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This paper describes a mathematical model to study the linear stability of a tilting-pad
journal bearing system. By employing the Newton-Raphson method and the pad assembly
technique, the full dynamic coefficients involving the shaft degrees of freedom as well as
the pad degrees of freedom are determined. Based on these dynamic coefficients, the
perturbation equations including self-excited motion of the rotor and rotational motion of
the pads are derived. The complex eigenvalues of the equations are computed and the pad
critical mass identified by eigenvalues can be used to determine the stability zone of the
system. The results show that some factors, such as the preload coefficient, the pivot
position, and the rotor speed, significantly affect the stability of tilting-pad journal bear-
ing system. Correctly adjusting those parameter values can enhance the stability of the
system. Furthermore, various stability charts for the system can be plotted.
�DOI: 10.1115/1.2464136�
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ntroduction
Because tilting-pad journal bearings are more stable and effi-

ient than conventional bearings, they have been commonly ap-
lied to many rotating machinery applications. The chief feature
f tilting-pads is that they modify their configuration to adapt to
very operating condition, creating several convergent-divergent
aps around the circumference and thus making the system highly
table �1�. Since Lund �2� developed a numerical method for cal-
ulating dynamic coefficients for tilting-pad journal bearings, ex-
ensive theoretical and experimental studies on dynamic and sta-
ility analysis have been conducted. In the course of the
evelopment of tilting-pad journal bearings, many effective meth-
ds have been applied, such as Newton-Raphson method, pad
ssembly technique, finite elements method, and Genetic Algo-
ithm �3–6�.

For tilting-pad bearings, when the deformation of the pads and
he thermal effects are not taken into consideration, each pad piv-
ting around a point represents an additional degree of freedom.
n past years, it was fairly complex to set up a model involving the
egrees of pad freedom, and to carry out dynamic and stability
nalyses, because of the many variables and degrees of freedom.
n most dynamic and stability analysis of rotor-bearing systems,
educed analytical methods are used. In general, in order to sim-
lify the dynamic and stability analysis, both shaft and pads are
estricted to synchronous motion with the same frequency of vi-
ration around their static equilibrium positions. In this case, the
umber of degrees of pad freedom reduces to eight synchronous
ynamic coefficients �7�. Usually, these coefficients are thought of
s equivalent coefficients, functions of pad mass and excitation
ulsation, not having actually a physical significance �8�. In fact,
he frequency of free vibration of the system, which needs to be
etermined by the complex eigenvalues computed from the differ-
ntial equations of the system, is not equal to the assumed fre-
uency of vibration. Thus, employing synchronous reduced dy-
amic coefficients cannot effectively predict steady state and
ynamic behavior of the tilting-pad bearing system.

It is well known that dynamic coefficients play an important
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role in linear dynamic and stability analysis of a rotor-bearing
system. An accurate dynamic and stability analysis should be done
utilizing the complete set of dynamic coefficients involving all of
the shaft degrees of freedom as well as the pad degrees of freedom
�7�. This paper presents a mathematical model to study the linear
stability of a tilting-pad journal bearing system. In order to obtain
the dynamic coefficients, the equilibrium position has to be found
first �9�. The Newton-Raphson method, which has been proved to
have a rapid rate of convergence, is used to find the equilibrium
position of journal and pads. The pad assembly technique is em-
ployed to obtain the complete set of dynamic coefficients of the
tilting-pad journal bearing system. Based on these dynamic coef-
ficients, the perturbation equations, including self-excited motion
of the rotor and rotational motion of the pads, are derived. By
analyzing complex eigenvalues of the perturbation equations, the
linear stability analysis of the system is carried out. The real parts
of the eigenvalues ascertain the stability of the system and the
imaginary parts represent the whirl frequency. The results show
that some factors, such as the preload coefficient, the pivot posi-
tion, and the rotor speed, significantly affect the stability threshold
of the system.

Jacobian Matrix of the Subsystem
Figure 1 shows a schematic representation of a single pad. In

the figure, there are three reference frames, the bearing reference
frame �O ,u ,v�, a local reference frame �O ,x ,y� with an angle �
measured from the u axis and a pad reference frame �A ,� ,�� fixed
in the pad. O is the bearing center, C is the journal center and A is
the pad center.

