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a b s t r a c t

We present a sequential approach to detect static targets with imperfect sensors, which range from
tower-mounted cameras to satellites. The scenario is operationally relevant to many military, homeland
security, search and rescue, environmental engineering, counter-narcotics, and law enforcement applica-
tions. The idea is to stop the search as soon as there is enough probabilistic evidence about the targets’
locations, given an operator-prescribed error tolerance, knowledge of the sensors’ parameters, and a
sequence of detection signals from the sensors. By stopping the search as soon as possible, we promote
efficiency by freeing up sensors and operators to perform other tasks. The model we develop has the
added benefits of decreasing operator workload and providing negative information as a search
progresses.

Published by Elsevier B.V.

1. Introduction

Today’s operational planners and sensor operators face numer-
ous challenges inherent to the complex environments that shape
their space of operation. These challenges are further magnified
by scarce resources, imperfect information, and operator task
overload.

The time critical nature of the command decisions that serve as
milestones throughout the Find, Fix, Track, Target, and Engage
(F2T2E) process further exacerbate the situation. Defense planners
must strive to develop and incorporate new, efficient procedures
to allocate scarce resources in many different complex environ-
ments. Any efficiency gained within the F2T2E chain, however
small, may have a compound effect over time on overall opera-
tional readiness because this will free up assets to perform other
time-sensitive, critical sensing actions, as well as decrease operator
workload and capitalize upon negative information. Such negative
information could be utilized to find where targets are not located,
and may help determine areas to set up certain operations or paths
through the environment that are free of hostile forces.

In this article we consider a scenario with multiple fixed-sen-
sors and multiple static targets in discrete-time and discrete-space.
The sensors may range from tower-mounted cameras, to
Unmanned Aircraft Systems (UASs), to satellites, and the targets
under consideration do not react to any sensing action. The
scenario is operationally relevant to many military, homeland

security, search and rescue (SAR), environmental engineering,
counter-narcotics, and law enforcement applications. UASs have
been used in Iraq and Afghanistan to search for Improvised
Explosive Devices (IEDs), insurgent safe houses, suspected weap-
ons caches, and mortar points of origin [11,12]. Other relevant
applications include searching for downed aircraft or life rafts,
detecting illegal drug harvesting and processing operations, patrol-
ling border infiltration points, and tracking flora and fauna counts
in biological environments.

We formulate a model to locate static targets of interest (TOIs)
hidden within an area of interest (AOI). As in reality, our model al-
lows the analyst to contend with the fact that the search sensors
are imperfect; i.e., the sensors may declare fewer or more targets
than are actually present on a particular search attempt. The idea
is to stop the search as soon as there is enough probabilistic evi-
dence about the TOIs’ locations, given an operator-prescribed error
tolerance, knowledge of the sensors’ parameters, and a sequence of
detection signals from the sensors.

The AOI for the scenario is comprised of a grid of discrete, non-
overlapping area-cells (ACs). The area-cells might be defined by
geo-political borders, terrain features, or some arbitrary grid sys-
tem of tactical significance to the operator, and need not be uni-
form in size nor shape. Each cell is characterized by the number
of sensors (known), the sensors’ operational parameters (known),
and the number of targets (unknown).

The sensor parameters are the conditional probabilities of
returning each possible detection signal given each possible num-
ber of actual TOIs in that area-cell. More specifically, when the
operator makes an investigation into an area-cell, the sensor re-
turns a detection signal corresponding to the number of TOIs seen
by the sensor with some probability that depends on the actual
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(i.e., the ground truth, which is unknown) number of TOIs in that
area-cell.

To efficiently determine the targets’ locations subject to the
operator-prescribed error tolerance, we develop a sequential elim-
inating procedure [14]. A sequential eliminating procedure at-
tempts to isolate, from among several candidate configurations,
one particular desired configuration—the objective. During a par-
ticular stage of a sequential eliminating procedure, all candidate
configurations are examined and ranked in order of their likelihood
of producing the sequence of observed signals up to that stage.

Any configuration whose likelihood, when compared with the
configuration of maximum likelihood, exceeds a particular thresh-
old (which depends on the user’s error tolerance) is permanently
eliminated from the set of candidates. If no configuration exceeds
the threshold during a particular stage, then all those configura-
tions remain in the set of candidates. The procedure advances to
the next stage, using the updated candidate set. The process con-
tinues until only one configuration remains in the candidate set,
and that configuration is declared the winner. In our case, the con-
figurations are the ways the TOIs can be located in the area-cells of
the AOI, and the winner is the determined configuration. We desig-
nate the actual location of the targets in the area-cells to be the
ground truth configuration (GTC).

Search theory [1] traces its roots to the pioneering work of
Koopman [5]. For the search scenario we focus on, the objective
is to locate targets within a finite number of cells [1]. In this case,
searcher success is achieved by either detecting the targets, or, if
the targets are not detected, by correctly guessing the cells con-
taining the targets. Tognetti [17] and Kadane [4] treat the scenario
of whereabouts search against a stationary target. Washburn [19]
is a classical reference in search theory.

Siegmund’s 1985 book [14] is the classic reference in sequential
analysis, and deals primarily with sequential hypothesis testing
and related problems of estimation. In many of these cases, a
fixed-sample solution exists, but one can employ sequential meth-
ods to achieve greater efficiency in the solution. Siegmund presents
a sequential test with the same power as a fixed-sample test and
requires fewer observations [14]. Therefore, the sequential test
has a reasonable claim to be regarded as more efficient [14].

