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Abstract

We present an algorithm for detecting multiple rotational
symmetries in natural images. Given an image, its gradient
magnitude field is computed, and information from the gra-
dients is spread using a diffusion process in the form of a
Gradient Vector Flow (GVF) field. We construct a graph
whose nodes correspond to pixels in the image, connect-
ing points that are likely to be rotated versions of one an-
other. The n-cycles present in the graph are made to vote
for Cn symmetries, their votes being weighted by the er-
rors in transformation between GVF in the neighborhood of
the voting points, and the irregularity of the n-sided poly-
gons formed by the voters. The votes are accumulated at
the centroids of possible rotational symmetries, generating
a confidence map for each order of symmetry. We tested the
method with several natural images.

1. Introduction

Symmetry is an important element of perceptual group-
ing [1]. The reason is that image structures are unlikely to
be arranged in such a manner as to produce spatial symme-
try by chance. It is much more likely that if a group of im-
age structures exhibits symmetry, then they are physically
related, and so are perceived in relation to one another (i.e.,
they are grouped together perceptually). This has motivated
research on the detection of symmetries in images.

There are three types of symmetries [22]:

1. Bilateral symmetry: A figure is said to possess bilat-
eral symmetry if it is invariant under a reflection about
a line - called the axis of symmetry - passing through
the centroid of the figure [7, 4, 13, 6, 16].

2. Rotational symmetry: A figure is said to possess ro-
tational symmetry of order n (Cn), if it is invariant
under rotations of 2π

n radians about its center of mass
[6, 12, 8, 22]. Central symmetry is a special case of
rotational symmetry with n = 2 [2, 3].

3. Radial symmetry: A figure is said to possess radial
symmetry if it has both bilateral and rotational symme-
try [10, 21]. Radial symmetry is often used to detect
points of interest in images.

Figure 1 shows examples of the three types of symmetries.
When symmetric objects undergo skew transformation they
produce skew symmetries [9, 15, 11].

(c)(a) (b)

Figure 1. Example of different types of sym-
metries. (a) Rotational symmetry of order 3
(C3), (b) Bilateral symmetry, and (c) Radial
symmetry.

Perfect symmetries are rare in nature. Therefore, for ro-
bust detection of symmetry we must allow for deviations
from the ideal; this is done by assigning continuous values
to the degree of symmetry exhibited by structures in the im-
age. Zabrodsky et.al. [22] discuss this issue in the context
of rotational symmetries.

The present work addresses the problem of efficient de-
tection of rotational symmetries in images. The following
are some desirable properties of a symmetry detector:

1. Detect multiple symmetries in unsegmented natural
images.

2. Computationally efficient.
3. Robust to edge breaks, occlusions etc.
4. Allow for deformations from perfect symmetry.

Zabrodsky et.al. [22] describe an approach for quantify-
ing the degree of rotational symmetry exhibited by a figure
present in an image. The figure is assumed to be specified
as a sequence of points along its outline. A Symmetry Dis-
tance (SD) is defined to measure symmetry in the presence
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of occlusion and deformation. Our objective is to simulta-
neously detect multiple symmetries present in natural im-
ages. Therefore, we would like to avoid the difficult task
of generating sequences of points lying on the many con-
tours that might be present in an image and then verifying
their symmetry individually. Our algorithm uses voting to
detect multiple symmetries, and trades off false detection
of symmetries for efficiency. We conjecture that the foci
of symmetry detected by our method can be used to obtain
the outlines of the figures putatively exhibiting symmetry,
which can then be analyzed using methods like [22].