Using the pad reference frame, the oil-film forces acting on the
journal generated by a single pad, can be expressed as

F�a, ȧ� =�F���,�, �̇,�̇�

F���,�, �̇,�̇�
� �1�

where a= �� ,�� and a= ��̇ , �̇� are, respectively, the displacement
vector and velocity vector of the journal center in the pad refer-
ence frame, respectively.
Differentiating oil-film forces, Eq. �1� becomes
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dF�a, ȧ� = DaF�a, ȧ�da + DȧF�a, ȧ�dȧ �2�

here DaF�a , ȧ� and DȧF�a , ȧ�, represent the Jacobian matrix of
he force vector F�a , ȧ�, with respect to the coordinate vectors a
nd ȧ, is as follows

J = DaF�a, ȧ� = � �F���,�, �̇,�̇�
��

�F���,�, �̇,�̇�
��

�F���,�, �̇,�̇�
��

�F���,�, �̇,�̇�
��

� �3�

Ĵ = DȧF�a, ȧ� = �
�F���,�, �̇,�̇�

��̇

�F���,�, �̇,�̇�
��̇

�F���,�, �̇,�̇�

��̇

�F���,�, �̇,�̇�
��̇

� �4�

Defining a subsystem composed by the journal and a single
ad, the relationship of four coordinate vectors seen from the
gure is

OC + CA + AP + PO = 0 �5�

here

OC = xi� + yj�, CA = − ��� − ��� , AP = RA�� , PO = − Rpi�

�6�

ubstituting expressions �6� into �5� yields

�i,j�	x − Rp

y

 − ��,��	� − RA

�

 = 0 �7�

he transformation equation between the local reference frame
nd the pad reference frame is

�i,j� = ��,��P �8�

here

P = � cos � sin �

− sin � cos �
�  � 1 �

− � 1
� �9�

he quantity � denotes the pad pitch angle measured by starting
rom the y axis. Substituting Eq. �8� into �7� and neglecting the
erms of order of magnitude of c /RB and the smaller, the follow-
ng matrix equation is obtained

a = Ab �10�

Fig. 1 Single-pad schematic and reference frames
here
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A = �1 0 0

0 1 1
� �11�

the vector b= �x ,y ,��T is the displacement of the subsystem in the
local reference frame. In addition, �=Rp� represents the displace-
ment of the pad center along the direction of the � axis.

Differentiating matrix Eq. �10�, the following relationships are
obvious

da = Adb, dȧ = Adḃ �12�
Furthermore

da = ABdu, dȧ = ABdu̇ �13�
where

B = � cos � sin � 0

− sin � cos � 0

0 0 1
� �14�

vectors u= �u ,v ,��T and u̇= �u̇ , v̇ , �̇�T are, respectively, the dis-
placement vector and velocity vector of the subsystem in the bear-
ing reference frame.

The force F� that leads the rotation of the pad is

F� = − F� �15�

When Fx and Fy represent the components of the oil-film force
vector F�a , ȧ� in the x-y frame, the following matrix equation can
be written

F�b,ḃ� = CTF�a, ȧ� �16�
where

F�b,ḃ� = �Fx,Fy,F��T C = � 1 � 0

− � 1 1
� �17�

If the components of the oil-film force vector F�a , ȧ� are denoted
by Fu and Fv in the bearing reference frame, it is then necessary to
express F�u , u̇� with F�a , ȧ� by matrix B and Eq. �16�. Thus, the
matrix equation is written as

F�u,u̇� = BTF�b,ḃ� = BTCTF�a, ȧ� �18�

where force vector F�u , u̇� is stated in the following form

F�u,u̇� = �Fu�u,v,�, u̇, v̇, �̇�
Fv�u,v,�, u̇, v̇, �̇�
F��u,v,�, u̇, v̇, �̇�

� �19�

Differentiating matrix Eq. �18� and integrating leads to

dF�u,u̇� = BTATdF�a, ȧ� + BTZdq �20�
where

Z = �0 − � − F� /Rp

� 0 F� /Rp

0 0 0
� dq = �dF�,dF�,d��T �21�

It should be noted that the second term could be neglected in
comparison with the first term on the right side of Eq. �20�, so the
matrix equation further simplifies to

dF�u,u̇� = �AB�TdF�a, ȧ� �22�
Combining Eqs. �2�, �13�, and �22�, the differential form of the
oil-film forces in the bearing reference frame is obtained

dF�u,u̇� = �AB�TDaF�a, ȧ�ABdu + �AB�TDȧF�a, ȧ�ABdu̇

�23�

Thus, according to Eqs. �3� and �4�, the Jacobian matrix of the
force vector F�u , u̇� with respect to vectors u and u̇ can be ob-

tained
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DûF�u,u̇� = �AB�TJAB = �PTJP PTJQ

QTJP QTJQ
�

Du̇̂F�u,u̇� = �AB�TĴAB = �PTĴP PTĴQ

QTĴP QTĴQ
� �24�

here

P = � cos � sin �

− sin � cos �
� Q = �0

1
� �25�

nd u= �u ,v ,��T and u̇= �u̇ , v̇ , �̇�T represent the subsystem’s mo-
ion state.

ynamic Coefficients of the Rotor-Bearing System
A rotor-bearing system with n pads consists of n subsystems.

he displacement and velocity vectors of each subsystem can be
ritten as ui= �u ,v ,�i�T and u̇i= �u̇ , v̇ , �̇i�T �i=1, . . . ,n�, respec-

ively, where i indicates the sequential number of pad. Thus, û

�u ,v ,�1 , . . . ,�n�T and u̇̂= �u ,v , �̇1 , . . . , �̇n�T can be used to define
he system’s motion state.