While the work to date in selection using sequential eliminating
procedures [9,10,20] has focused on isolating the best system –
usually the one with a maximum unknown parameter value –
our goal is instead to isolate one determined configuration. The de-
sire is for the determined configuration to be the ground truth con-
figuration. That is it correctly specifies the number of TOIs in each
area-cell. We show that our sequential model provides determined
configurations efficiently, while guaranteeing to meet the user-
prescribed error tolerance.

Compared to existing sensor employment models (e.g.
[6,13,7,15]), our approach does not consider moving targets, does
not dynamically allocate the sensors (i.e., no decision is taken as
to where the sensors look in each stage), and does not find optimal
search paths (with or without restrictions on searching area-cells
within a vicinity of the last searched area-cell). Delving into the
last point, most recent models (e.g. [6,13,7]) employ optimization
techniques (deterministic or stochastic) that yield search paths
that are optimal in a certain sense (often, but not always, maximiz-
ing the expected number of detected targets) for a prescribed num-
ber of time periods or search effort. However, these models scale
poorly and become intractable even for a relatively small number
of TOIs, area-cells, and time periods under consideration. This oc-
curs because the computational cost grows at least exponentially
in the number of variables ([18]), which generally is #TOIs !
#ACs ! #time periods. Some heuristics (e.g. [16]) have been pro-
posed to overcome this difficulty, but their performance cannot
be theoretically guaranteed. While our approach does provide

some benefits over existing methods, it too has limitations with re-
gard to the the size of problems it can be applied to. The algorithm
can only be used in situations where there are a handful of TOIs
(e.g. less than 5) because it must consider all possible configura-
tions of TOIs in the area cells. There are many applications where
this is the case (e.g. SAR scenarios, searching for an insurgent safe
house) and our algorithm would provide an appropriate and effec-
tive approach.

Once again, this article presents a sequential perspective on
imperfect sensor employment applicable to static targets that is
easy to implement, is computationally tractable when there are a
small number of TOIs for a larger class of problems than the opti-
mization approaches currently being employed, and stops when
the user prescribed probabilistic guarantees are met (and thus
the number of time periods or search effort is an output of the
model).

The article is organized as follows. Section 2 introduces the
notation and key definitions. In Section 3 we present the sequential
approach. Section 4 shows numerical illustrations of the model,
and Section 5 closes the paper with the main conclusions.

2. Notation

In this section we introduce the notation that will be employed
throughout this article.

A: Number of area-cells.
M: Number of targets of interest.
mi: Number of targets of interest in area-cell i. This value is
unknown, and is what the analyst wishes to determine for
i = 1, . . . ,A.
m: The true configuration, m = (m1,m2, . . . ,mA).
C: The set of feasible target configurations, formed by the ele-
ments t = (t1, . . . , tA) non-negative and integer such thatPA

i¼1ti ¼ M.
K: The number of feasible target configurations K ¼ jCj ¼
M þ A$ 1

M

! "
.

pi(djti): Conditional probability that the sensor in area-cell i
returns a signal ‘‘d targets’’ given that ti TOIs are present there.
Si: The sensor present in ACi is completely characterized by the
(M + 1) ! (M + 1) matrix Si. The value in the tth row and dth col-
umn of Si is the probability pi(djt). The matrix Si is stochastic, so
the elements of each row constitute a probability mass
function.
Xi,1,Xi,2, . . .: Sequence of signals returned by the sensor in ACi,
independently and identically distributed (IID) with probability
mass function pi(%jmi).
‘ (xi,1, . . . ,xi,n ; ti): For n IID signals from the sensor in ACi, Xi,1 = x-
i,1 = xi,1,Xi,2 = xi,2, . . . ,Xi,n = xi,n, the likelihood of having ti targets
in area-cell i is

‘ðxi;1; . . . ; xi;n; tiÞ ¼
Yn

j¼1

piðxi;jjtiÞ:

3. Model

We describe the model in more detail in section 3.1. Our objec-
tive is to analyze the scenario of multiple targets in an area of
interest with many cells. This produces many potential configura-
tions. This case is difficult to analyze because knowledge about the
presence/absence of targets in an area-cell yields insight about the
presence/absence of targets in other area-cells; i.e., the number of
targets in each area-cell is not independent. To gain insight into the
problem, in Section 3.2 we examine the scenario where there are
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only two possible configurations. In Section 3.3 we present the
sequential eliminating algorithm, and in Section 3.4 we prove that
this algorithm will finish in a finite number of steps with probabil-
ity 1.

3.1. Background

We analyze a situation consisting of M TOIs located in A area-
cells, and area-cell i contains mi targets. The number of targets in
each cell can be any value between 0 and M as long as
PA

i¼1mi ¼ M; other constraint scenarios, such as
PA

i¼1mi 6 M, can
be treated by enlarging the number of possible configurations.
We denote the set of possible configurations of the M targets in

the A area-cells as C and therefore jCj ¼ M þ A# 1
M

! "
(see page

38 of Feller [3] for a derivation). There is one sensor in each cell
that provides an imperfect signal to the sensor operator about
the number of targets in each cell. This model can allow for multi-
ple sensors in each cell, but for notational simplicity we only ana-
lyze one sensor in each cell. The probability the sensor in area-cell i
produces a signal that the area-cell contains d targets is pi(djmi).
We construct a sensor matrix Si in which the (t,d) element is given
by pi(djt). Each row of Si, pi($jt), is a probability mass function (pmf).
Thus the matrix Si fully characterizes the sensor in ACi. We assume
that for all area-cells 1 6 i 6 A the values pi(djt) are known and that
any two rows of the sensor matrix Si have at least one different
element.