There are two generic ways of characterizing structures
present in images: by directly analyzing the gradient con-
tours, and by analyzing the regions enclosed by the con-
tours. Local edge information is sensitive to edge breaks,
and often the edge segments might be too small to support
inference about global structure. In contrast, region-based
approaches are grounded on the observation that contours
present in images “mould” the space near and around them,
and it is possible to obtain information about the contour by
analyzing the nature of this space. There are several ways
of characterizing the space around contours, e.g. distance
maps, magnetic fields [17], Gradient Vector Flow (GVF)
fields [20], Hamilton-Jacobi transform [18], etc. However,
region-based approaches are limited by the assumption of
closed and connected contours to bound the regions. Our
approach is to adopt a middle course between contours and
regions by extracting local features of the space near and
around contours and then collating these features to draw
global inferences.

Given a color image, we compute the gradient magnitude
field, and spread the information from the edges using GVF
fields. The GVF in the image plane is represented using lo-
cal features in the form of Taylor coefficients. Next, a graph
with the pixels as nodes is constructed such that pairs of
points having a high likelihood of being rotated versions of
one another are connected by edges. The n-cycles present
in the graph are made to vote for Cn symmetry, the votes
being weighted by the errors in the transformation between
the voting points. For each order of rotational symmetry,
votes for rotation about a centroid are aggregated to obtain
confidence maps on the image plane. Centroids of possible
rotationally symmetric objects exhibit peaks in the confi-
dence maps. Figure 2 shows an example of a test image,
the corresponding GVF field, the confidence map for C5

symmetry, and the locations of the peaks marked on the im-
age. In our implementation, symmetries up to order C8 are
considered. The approach was tested with several natural
images of flowers in frontal view obtained from [14, 19, 5].
The results are described later in the paper.

2. Characterizing the Space Around Gradients

The gradients in an image are a good source of informa-
tion when searching for structures such as rotational sym-
metries. The reason is that in contrast to regions with uni-
form image features, gradients have orientation and give di-
rect shape information. The problem with directly using
gradient contour information is that discontinuities due to
noise and illumination make the local orientation and shape
information ambiguous. Consider the case of a line formed
of dots. The orientation of such a line cannot be charac-
terized by considering individual dots. The characteristics
of the line emerge only when information from a number
of dots is aggregated. Diffusion schemes such as magnetic
fields [17], GVF [20], offer approaches to accomplish this.
Here, GVF fields are employed for characterizing the im-
age’s gradients.

Let f denote the gradient magnitude field for an image
I , computed using the hue (Ih) and saturation (Is) channels
of the image. The hue values are cyclic in the range [0,1],
and the saturation values lie in the range [0,1].

f =
√

‖∆Ih‖2 + ‖∆Is‖2 (1)

The GVF field v at point x is a vector [u(x), v(x)], where u
and v are fields defined on the image plane. The reader is re-
ferred to [20, 16] for a detailed discussion of GVFs. Let pi

and pj be two points on the image plane. Let ui = u(pi),

uix = ∂u
∂x

∣∣
pi

and uiy = ∂u
∂y

∣∣∣
pi

. Similarly, we define vi,

uj , vj , vix, viy, ujx, ujy, vjx and vjy. The GVF at a point
is characterized using coefficients of the Taylor series ex-
pansions of u(.) and v(.). Only Taylor coefficients up to
1st order are considered. Rotation constraints are imposed
on the Taylor series expansion of the GVF in the neighbor-
hood of pi and pj . The following are necessary conditions
for the GVF field in the neighborhood of pi to be a rotation
of the GVF field in the neighborhood of pj about pj by an
angle θ:

ui = uj cos θ − vj sin θ + d1 (2)

uiy = ujy cos2 θ + (ujx − vjy) sin θ cos θ

−vjx sin2 θ + d2 (3)

uix = ujx cos2 θ − (vjx + ujy) sin θ cos θ

+vjy sin2 θ + d3 (4)

vi = +uj sin θ + vj cos θ + d4 (5)

viy = ujx sin2 θ + (vjx + ujy) sin θ cos θ

+vjy cos2 θ + d5 (6)

vix = −ujy sin2 θ + (ujx − vjy) sin θ cos θ

+vjx cos2 θ + d6 (7)

where d1 . . . d6 are the error terms in the relations (2). . .(7)

respectively. Let e1(〈i, j〉) = d2
1+d2

4
2 be the error in predict-
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(a) (b)