Augmenting and adding up the Jacobian matrix of each sub-
ystem, one obtains the Jacobian matrix of the rotor-bearing sys-
em as follows

DûF̂�û*, u̇̂� =��
i=1

n

Pi
TJiPi P1

TJ1Q1 ¯ Pn
TJnQn

Q1
TJ1P1 Q1

TJ1Q1

] �

Qn
TJnPn Qn

TJnQn

� �26�

Du̇̂F̂�û*, u̇̂� = ��i=1

n

Pi
TĴiPi P1

TĴ1Q1 ¯ Pn
TĴnQn

Q1
TĴ1P1 Q1

TĴ1Q1

] �

Qn
TĴnPn Qn

TĴnQn

� �27�

here F̂�û , u̇̂�= ��i=1
n Fu ,�i=1

n Fv ,F�1
, ¯ ,F�n

�T represents the oil-
lm forces acting on the shaft and leading to the rotation of the
ads. Once the static equilibrium position of the system is deter-
ined by Newton-Raphson method, the dynamic coefficients of

he system can be obtained as follows

K = − DûF̂�û*,0� �28�

C = − Du̇̂F̂�û*,0� �29�

here û*= �u* ,v* ,�1
* , . . . ,�n

*�T is the static equilibrium position of
he system including the journal and the pads.

inear Stability Analysis
For a symmetric rotor-bearing system, the perturbation equa-

ions of the system with a rigid rotor, after obtaining dynamic
oefficients, can be expressed in the following form

Mü̃ + Cu̇̃ + Kũ = 0 �30�
he mass matrix M is
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M = �
mb

mb

mp

�

mp

� �31�

where mb is the half-mass of the rotor, mp is the pad equivalent
mass that is expressed in terms of the pad moment of inertia Jp as

mp = Jp/RA
2 �32�

The linear equations consist of a set of total n+2 equations, the
first two equations describe motion of the journal and the others
describe the tilting-pads. In the matrix equation, the unknown ũ
represents small-perturbed displacements with respect to the static
equilibrium position û*.

Equation �30�, a second-order linear differential equation, has
the following general solution

ũ = �e�t �33�

where eigenvalues � and the corresponding normal mode � gen-
erally come in complex conjugate pairs.

Substituting Eq. �33� into the differential Eqs. �30�, the corre-
sponding second-order eigenvalue problem is

��2M + �C + K�� = 0 �34�
The stability of the system depends on the eigenvalues. The real

parts of the system eigenvalues can ascertain whether the system
is stable. The n+2 modal damping ratios �̄k are related to the
complex eigenvalues �k=�k± i	k �k=1,2 , . . . ,n+2� by

�̄k =
− �k

��k
2 + 	k

2
�35�

The modal damping ratios �k can be used to show a general
tendency of stability of the system. The system will become un-
stable if one of the modal damping ratios tends to be negative. The
complex mode shapes �k=�k± i�k reflect the amplitude ratio and
the phase relationship of the system.

Results
An ideal model generated from a small bearing used in the

light-duty air compressor is chosen for the study. The symmetrical
bearing system has three tilting pads and a rigid rotor, as illus-
trated in Fig. 2. The values of some parameters are listed as fol-

lows: ��=1.0, 
̂=100 deg, �=0.012 Pa s, Rp=5 cm, mb=50 kg,
and c /RB=0.0055. A computer program was developed to com-
pute the static equilibrium position, the dynamic coefficients and

Fig. 2 Schematic of a three-pad journal bearing system
the complex eigenvalues of the system. The dimensionless pad
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ritical mass m̄c=mc /2mb is defined. Here, mc represents the mass
f the pad when one of the complex eigenvalues has zero real part
nd others have negative real parts.

For different values of preload, the correlation between rota-
ional speed and the pad critical mass is illustrated in Fig. 3. From
he figure it is found that the pad critical mass gradually converges
o a certain value with the increase of the rotational speed. The
urves also indicate that the pad critical mass will be insensitive to
he increase of rotational speed in the higher speed section. Con-
ersely, the critical mass of the pad is strongly influenced by the
otational speed as it is in lower speed section. As we know,
reload is significant in controlling system performance. Seeing
he figure, with increasing �, m̄c increases. The curves show that
he preload coefficient greatly affects the stability of the system.