Since the sensors are imperfect, it is desirable to frame the esti-
mate with some level of confidence. To accomplish this, the oper-
ator prescribes an error tolerance. For example, an error tolerance
of 5 percent would indicate that the operator is willing to accept
that the model returns an acceptable configuration at least 95 per-
cent of the time. In this paper, the only acceptable configuration is
the ground truth configuration.

The objective for the sensor operator (and the one considered in
this article) is to find the ground truth configuration subject to
bounds on the probability of returning the wrong configuration.
Naturally, the larger the error tolerance the operator is willing to
accept, the more quickly the operator can expect the procedure
to complete. Conversely, a small tolerance for error could mean
many more search attempts are expended before the procedure
terminates.

A key component of the sequential eliminating procedure is cal-
culating the likelihood ratios between various configurations. The
sequence of signals returned by the sensor in ACi is an IID sequence
of random variables Xi,1,Xi,2, . . . drawn from the probability mass
function pi($jmi). If the realization of these signals is
Xi,1 = xi,1,Xi,2 = xi,2, . . ., for ACs i = 1, . . . ,A, then the joint likelihood
function after n looks in each area-cell is given by

‘ðxi;j;1 6 i 6 A; 1 6 j 6 n; t1; . . . ; tAÞ ¼
YA

i¼1

Yn

j¼1

piðxi;jjtiÞ; ð1Þ

where {t1, . . . , tA} corresponds to an arbitrary configuration. When
the rows of each sensor matrix Si are different, the likelihood func-
tion is maximized, as n?1, by t1 =m1, t2 =m2, . . . , tA =mA; see Leh-
mann [8] for the general theory. For two arbitrary configurations t(0)

and t(1), their likelihood ratio is

‘ xi;j;1 6 i 6 A; 1 6 j 6 n; tð0Þ1 ; . . . ; tð0ÞA

# $

‘ xi;j;1 6 i 6 A; 1 6 j 6 n; tð1Þ1 ; . . . ; tð1ÞA

# $ ;

which is always a number in (0,1) for finite n if pi(xi,jjti) > 0.

3.2. Comparing two configurations

In this section we analyze the special case where there are are
two possible configurations, labeled Configuration 0 and Configu-
ration 1, only one of which is the GTC. Configuration 0 has

tð0Þ ¼ tð0Þ1 ; tð0Þ2 ; . . . ; tð0ÞA

n o
TOIs located among the area-cells, and

Configuration 1 tð1Þ ¼ tð1Þ1 ; tð1Þ2 ; . . . ; tð1ÞA

n o
in the area-cells. If the

ground truth configuration is Configuration 0, then the signals pro-
duced by the sensor in area-cell i will be distributed according to
the pmf pið$jt

ð0Þ
i Þ. If the ground truth configuration is Configuration

1, then the signals will be distributed according to the pmf pið$jt
ð1Þ
i Þ.

To guarantee that the algorithm terminates in finite time, we as-
sume that at least one of the sensors’ matrices has its tð0Þi and tð1Þi

rows different; otherwise, the sequence of signals produced by
the sensors would be probabilistically identical under both
configurations.

We assume that all area-cells receive the same number of looks
from their corresponding sensor, and the goal is to terminate the
inspection when there is enough evidence that the error bounds
are met, i.e., we are confident to within our error tolerances of say-
ing that the TOIs are located in the area-cells according to one of
the two configurations. The two possible errors are: (i) a is the
probability that Configuration 1 is the determined configuration
when the GTC is Configuration 0, and (ii) b is the probability that
Configuration 1 is the determined configuration when the GTC is
Configuration 0. This leads to the hypotheses

H0 : Configuration 0 is the GTC; and H1

: Configuration 1 is the GTC:

The likelihood that the signals Xi,j = xi,j are produced by Configura-
tion 0 is (cf., Eq. (1))

‘ð0Þn ¼ ‘ xi;j;1 6 i 6 A; 1 6 j 6 n; tð0Þ1 ; . . . ; tð0ÞA

# $

and the likelihood the signals are produced by Configuration 1 is

‘ð1Þn ¼ ‘ xi;j;1 6 i 6 A; 1 6 j 6 n; tð1Þ1 ; . . . ; tð1ÞA

# $
:

The likelihood ratio

‘n ¼ ‘ð1Þn

‘ð0Þn

! 0

with probability 1 as n?1 if the GTC is Configuration 0 and
‘n ?1 if the GTC is Configuration 1; see Lehmann [8]. This suggests
that a judicious policy is to stop sampling when the likelihood ratio
crosses an upper threshold and declare Configuration 1 the deter-
mined configuration or when the likelihood ratio crosses a lower
threshold and declare Configuration 0 the determined configura-
tion. This approach may lead to an incorrect determination, but
its probability can be prescribed ab initio by the end-user.