(c) (d)

Figure 2. Example of the working system: (a) image, (b) GVF field, (c) confidence map for C5 symmetry
generated by the proposed algorithm, (d) locations of the peaks in the confidence map marked on
the image.

ing u and v, and e2 = d2
2+d2

3+d2
5+d2

6
4 , the error in predicting

the partial derivatives. These will be used to weigh the votes
for rotational symmetries.

Let V (p) = u2(p) + v2(p), h1(p) = ux(p) + vy(p)
and h2(p) = uy(p) − vx(p). Using (2). . .(7), it can be
shown that the following are necessary but not sufficient
conditions for pi to be a perfectly rotated version of pj

(d1 = d2 = . . . = d6 = 0):

C1 : V (pi) = V (pj)
C2 : h1(pi) = h1(pj)
C3 : h2(pi) = h2(pj)

These will be used later to reduce the amount of compu-
tation during voting. Another local feature extracted is the
curvature of the GVF, denoted by C(p) [16].

C(pi) =
1

‖v(pi)‖3

[
(vix + uiy)uivi − uixv2

i − viyu2
i

]
(8)

For two points pi and pj to have GVF fields which are ro-
tations of one another, the condition C4 : C(pi) = C(pj)
must hold.

3. Constructing the Voter’s Graph and Collat-
ing the Votes

Having extracted local features from the GVF and de-
fined the conditions for rotation, the next step is to collect
the voters for the possible rotational symmetries. For Cn

rotational symmetry, there must exist an n-tuple of points
in the image such that the GVFs at the points are rotations
of one another, the colors at the points are similar, and the
points lie on a regular n-sided polygon. We proceed by con-
structing a graph G with the points on the image plane as the
nodes; each node qi in G would correspond to point pi in
the image. In order to reduce the computational complex-
ity of the voting, only points with GVF magnitude, ‖v‖,
greater than a threshold ∆G are considered. Two nodes qi

and qj are connected by an edge if the following conditions
are satisfied:

D : (V (pi) − V (pj))2 < ∆V ,

(h1(pi) − h1(pj))2 < ∆V ,

(h2(pi) − h2(pj))2 < ∆V ,

(C(pi) − C(pj))2 < ∆V , and

h(Ih(pi), Ih(pj))2 < ∆h. (9)

3
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where

h(c1, c2) =
{

min(c1 − c2, 1 + c2 − c1) : c1 ≥ c2

min(c2 − c1, 1 + c1 − c2) : otherwise
(10)

The thresholds (∆’s) are used to reduce the number of edges
in G. Their magnitudes depend upon the scales of values
taken by u, v and their partial derivatives - which do not
vary much for natural images. Therefore, the symmetry de-
tection is not sensitive to their values.

The votes for possible rotational symmetries are com-
puted by searching for n-cycles in G. This is accomplished
for each Cn symmetry (n = 2 . . . 8) using an iterative dis-
tributed token passing algorithm described below.

At any given iteration t, each node qi in the graph has
a set denoted by S

(t)
in which contains lists of node indices.

Each list contains the indices of voters so far involved in a
particular vote. At the tth iteration, each node qi propagates
the lists in S

(t)
in to its neighbors in the graph (qj ∈ N(qi)),

i.e., to sets S
(t+1)
jn . During propagation, the destination

node’s index is appended to each list. A list is propagated
depending upon whether v(pj) is a rotation by angle 2π

n
of v(pi), and whether pj can form the next vertex of the n-
sided polygon which will be formed by the voters present in
the list. For any list l = 〈i, b, . . . , c〉 at node qi, c is the first
voter’s index, and i is the last voter’s index appended to l.
The gradient orientation is denoted by ψ(p) = tan−1 v(p)

u(p) .
The rotation matrix Rn, is defined as

Rn =
[

cos( 2π
n − π) − sin(2π

n − π)
sin(2π

n − π) cos( 2π
n − π)

