problem (1),(2) as

H(z,u,q,t) = v R(t)u + 2" L(t)z + q" ao(t) + ar(t)z + B(t)ur (u)], (19)

where ui(u) = u(t — h). Applying the maximum principle condition H /Ou = 0 to this specific
Hamiltonian function (19) yields

OH /ou = 0 = R(t)u(t) + (Ouy(t)/0u)" BT (t)q(t) = 0.
Upon denoting (Ous(t)/0u) = M(t), the optimal control law is obtained as
u'(t) = —R7H ()M (t) BT (t)q(t).

Taking linearity and causality of the problem into account, let us seek ¢(t) as a linear function in
x(t)
q(t) = —Q)=(t), (20)

where () is a square symmetric matrix of dimension n. This yields the complete form of the optimal
control

u'(t) = R ()M ()BT (H)Q(t)(t). (21)

Note that the transversality condition [19, 8] for ¢(7") implies that ¢(7") = —0.J /0x(T) = —¢x(T)
and, therefore, Q(T') = 1.
Using the co-state equation dq(t)/dt = —0H 0z, which gives

—dq(t)/dt = L(t)z(t) + a (t)q(t), (22)



and substituting (20) into (22), we obtain

Q(t)x(t) + Q(t)d(x(1)) /dt = L(t)x(t) — ay (HQ(t)x(t). (23)
Substituting the expression for #(t) from the state equation (1) into (23) yields
Qt)a(t) + Q(ar(t)a(t) + Q) B(t)u(t — h) = L(t)x(t) — ai ()Q(H)z(t). (24)

In view of linearity of the problem, differentiating the last expression in x does not imply loss
of generality. Upon taking into account that (Qu(t — h)/0z(t)) = (Ou(t — h)/Ou(t))(Ou(t)/0xz(t)) =
M@)R(t)MT ()BT (t)Q(t) and differentiating the equation (24) in z, it is transformed into the
Riccati equation

Q(t) = L(t) = Q(t)ar(t) — ai ()Q(t) — Q&) BO)YM ()R (t) M (t) BT ()Q(t)- (25)

Let us find the value of matrix M(t) for this problem. First of all, let us note [1] that the Hamil-
tonian function H(z*,u*,¢*, t) is constant in ¢ for the optimal control (21) u*(¢), the corresponding
optimal state (1) z*(t) and co-state ¢*(t) satisfying (20), and Q(t) satisfying the equation (25), and
equal to

H(z*,u*, ¢",t) = v R(t)u* + 2™ L(t)z* + d(z* Q(t)z*) /dt = C = const. (26)

Integrating the last equality from ¢ — h to t yields

t
/ [ (s)R(s)u*(s) + 2" (s)L(s)x*(s)]ds + 2 ()Q(t)x*(t) — 2* (t — h)Q(t — h)x*(t — h) = Ch.
t—h

Differentiating the obtained formula respect to z*(¢) and u*(¢) and taking into account the optimal
control expressions for u*(t) and u*(t — h) given by (21), we obtain

(R OMT (0B (1) = (M©) (R ¢ = M= B (= W)esp ([ o (5)ds),  (27)

also using that
t

0z (t)/0x(t — h) = exp (/ a(s)ds).

t—h
The last formula follows from the Cauchy formula for the solution of the linear state equation (1)
t ¢

x(t) = ®(t,t — h)x(t — h) + - O(t, T)ag(T)dr + - O(t, 7)B(T)u(r — h)dr,

where ®(¢, 7) is the matrix of fundamental solutions of the homogeneous equation (1), that is solution
of the matrix equation
dd(t, )
dt

where I is the identity matrix. In other words, ®(¢,t — h) = exp [}, a(s)ds.

Furthermore, it can be noted, differentiating twice the formula (26) with respect to x*(t), that
the expression R~(t)M7(t)B*(t)) does actually not depend on B(t) or R7!(¢) as functions of time
t. Thus, the value of the matrix M (t) for this problem can be determined from (27) assuming that

=a(t)®(t,7), D(t,t)=1,
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time t — h is equal to t in the matrix function R7'(t — h)MT(t — h) BT (t — h)). Finally, the formula
(27) gives the following equality for calculating M (t)
¢
MT)BT(t) = BT(t) exp ( / a” (5)ds). (28)

t—h

Substituting the formula (28) into (21) and (25) yields the desired formulas (9) and (10) for the
optimal control law u*(¢) and the matrix function @Q(¢). The optimal control problem solution is
proved.
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Figure 1: Best linear regulator available for linear systems without delays. Graphs of the controlled
state (15) x(¢) in the interval [0, 0.25], the shifted ahead by 0.1 criterion (12) J(¢ —0.1) in the interval
[0.1,0.35], and the shifted ahead by 0.1 control (13) u(t — 0.1) in the interval [0, 0.25].
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Figure 2: Optimal regulator obtained for linear systems with time delay in control input. Graphs of
the optimally controlled state (18) x(t) in the interval [0, 0.25], the shifted ahead by 0.1 criterion (12)
J(t—0.1) in the interval [0.1,0.35], and the shifted ahead by 0.1 optimal control (16) ey (t —0.1) in

the interval [0, 0.25].
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