Define the stopping time

N ¼ inf n P 1 : ‘n R ðA;BÞf g

for threshold constants A, B such that 0 < A < B <1. Then we

Reject H0 if ‘N P B; and Accept H0 if ‘N 6 A:

For 0 6 a, b 6 1 prescribed by the end-user, the error probabilities
are

Type I error : Pð‘N P BjH0Þ ¼ a and TypeII error : Pð‘N
6 AjH1Þ ¼ b:

Taking logarithms, we can see that we reject H0 if
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XN

j¼1

XA

i¼1

logpi xi;jjtð1Þi

! "
$ logpi xi;jjtð0Þi

! "! "
P logB ð2Þ

and accept H0 if

XN

j¼1

XA

i¼1

logpi xi;jjtð1Þi

! "
$ logpi xi;jjtð0Þi

! "! "
6 logA: ð3Þ

Siegmund [14] shows

a ¼ Pð‘N P BjH0Þ 6 B$1ð1$ bÞ ð4Þ

and

b ¼ Pð‘N 6 AjH1Þ 6 Að1$ aÞ: ð5Þ

Hence, given operator defined tolerances a and b, by setting

B ¼ 1$ b
a ; and A ¼ b

1$ a ; ð6Þ

we are guaranteed to satisfy the error probability constraints. More-
over, it is shown in Siegmund that if Eqs. (4) and (5) hold with
equality, then this approach minimizes the expected number of
looks until crossing either boundary [14]. Although (4) and (5) gen-
erally do not hold with equality, the algorithm is guaranteed to
meet the error criteria.

Fig. 1 displays two possible sample paths for this sequential
eliminating procedure. The two parallel dashed lines represent
the bounds log (A) and log (B). A path between the bounds is still
undetermined; thus the procedure continues until the path exits
via one of the bounds (hence, this area is known as the continuation
region). A path exiting the bound corresponding to log (B) results in
a declaration that Configuration 1 is the determined configuration,
whereas an exit via the log (A) bound results in a declaration that
Configuration 0 is the determined configuration.

3.3. Sequential eliminating algorithm

We now consider the general scenario of an AOI consisting of
A > 1 area-cells, and M targets located within the AOI. There are

K ¼ M þ A$ 1
M

# $
ways for theM targets to be placed in the A cells,

leading to configurations t(1), t(2), . . . , t(K). Assume, without loss of
generality, that the GTC is Configuration 1.

An incorrect determination occurs when the determined config-
uration is not Configuration 1. We call this event an ICD (for incor-

rect determination), and the desire is for P(ICD) 6 a, for some
a 2 (0,1) pre-specified by the operator.

Let C0 be the initial set of candidate configurations; initially all K
configurations are candidates to contain the target, so that C0 ¼ C.
Let ‘&n be the largest likelihood at stage n. We drop a configuration
from consideration when there is sufficient evidence that it it is not
the correct configuration, i.e., when we are confident to within our
error tolerance of saying that the targets are not located according
to that particular configuration. This suggests eliminating configu-
ration r when ‘&n=‘

ðrÞ
n P B, where B = (K $ 1)(1/a $ 1) is selected to

satisfy the bound P(ICD) 6 a.
The algorithm proceeds as follows:

SE Algorithm

1. Set n = 0.
2. Obtain one signal from all area-cells i such that tðjÞi – tðkÞi for

some configurations t(j), t(k) in Cn.
3. Compute ‘ðrÞn and the ratios ‘&n=‘

ðrÞ
n ; 8 tðrÞ 2 Cn.

4. If ‘&n=‘
ðrÞ
n P B, then remove t(r) from Cn.

5. If jCnj ¼ 1, stop and declare the remaining configuration in Cn

the determined configuration. Otherwise, increase n? n + 1
and go back to 2.

In step 2 we sample from any area-cell i for which there remain
candidate configurations based on different number of TOIs in ACi.
Step 3 provides the constraint to the types of problems the algo-
rithm can handle. After the first round of looks, the procedure com-

putes the likelihood for all M þ A$ 1
M

# $
configurations. Unless M

is small (e.g. less than 5) the number of configurations will make
the problem computationally infeasible. For example if the area
of interest is a 16 ' 16 grid and there are 10 TOIs, then there are
over 1016 configurations. In practical situations, however, most
configurations may be deemed impossible, so that initially fewer

than M þ A$ 1
M

# $
configurations exist.

Let the stopping time

Nr ¼ inf n P 1 : ‘ð1Þn =‘ðrÞn R ðB$1;BÞ
n o

be the first time the likelihood ratio of Configurations 1 and r exits
the interval (B$1,B). If Configuration 1 is incorrectly eliminated via
the SE Algorithm, then there must exist some r such that
‘ð1ÞNr

=‘ðrÞNr
6 B$1. The probability that this occurs is

Pð
SK

r¼2‘
ð1Þ
Nr
=‘ðrÞNr

6 B$1Þ. Following Eqs. (4)–(6), with a = b and
B = A$1 = (K $ 1)(1/a $ 1), we can guarantee the error bound
Pð‘ð1ÞNr

=‘ðrÞNr
6 B$1Þ 6 a=ðK $ 1Þ. By Bonferroni’s inequality, it follows

that the incorrect determination probability for the SE Algorithm,
P(ICD), will be less than a:

PðICDÞ 6 P
[K

r¼2

‘ð1ÞNr
=‘ðrÞNr

6 B$1

 !
6
XK

r¼2

P ‘ð1ÞNr
=‘ðrÞNr

6 B$1
! "

6
XK

r¼2

a
K $ 1

¼ a: ð7Þ

Hence we conclude that,

Proposition 1. The SE Algorithm is guaranteed to meet the operator-
defined tolerance a for the probability of incorrect determination.

3.4. Termination time

In this section we show that the SE Algorithm finishes in a finite
number of steps with probability 1. To do this we examine the
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Fig. 1. Examples of the evolution of the likelihood ratio for the two configuration
case.
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behavior of the likelihood ratio ‘n ¼ ‘ðqÞn =‘ðrÞn of two arbitrary and
different candidate configurations as n increases and determine
under what conditions the likelihood ratio exits a continuation re-
gion in a finite number of steps.