]

For qi to propagate list l = 〈i, b, . . . , c〉 to qj , it must satisfy
the condition

(ψ(pj) − ψ(pi)) ∈ [ 2π
n − ∆ψ, 2π

n + ∆ψ])
∧

(‖(pj − pi) − Rn(pb − pi)‖ < ∆d)
(11)

All lists of voters for Cn symmetry are forced to return
to their initiating nodes at the end of n iterations, ensur-
ing the completion of n-cycles. The lists are initialized as
S

(0)
in = {〈i〉} ∀i.

This algorithm is applied for each Cn symmetry. Af-
ter its execution, the sets S

(n)
in of different nodes (qi’s) will

contain lists of voters for Cn rotational symmetries. The
votes are aggregated at the centroids of the n-sided poly-
gons formed by the voters (which would be the centroids of
the estimated symmetries) by analyzing the lists in S

(n)
in ’s.

Let l = 〈a1, ak, ak−1, . . . , a1〉 be a list in S
(n)
in . The error

due to the incompatibility of the GVFs at the voting points
is computed as

ep =
∑n

t=1 exp[ −1
σp

( e1(〈at⊕1, at〉)+
e2(〈at⊕1, at〉) ) ] min(V (pat⊕1), V (pat

))

The operator ‘⊕’ is defined as follows:
t1 ⊕ t2 = (t1 + t2) mod n. The min(.) factor in the
summation gives more weight to pairs of points having
significant magnitude of GVF field. The error due to
irregularity of the k-sided polygon is computed as

ed =
n∑

t=1

‖(pt⊕2 − pt⊕1) − Rn(pt⊕1 − pt)‖ (12)

The centroid of the n-sided polygon is given by
p̃ = 1

n

∑n
t=1 pat

. The confidence map for Cn rotational

symmetry is denoted by Hn. The vote from list l in set S
(n)
in

is accumulated to Hn as

Hn(p̃) = Hn(p̃) + ep exp(
−e2

d

nσd
) (13)

See Algorithms 1 and 2 for a more detailed description.

4. Experimental Results

The proposed approach was tested with natural images
of flowers. They are suitable for evaluating the algorithm as
they exhibit:

1. deformation of the object - bending of the petals.
2. deviations from frontal view.
3. complex illumination.
4. cluttered background.
5. broken edges, and interference from spurious gradients

of the object - creases and speckles on the petals.

The values of all the thresholds are held constant for
all the test cases: ∆G = 0.001, ∆V = 0.01, ∆h = 0.1,
∆ψ = 0.7 radians, and ∆d = 4. σp and σd, were kept at
0.002 and 9.0 respectively.

In order to enhance the visual evaluation of the confi-
dence maps, peaks in the confidence maps with negligible
heights were eliminated. The thresholded confidence maps,
denoted by H̃n, are computed as

H̃n(p) =
{

Hn(p) : Hn(p) ≥ 1
4 maxp′ Hn(p′)

0 : otherwise
(14)

Figure 3 illustrates how the n-tuples of voters are col-
lected from an image when detecting C5 symmetry. The
points which are members of the voting lists generating
peaks in H̃n are joined with line segments and then over-
layed on the image; the voting points are also connected to
the corresponding centroids of rotation. Notice the clutter
present due to foliage and other flowers. The algorithm de-
tects the perceptually dominant symmetry along with some
spurious symmetries.

To illustrate the importance of the GVF, the approach
was tested using the gradient magnitude field instead of

4
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(a) (b)

(c)

Figure 3. Example of the working system:
(a) image, (b) voting points of peaks in H̃5

connected with line segments and overlayed
on image, (c) confidence map, H̃5, for C5 sym-
metries.

the GVF. The performance was worse compared to when
the GVF field was used to spread the information from the
edges. Figure 4 shows the result obtained for the image
shown in Figure 2(a). Two of the strong rotational sym-
metries are not detected and some spurious symmetries are
detected.