For a tilting-pad journal bearing, the pivot positon of the pad
an have a large influence on its dynamic properties. Figures 4
nd 5 present the nondimensional pad critical mass m̄c versus the

ig. 3 Nondimensional pad critical mass m̄c versus � „�
0.5…

ig. 4 Nondimensional pad critical mass m̄c versus � „a… „�
15,000 rpm…

ig. 5 Nondimensional pad critical mass m̄c versus � „b… „�

0.3…

ournal of Tribology
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pivot position =� /
. In these figures, it can be seen that the pad
critical mass increases in a continuous manner when the pivot is
displaced toward the outlet.

Figures 6–8 display the amplitude ratio and the real and imagi-
nary portions of complex mode shapes corresponding to each ei-
genvalue for mp=1 kg, c /RB=0.0058, and =0.5. These plots
show the coupling relationship between the vibration of rotor and
pads. The vibrations of the pads have high coupling with the prin-
cipal vibration of the journal. However, the principal vibration of
a pad is coupled loosely with other vibrations.

For mp=1.0 kg, =0.5, and �=1000 rpm, Figs. 9 and 10 show
that the variations of damping ratios and frequencies for different
preload coefficients. These pictures show that the system will eas-
ily lose its stability when it is in lower preload range and that the
preload has a great influence on the higher modal frequencies.

Fig. 6 The associated amplitude ratio of complex modes „�
=0.2, �=10,000 rpm…

Fig. 7 The real portion of complex mode shapes „�=0.2, �
=10,000 rpm…

Fig. 8 The imaginary portion of complex mode shapes „�

=0.2, �=10,000 rpm…
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igures 10–12 illustrate the variations of the damping ratios and
requencies versus rotational speed in cases of �=0.2. Notice that
he stability of the system will be threatened as the rotational
peed increases. The results presented in these figures support the
onclusions shown by previous figures.

Fig. 9 Modal damping ratios versus � „�=10,000 rpm…

Fig. 10 Natural frequencies versus � „�=10,000 rpm…

Fig. 11 Damping ratios versus � „�=0.2…
Fig. 12 Natural frequencies versus � „�=0.2…
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Conclusion
In this paper a model has been presented to study the linear

stability of a tilting-pad journal bearing. By making a series of
coordinate transformations, the stiffness and damping matrices of
the system were obtained from the dynamic coefficients of each
subsystem consisting of the rotor and a single pad. After attaining
the stiffness and damping matrices, the perturbation equations of
the system were derived by linearizing the oil-film forces. In the
numerical analysis, the Newton-Raphson method was used to find
the static equilibrium position of each pad and the dynamic coef-
ficients of each subsystem were obtained simultaneously. Com-
pared to models developed in the past years, in this model the
mass of the pad as well as the pad degrees of freedom are taken
into account. As an example, a three-tilting-pad journal bearing
system with a rigid rotor was investigated. The following conclu-
sions were obtained from the reults.

The stability of the system as well as the pad critical mass is
greatly influenced by the preload. As the value of the preload
increases, both improve. Therefore, correctly adjusting the pivot
position is beneficial to enhance the stability of the system. If the
principal vibration is the rotor’s, there is a strong coupling rela-
tionship between the rotor and the pads. The system more easily
loses its stability when the preload is lower or when the rotational
speed is larger.

Nomenclature
A � pad center
C � journal center

RJ � shaft radius
RA � outside radius of pad
RB � inside radius of pad
Rp � radius of pivot’s circle
O � bearing center

c=RB−RJ � machined pad clearance
c /RB � clearance ratio

mb � half-mass of the rotor
mi � mass of the pad
mc � the critical mass of the pad
 � pivot position
� � rotational speed


̂ � pad arc angle
� � preload coefficient
� � displacement of the pad center

�� � length to diameter ratio
� � oil viscosity of lubricant
� � pad pitch angle

Appendix

Oil-Film Forces. The calculation of oil-film pressure distribu-
tion p is based on the following Reynolds equation

1

RJ

�

��
	 h3

12�

�p

��

 +

�

�z
	 h3

12�

�p

�z

 = −

�

2

�h

��
−

�h

�t
�A1�

where

h = c − � cos � − � sin � �A2�
the Reynolds boundary condition is

p =
�p

�n
= 0 on �+ �A3�

where � is circumferential coordinate, z the axial coordinate, h is
the oil-film thickness, t is the time, �+ is the boundary where
cavitation takes place, and n is the outward normal vector to the
boundary �+ �Fig. 13�.

Arising from the pressure, the oil-film forces generated by a

single pad can be obtained by
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F� = −� �
�

P��,z�cos � d� dz ,

�A4�F�=−���P�� ,z�cos � d� dz where � is the oil-film region
ccording to the Reynolds equation and its boundary condition,
y using a variational method, the oil-film forces and their Jaco-

ig. 13 Coordinates of a pad and journal in a tilting-pad jour-
al bearing system
ian matrices can be solved simultaneously. The detailed calculat-
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ing process of the oil-film forces has been given by Klit and Lund
�10�.
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