The continuation region is the interval (A,B) and the stopping
time is N = inf{nP 1:‘n R (A,B)}. We will show that if each sensor
matrix Si has no identical rows, then P[N <1] = 1 for any finite A
and B. To do this we examine the log likelihood ratio
log ‘n ¼ log ‘ðqÞn $ log ‘ðrÞn . The equivalent continuation region for
the log likelihood ratio is (a,b) where a = logA and b = logB and
the stopping time can be written in terms of log‘n via
N = inf{nP 1: log‘n R (a,b)}.

We will express the log likelihood log‘n as a random walk. That
is there are IID random variables Zj such that

log ‘n ¼ Z1 þ Z2 þ Z3 þ . . .þ Zn:

The values of Zj can be derived by inspecting Eqs. (2) and (3):

Zj ¼
XA

i¼1

logpi Xi;jjtðqÞi

! "
$ log pi Xi;jjtðrÞi

! "! "
: ð8Þ

The Zj are independent random variables because each sensor’s sig-
nals are independent of the signals of other sensors, and a signal
from one sensor in one period is independent of a signal from that
sensor in another period. The Zj are identically distributed because
the targets are stationary and we assume that the sensor matrices Si
do not change. Therefore, log ‘n ¼

Pn
j¼1Zj is a random walk, and we

can appeal to the theory of random walks to prove that
P[N <1] = 1. Because log‘n is a random walk, one of the following
four scenarios must occur with probability one (see Theorem 1.2
in Chapter 3.1 of Durrett [2]):

1. log‘n = 0 for all n
2. log‘n ?1
3. log‘n ? $1
4. $1 = lim inf log‘n < lim sup log‘n =1

For scenarios 2, 3, and 4, P[N <1] = 1 because log‘n will almost
surely be growing arbitrarily large (or small), and thus log‘n will
leave the continuation region (a,b) in a finite number of steps al-
most surely. To show this we will derive a contradiction. Assume
that we have scenario 2, but P[N <1] < 1. We define the sets D
and E:

D ¼ x : lim
n!1

log ‘nðxÞ ¼ 1
n o

;

E ¼ x : sup
16n

log ‘nðxÞ 6 b and inf
16n

log ‘nðxÞ P a
# $

:

We have P[D] = 1 because we assume scenario 2, and P[E] = ! > 0
because we assume P[N <1] < 1. However, D & Ec and therefore
P[D] 6 P[Ec] = 1 $ P[E] = 1 $ ! < 1. This is a contradiction and so if
we have scenario 2, then P[N <1] = 1. The proofs for scenario 3
and 4 are nearly identical.

If scenario 1 occurs then P[N <1] = 0. Since P[N <1] = 1 if sce-
nario 2, 3, or 4 occurs, if we can we can prove that scenario 1 can-
not happen, then by Theorem 1.2 in Chapter 3.1 of Durrett [2]
either scenario 2, 3, or 4 must occur, and therefore P[N <1] = 1.
In scenario 1, log‘n = 0 for all n. This will happen if and only if
Zj ' 0 for j = 1,2, . . .; that is Zj is identically equal to 0 with proba-
bility 1. But this cannot happen if each sensor matrix Si does not
have two identical rows, because then

var Zj ¼
XA

i¼1;tðqÞ
i

–tðrÞ
i

var logpi Xi;jjtðqÞi

! "
$ logpi Xi;jjtðrÞi

! "! "
> 0; ð9Þ

since var logpi Xi;jjtðqÞi

! "
$ log pi Xi;jjtðrÞi

! "! "
> 0 whenever

P piðXi;jjtðqÞi Þ–pi Xi;jjtðrÞi

! "! "
> 0. Eq. (9) implies P(Zj = 0) < 1. There-

fore, scenario 1 cannot occur in our model, which means that either
scenario 2, 3, or 4 must occur and P[N <1] = 1.

Since we have shown that the likelihood ratio ‘ðqÞn =‘ðrÞn for arbi-
trary configurations q and r will leave the continuation region in
a finite number of steps with probability 1, then this will also hold
for the likelihood ratio ‘(n=‘

ðrÞ
n . This is summarized in the next

proposition.

Proposition 2. If each sensor matrix Si does not have two identical
rows, then the sequential elimination algorithm terminates in finite
time with probability 1.

4. Numerical results

In Section 4.1 we focus on the sequential eliminating algorithm
for only one target, and we compare the performance of the
sequential eliminating algorithm for one target to other naive algo-
rithms in Section 4.2. We briefly present results for multiple tar-
gets in Section 4.3.

4.1. One target scenario

We assume there is a sensor in each area-cell that is available to
take one look per time period. To construct the 2 ) 2 sensor matrix
Si for these numerical examples we define pi(0j0), which corre-
sponds to the upper left hand element of Si, to be a random uniform
value between 0.7 and 1.0, and we assign a random uniform value
between 0.8 and 1.0 to pi(1j1), which corresponds to the lower
right hand element of Si (the exact sensor values used to generate
the figures in this section are available from the authors upon re-
quest). The quantity pi(1j1) is the probability the sensor signals
that one target is located in the area-cell if there is actually one tar-
get in the area-cell. This is known as the sensitivity of a sensor. The
specificity of a sensor corresponds to pi(0j0), which is the probabil-
ity the sensor correctly signals that no targets are in the area-cell.
The off-diagonal terms of Si, pi(0j1) and pi(1j0), are given once we
define the diagonal terms because the rows sum to 1.