Figure 5 shows some of the images used for testing the
approach and the confidence maps computed by the algo-
rithm. The location of the peaks in the confidence maps
are marked on the images. The algorithm detects the sig-
nificant rotational symmetries except for one of the flowers
in each of cases (d) and (e). The perceptually significant
symmetries are assigned high confidence values relative to
other parts of the images. The placement of the peaks in the
confidence maps shows that the centroids of the symmetries
are detected accurately. The algorithm is able to handle the
large amount of clutter due to foliage, e.g. cases (b), (e)
and (j). In case (f), the symmetry is detected even though
there is there is a pronounced skew in the petals and the
illumination is complex.

As local features are considered, in some cases spurious
symmetries are also detected along with the perceptually

(a)

(b)

Figure 4. Example of the result obtained when
the gradient magnitude is directly used in-
stead of the GVF field, for the image shown
in Figure 2. (a) Confidence map with the cor-
rect peak indicated with arrow, and (b) loca-
tions of the peaks marked on the image. The
symmetry detection worsens upon using the
gradient magnitudes directly.

dominant symmetries (e.g. case (g)). In case (i), the petals
had a large number of speckles or dots which resulted in
false detections. A more detailed analysis of the detected
symmetries using contour or region based methods might
help in eliminating some of the spurious detections.

Although not designed to handle skewed objects, the al-
gorithm is able to handle some amount of skew due to its
allowance for deformation. However, the method fails in
cases of pronounced rotation away from frontal view (e.g.
Figure 5(e) left). It might be possible to modify the con-
ditions (2). . .(7) to take into account non-frontal views of
rotationally symmetric objects.

4.1. Computational Complexity

The computational complexity of the algorithm is pro-
portional to the total number of node indices present in the
lists propagated among the nodes. Ideally, the number of
lists, and hence the number of indices, should be linear in
the number of pixels in the image. However, in reality this
not the case as we allow for deformations in the GVF when
comparing voting points, and also for irregularities in the
n-sided polygons (∆d). For the images shown in Figure 5,
the total number of edges in the graphs (G’s) were supra-
linear in the number of nodes/pixels (denoted by N ), and

5
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varied from N1.325 to N1.452. Even though the thresholds
reduce the number of edges by a factor of 100, most of the
perceptually significant symmetries were detected.

It is also interesting to observe the total number of node
indices present in the lists as a function of the stage of the
propagation, i.e. t. Let this be denoted by M(t). At the
first iteration, t = 1, M(1) is proportional to the number
of edges in the graph. This is large as only pairwise con-
straints are applied. However, in the next iteration, the lists
are propagated to only those nodes which adhere to the con-
straints on location imposed by the n-sided regular poly-
gons. Therefore, M(2) is usually smaller than M(1). Most
of the propagations after the first iteration occur only in the
rotationally symmetric regions in the image. However, the
number of lists, and hence the number of indices (M(t)),
increases with each iteration because of the allowance for
errors in location and GVF. Consider a case of C5 symme-
try, and a node q initiating lists for it (Figure 6). Assuming
the constraints for GVF and color are satisfied, q propagates
lists to nodes in a circle (Circle-1) of radius at least ∆d

2 .
In the next iteration, all nodes present in this circle would
propagate lists to all nodes present in Circle-2 of radius at
least ∆d

2 . Therefore, M(t) = O([π(∆d

2 )2]t). At the last
iteration, many lists fail to propagate as they are not able
to reach their initiating nodes. Therefore, for Cn symmetry,
M(n) is usually smaller than M(n−1). In practice, the val-
ues of M(t) were much smaller than those predicted by our
analysis. This was mainly due to the additional constraints
imposed by the GVF and the color values in the images.
Figure 7 illustrates this behavior for the C5 and C3 symme-
tries present in images shown in Figure 5. The high peak at
the 4th iteration in one of the test cases in Figure 7(a) is for
the image in Figure 5(a).