Fig. 2 presents the expected number of total looks for the
sequential eliminating procedure to terminate as a function of
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Fig. 2. Expected number of looks until the sequential eliminating procedure
terminates as A increases. There is one target, A ranges from 2 to 256, a = 0.05,
sensor sensitivity * U[0.8,1], and sensor specificity *U[0.7,1].

K.E. Wilson et al. / European Journal of Operational Research xxx (2011) xxx–xxx 5

Please cite this article in press as: K.E. Wilson et al., A sequential perspective on searching for static targets, European Journal of Operational Research
(2011), doi:10.1016/j.ejor.2011.05.045



the number of area-cells A. We set the error tolerance a to 0.05. The
number of area-cells in the AOI varies from A = 2 to A = 256. We
arbitrarily (and without loss of generality) place the target in
AC1. For all figures in this section we perform 25000 replications
for a given set of parameter values to produce an estimated value;
in this case that value is the expected number of looks for the pro-
cedure to return the determined configuration. The vertical bars
represent 95% of the distribution of the number of looks produced
during the simulation. Fig. 2 depicts a linear increase in the num-
ber of looks as A increases for fixed a = 0.05. In this example
approximately 3 looks per area-cell are required on average for
the algorithm to terminate. This value only increases by about 1
look per area-cell if the total number of looks to terminate is at
the 97.5th percentile of its distribution.

In Fig. 3 we examine the effect of varying the error tolerance.
We use the same sensor parameters as in Fig. 2, fix A = 196, and
vary the type-I error probability tolerance a between 0.01 and
0.2. As expected, the number of expected looks decreases with an
increase in error tolerance for the sequential procedure. The de-
crease is more significant for small values of a because the thresh-
old to eliminate configurations varies inversely with a (cf., above
Eq. (7)). In the example in Fig. 3, decreasing the error tolerance
from 0.2 to 0.01 only requires approximately 1.2 additional looks
per area-cell on average.

Finally, the expected number of looks until the sequential elim-
inating procedure terminates depends upon the sensor parameters
in Si. To determine how improving the sensors’ sensitivity and
specificity impacts the number of expected looks, we set A = 196
and a = 0.05 and vary the sensors’ parameters. Therefore, the sen-
sor parameters used to create Fig. 4 are different than the values
used to produce Figs. 2 and 3. We set the sensor sensitivity to be
a uniform random number in (a,a + 0.05) and the specificity to
be another uniform random number in (a,a + 0.05) for a ranging
between 0.6 and 0.95. As the probabilities that the sensors produce
the correct signals increase, the sequential algorithm terminates in
fewer steps because there is less uncertainty with the sensors’ sig-
nals. Increasing the sensors’ sensitivity and specificity has a signif-
icant impact on the amount of resources (i.e., looks) required to
identify the determined configuration. When the sensors produce
the correct signal over 95% of the time, then less than 2 looks per
area-cell are needed for the procedure to finish. However, when
the signals are only slightly better than a coin-flip at 60% the pro-

cedure needs more than an order of magnitude more looks to fin-
ish. Fig. 4 illustrates the relationship.

Fig. 4 suggests that one could perform a cost-benefit compari-
son of several different sensors. ‘‘Better’’ sensors (e.g. those repre-
sented on the lower right of Fig. 4) will terminate in fewer looks
but they will presumably have a higher purchase cost. There are
two primary costs associated with a sensor: the cost to purchase
and maintain a sensor and the cost of each look (e.g. the time to
process a look). The cost of one look may be quite small, but if that
sensor is used in many operations, having a more effective sensor
technology may produce significant benefits over time. Another
trade-off analysis that could be performed for one particular sensor
would be to determine the optimal location on the receiver operat-
ing characteristic (ROC) curve. Often the operator has some control
over the performance of a sensor; one can increase sensitivity at
the expense of specificity (this differs from Fig. 4 where both sen-
sitivity and specificity increase). It would be valuable to know
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Fig. 3. Expected number of looks until the sequential eliminating procedure
terminates as a increases. There is one target, A is 196, sensor sensitivity !U[0.8,1],
sensor specificity ! U[0.7,1], and a ranges from 0.01 to 0.2.
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Fig. 4. Expected number of looks until the sequential eliminating procedure
terminates as the sensitivity and specificity increase. There is one target, A is 196,
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which combination of sensitivity and specificity would produce the
smallest expected number of looks. A full cost-benefit analysis of
sensor technology is outside the scope of this paper (and much
of the relevant information would be classified or difficult to ob-
tain). However we provide one figure that would be an essential
component of that analysis once one has the relevant cost and sen-
sor data. Fig. 5 presents a heat map that plots the expected number
of looks as a function of the sensitivity and specificity (we assume
the sensor characteristics are identical across area cells). This fig-
ure illustrates that there are primarily eight regions in the sensitiv-
ity/specificity space where the expected number of looks is roughly
constant (technically there is a very small ninth region in the upper
right hand corner for near perfect sensors that is difficult to see on
the figure). The expected number of looks in the first region in the
lower left-hand corner of Fig. 5 is approximately 6500 and that val-
ues drops by at least 25% per region as the sensor parameters move
to the northeast until the value is less than 500 in the eighth re-
gion. Operationally, Fig. 5 suggests that, in terms of expected num-
ber of looks until termination, the marginal values of the
sensitivity and specificity are similar when their values are alike.
The more dissimilar their values, the greater the marginal value
of the largest parameter becomes. The structure of Fig. 5 would
be useful in the evaluation of sensor technologies. For most situa-
tions a small improvement in sensor performance will not justify
the additional cost. However, if current sensor technology is on
the boundary of two regions, the extra investment will signifi-
cantly reduce the number of looks.

4.2. Comparison with other target-location algorithms

In this section we compare the performance of the sequential
eliminating procedure with two other algorithms to locate targets
in an AOI; the measure of performance is the observed error rates.
Recall that the goal of the sequential eliminating procedure is to
indicate target location with an accuracy rate guaranteed to meet
operator-specified error tolerances, within a reasonable number
of expected looks. One possible measure of performance is the
amount of slack between the error tolerance and the observed er-
ror rate. Intuitively, the less slack, the fewer number of expected
looks would be required. However, if a method with the same ex-
pected number of looks as the sequential eliminating procedure
exhibits a larger observed error rate, it is reasonable to state that
the sequential eliminating procedure is more efficient than such
a method. Alternatively, one could invoke a method exhibiting
the same achieved error rate and compare the expected number
of looks, but we choose the former scheme for ease of computation
and illustration.

In both of the alternate methods we consider, we allocate the
same expected number of total looks as the sequential eliminat-
ing procedure. For given values of Si and a, let !sA be the total
average number of looks for the sequential eliminating procedure
to complete with an AOI consisting of A area-cells. We compute
the average number of looks numerically in Figs. 2–4. In the naive
procedure, we allocate the same number of looks to each sensor
so that each area-cell receives !sA=A looks. In a slightly more
sophisticated procedure, we allocate the looks to area-cells based
on how effective their sensors are. Looks are allocated in propor-
tion to the inverse of (sensitivity - (1-specificity)). If this quantity
is large (that is the sensor has high sensitivity and specificity) the
sensor is efficient and needs less looks to provide useful informa-
tion to the operator. If the difference between sensitivity and the
Type-II error of the sensor is small then it is difficult to interpret
one signal with great certainty, and therefore more signals from
those sensors are collected. If ACi should receive a fraction fi looks
according to this procedure, then fi!sA looks will be allocated to
that area-cell.

In both the procedure that equally allocates looks to every area-
cell and the procedure that allocates looks in proportion to the in-
verse of sensor effectiveness, the calculated looks-per-cell will
likely not be integral. We round the calculated value up to the
nearest integer, and therefore these two alternate procedure will
have more total looks than the sequential eliminating procedure.
After the deterministic allocation of looks to the area-cells, the con-
figuration with the largest likelihood is declared the determined
configuration for each of the algorithms. Unlike the sequential
eliminating procedure, neither configurations nor area-cells are
eliminated during these two alternate procedures.

In Fig. 6 we compare the observed error rates of the sequential
eliminating procedure with that of the alternate models. We set
a = 0.05 and vary the number of area-cells from A = 2 to A = 256.
As before, the target is located in AC1 and the sensor parameters
are the same ones used produce Fig. 2. Furthermore, for the
sequential eliminating procedure we use the same data that pro-
duced Fig. 2. We do not include vertical bars in Figs. 6–8 because
we are only computing one realization of the error rate (as opposed
to 25000 realizations of the number of looks in Figs. 2–4). As con-
structed, the observed error rate of the sequential eliminating pro-
cedure is less than the error bound a (significantly so in this case,
due to the slack introduced by Bonferroni’s inequality, cf. Eq. (7)).
For the same average number of looks at each value of A, the ob-
served error rates for the two alternate methods are considerably
larger for all values of A (indeed, the alternate error rates exceed
the tolerance a for most values of A). In many situations the algo-
rithm that allocates looks inversely to sensor effectiveness pro-
duces more errors than the algorithm that allocates an equal
number of looks to each area-cell. By potentially allocating too
many looks to too few area-cells the former algorithm does not col-
lect enough information from the remaining area-cells to accu-
rately produce the correct configuration.

We next examine the effect of varying a with A = 196. Fig. 7
shows that an increase in a appears to cause a linear increase in
the observed miss rate. The observed miss rate for a = 0.2 is still
much less than 0.05. The bound derived in (7) is not tight, and as
Fig. 7 illustrates there is a large amount of slack between the de-
sired error rate and the observed error rate. This suggests there
is potential to improve the sequential eliminating procedure by
terminating after a fewer number of looks. The difference between
the observed error rate for the sequential eliminating procedure
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Fig. 6. Observed error rates of the target-location algorithms as A increases. There is
one target, A ranges from 2 to 256, a = 0.05, sensor sensitivity !U[0.8,1], and sensor
specificity !U[0.7,1].
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and the two alternate procedures is significant: the error rates for
the latter two start at over 15% and increase to over 25%.

Finally we present the companion to Fig. 4 in Fig. 8 for a = 0.05
with A = 196. As the sensors improve and they more accurately sig-
nal the true nature of the area-cells, the error rates of all the pro-
cedures generally decrease. Although the observed error rates of
the two alternate procedures are still greater than a = 0.05, except
when the sensitivity and specificity are greater than 0.95. It is not
surprising that all three algorithms have relatively low error rates
when the sensitivity and specificity are both large because often
one or two looks per area-cell are sufficient to produce a deter-
mined configuration. However, when sensors are not effective
and the difference between the probability of a true positive and
a false positive gets closer to zero, the dominance of the sequential
eliminating procedure over the alternate methods is staggering.
The alternate methods produce nearly as many incorrect configu-
rations as true configurations, whereas the sequential eliminating
procedure is still comfortably below the a = 0.05 error rate. Often,

depending upon the circumstances (e.g. the sensor technology,
environment, nature of the targets, and ability of the operators),
the sensors’ signals will be unreliable and the sensitivity and spec-
ificity will be much less than 0.9. These are the situations where
the sequential eliminating procedure can produce enormous effi-
ciency gains.