In the actual implementation, the graph G was not
constructed explicitly. This is reasonable as the rate-
determining step is the maintenance of propagating lists and
the computation of the vote values.

5. Conclusions

An algorithm for fast detection of rotational symmetries
in unsegmented natural images was presented. Given an
image, its gradient magnitude field and the corresponding
GVF field are computed. A graph, with the points in the
image as nodes, is constructed to collect voters for possible
symmetries present in images. The n-cycles present in the
graph are then made to vote for Cn symmetries, the votes
being weighted by the errors in transformation between the
voters. Future work would include factoring in skew trans-
formations, and using the output of the method to recover
the contours of the image structures producing the detected
symmetries.
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Circle−1

Figure 6. Allowance of irregularities in the n-
sided polygons leads increase in the number
of propagated lists with each iteration.
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Figure 7. Plots of M(t): (a) for images show-
ing C5 symmetries in Figure 5, and (b) for im-
ages showing C3 symmetries.

Algorithm 1 GetVoterLists
Procedure

/*Initialization*/
∀qi ∈ G, ∀n ∈ 2 . . . 8, S

(0)
in = {〈i〉}, S

(t)
in = {} ∀t > 0.

/*First propagation*/
for all qi, n, l ∈ S

(0)
in do

for all qj ∈ N(qi) do
if (ψ(pj) − ψ(pi)) ∈ [ 2π

n − ∆ψ, 2π
n + ∆ψ] then

S
(1)
jn = S

(1)
jn ∪ 〈j, l〉.

end if
end for

end for
/*Intermediate propagations*/
for t = 1 to 6 do

for all qi, t < n − 1, l ∈ S
(t)
in do

Let l = 〈i, b, . . . , c〉
for all qj ∈ N(qi) do

if ((ψ(pj) − ψ(pi)) ∈ [ 2π
n − ∆ψ, 2π

n + ∆ψ]) ∧
(‖(pj − pi) − Rn(pb − pi)‖ < ∆d) then

S
(t+1)
jn = S

(t+1)
jn ∪ 〈j, l〉.

end if
end for

end for
end for
/*Final propagation: force lists to return to initiating
nodes*/
for all qi, n, l ∈ S

(n−1)
in do

Let l = 〈i, b, . . . , c〉
if ((ψ(pc) − ψ(pi)) ∈ [2π

n − ∆ψ, 2π
n + ∆ψ]) ∧

(‖(pc − pi) − Rn(pb − pi)‖ < ∆d) then
S

(n)
cn = S

(n)
cn ∪ 〈c, l〉.

end if
end for

Algorithm 2 AggregateVotes
Procedure

∀n,∀p Hn(p) = 0 /*Initialization*/
for all qi, n = 2 . . . 8, l ∈ S

(n)
in do

Let l = 〈a1, an, an−1, . . . , a1〉. /*The first and last
voters are the same.*/
ep =

∑n
t=1 exp[−1

σp
(e1(〈at⊕1, at〉) +

e2(〈at⊕1, at〉))] min(V (pat⊕1), V (pat
)).

ed =
∑n

t=1 ‖(pt⊕2 − pt⊕1) − Rk(pt⊕1 − pt)‖.
p̃ = 1

n

∑n
t=1 pat

Hn(p̃) = Hn(p̃) + ep exp(−e2
d

nσd
).

end for
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Figure 5. Test results: images with the locations of peaks in H̃n marked on them and the confidence
maps (H̃n’s) of the indicated symmetries, computed after pruning using the thresholds (∆’s). The
results are best viewed in color.

8

Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) 

1550-5499/05 $20.00 © 2005 IEEE 