4.3. Multiple targets

The results for multiple targets are similar to the case of one tar-
get. Fig. 9 presents how the expected number of looks for the
sequential eliminating procedure to terminate varies as the num-
ber of targets, M, increases. We set a = 0.05, A = 10, and vary M
from 1 to 10. We define the GTC to be one target in the first M
area-cells. There are many ways the sensors’ capabilities can
change as the number of potential targets increases. We examine
two cases. In one case a sensor’s ability to signal the correct num-
ber of targets in the area-cell is a uniform random variable be-
tween 0.5 and 1 (these are the diagonal values in Si). This means
that, regardless of the number of targets, the sensors produce a
correct signal at least 50% of time. The remaining sensor parame-
ters are uniformly generated to ensure that the rows are pmfs
(i.e., the rows sum to 1). We also examine a case where the prob-
ability a sensor produces a correct signal decreases as the number
of targets increases. For simplicity, in this case we assume that the
off-diagonal elements of Si are identical and that the diagonal ele-
ments are a multiple of the off-diagonal terms. We assume the
diagonal element of each row of Si is a factor of 4 larger than an
off-diagonal element because this corresponds to a sensitivity
and specificity of 0.8 when there is one target. We further assume
the parameters of every sensor are the same, and therefore the off-
diagonal elements of Si equal 1/(M + 4) and the diagonal elements
of Si equal 4/(M + 4).

Adding additional targets rapidly increases the number of feasi-
ble configurations. With one target there are A configurations (i.e.,
the target can be in one of the area-cells). However, with 5 targets
in 10 area-cells there are over 2000 configurations. Not only are
there more configurations to consider, but the threshold to elimi-
nate configurations increases with the number of feasible configu-
rations (cf., above Eq. (7)). It might be expected that, as with the
number of configurations, the number of looks would increase
exponentially as we increase M. However, for the two cases we
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Fig. 7. Observed error rates of the target-location algorithms as a increases. There is
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ranges from 0.01 to 0.2.
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examine in Fig. 9 this does not occur. In fact when the sensor cor-
rectly identifies the target over 50% of the time, the average num-
ber of looks is relatively constant as M increases. This is because
the probability of returning a specific incorrect signal is much less
than when there is only one target. Therefore, the configurations
that do not match most of the sensor signals will quickly be elim-
inated. When the probability that a sensor produces the correct
signal decreases as M increases, the number of looks appears to in-
crease linearly. In this case, additional targets cause the sensors to
produce more incorrect signals, and therefore to overcome this
uncertainty the sensors must take additional looks. In the example
in Fig. 9, every additional target requires approximately 4 more
looks per area-cell to find the determined configuration.

When multiple targets are located in the AOI, the observed error
rates are similar to the results presented in Figs. 6–8. The sequen-
tial eliminating procedure produces errors at a rate much less than
a and it dominates the two alternate procedures. However, the er-
ror rates of the two alternate procedures are smaller then when
there is only one target. Because of the large number of configura-
tions, the threshold to eliminate configurations is greater than it
needs to be to achieve the desired error rate, which causes consid-
erable slack between the observed and desired error rates.

5. Concluding remarks

The sequential eliminating procedure collects signals from sen-
sors and determines how targets are located in area-cells in an area
of interest. This procedure provides efficient results guaranteed to
meet desired error rate bounds. The key assumptions are that tar-
gets are nonreactive and static, or that the targets remain in the
same area-cell during the time-scale of interest.

We show that two naive, non-eliminating methods demon-
strate consistently higher error rates for the same total number
of looks for all appropriate values of number of area-cells, error tol-
erances, and sensor parameters. There is also no guarantee that the
naive procedures’ results meet the operator-prescribed error toler-
ance. In fact, for most of the examples we analyze, their error rates
are higher than the tolerance. It is therefore reasonable to conclude
that the sequential eliminating procedure is more efficient than the
naive allocation methods. The sequential eliminating procedure is
especially superior to the other two methods when the sensors
have lower sensitivity and specificity (cf., Fig. 8). The number of
looks scales linearly with the the number of area-cells and targets
for the examples in Section 4. This suggests the sequential elimi-
nating procedure can be utilized in scenarios involving a large re-
gion with many targets.

The sequential eliminating procedure can be useful even if it
cannot run until completion. This may occur if there are a limited
number of looks available due to resource or time constraints. The
sequential eliminating procedure can run until the look limit is
reached, and then with probability 1-a the targets are located
according to one of the remaining candidate configurations. Fur-
ther investigation by different search assets (e.g. interceptor

teams) may be required to determine the location of the targets.
The sequential eliminating procedure reduces the possibilities to
the remaining candidate configurations. If one determined config-
uration must be returned at the end of the procedure, then the con-
figuration with the largest likelihood can be chosen.

Finally, the analysis in this paper presents the worst case per-
formance in some sense. The sequential eliminating procedure ter-
minates only when one configuration remains, and we consider an
incorrect determination to occur if the determined configuration is
not exactly the ground truth configuration. The procedure could
return a set of candidate configurations rather than one deter-
mined configuration, and for many applications several acceptable
configurations may exist. For example the goal may be to deter-
mine which area-cells contain any targets; the exact distribution
of the targets in the area-cells may not be important. Our analysis
provides an upper bound on the error rate and number of looks if
there are multiple acceptable configurations.
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