View metadata, citation and similar papers at core.ac.uk

FElectronic commerce

L
brought to you by ,i CORE

provided by CiteSeer.

An open electronic marketplace through agent-based

workflows: MOPPET

Sena Arpinar, Asuman Dogac, Nesime Tatbul

Software Research and Development Center, Dept. of Computer Engineering, Middle East Technical University (METU),

06531 Ankara, Turkey;
E-mail: asuman@srdc.metu.edu.tr

Received: 15 December 1998 /Revised: 29 May 1999

Abstract. We propose an electronic marketplace archi-
tecture, called MOPPET, where the commerce processes
in the marketplace are modeled as adaptable agent-based
workflows. The higher level of abstraction provided by
the workflow technology makes the customization of elec-
tronic commerce processes for different users possible.
Agent-based implementation, on the other hand, provides
for a highly reusable component-based workflow archi-
tecture as well as negotiation ability and the capability
to adapt to dynamic changes in the environment. Agent
communication is handled through Knowledge Query and
Manipulation Language (KQML). A workflow-based ar-
chitecture also makes it possible for complete modeling
of electronic commerce processes by allowing involved
parties to be able to invoke already existing applica-
tions or to define new tasks and to re-structure the con-
trol and data flow among the tasks to create custom
built process definitions. In the proposed architecture all
data exchanges are realized through Extensible Markup
Language (XML) providing uniformity, simplicity and
a highly open and interoperable architecture. Metadata
of activities are expressed through Resource Description
Framework (RDF). Common Business Library (CBL) is
used for achieving interoperability across business do-
mains and domain specific Document Type Definitions
(DTDs) are used for vertical industries. We provide our
own specifications for missing DTDs to be replaced by the
original specifications when they become available.

Key words: Electronic marketplace — Workflow — Agent
— Extensible Markup Language (XML) — Common Busi-
ness Library (CBL)

1 Introduction

Markets play a central role in the economy, facilitat-
ing the exchange of information, goods, services, and

payments. They have three main functions: matching
buyers and sellers; facilitating the exchange of informa-
tion, goods, services and payment associated with market
transactions; and providing an institutional infrastruc-
ture, such as legal and regulatory framework, that enables
the efficient functioning of the market [Y. Bakos 1998].

Recent years have seen adramatic increase in the
role of information technology in markets, both in tra-
ditional markets, and in the emergence of electronic
marketplaces, such as the multitude of Internet-based
online auctions. “eBay” (http://www.ebay.com) is an
example of a very successful marketplace where over 2
million items are being auctioned in more than 1500
categories. Other examples include “Bargain Finder”
(http://bf.cstar.ac.com), developed by Anderson Con-
sulting as part of their Smart Store Virtual initiative, and
“FireFly” (http://www.agents-inc.com), from Agents
Inc.

In spite of a quite a number of successful examples,
Internet-based electronic marketplaces are still at a for-
mative stage. An open interoperable platform exploiting
the emerging standards and technologies is not there yet;
the agent technology has not been fully exploited and
developed to cope with the tremendous amount of in-
formation available; the processes involved in electronic
commerce have not yet been automated to a desirable
extent; and the services a marketplace offers to its cus-
tomers need to be improved.

In this paper, we propose an electronic marketplace
architecture, called MOPPET (METU OPen Electronic
MarkeTplace) to address these issues. The features of-
fered by MOPPET are as follows:

1. Electronic commerce processes in the marketplace
are modeled as workflow processes, which are realized
through agent-based components.

Many researchers as well as commercial companies
have created agent-based systems that support various
aspects of electronic commerce such as online shopping,

https://core.ac.uk/display/357329194?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET 37

virtual catalogs or electronic marketplaces. While these
systems provide interesting shopping experiences, they
fall short in fully exploiting the capabilities offered by the
electronic medium.

These systems can not handle diversity of customer
needs. As an example, a customer may want to buy more
than one related item and there can be dependencies
among the items and also compatibility requirements
that stem from the nature of these items. For example,
s/he may want to buy a printer together with a personal
computer. This creates a dependency between the com-
puter and the printer. Also, for the specific software that
s/he considers there could be a certain amount of mem-
ory requirement. This illustrates a compatibility require-
ment. In contrast, current systems are mostly designed
to handle one request at a time. For instance, a customer
may buy an item by searching several shops/stores but
can not make several inquiries in one step to buy sev-
eral compatible and related items and/or services. Shop-
ping carts support several inquiries of a buyer, however
the buyer cannot give dependencies among the items or
the specific order of the related purchases. Also, no sup-
port is provided for compatibility requirements. In our
approach, the dependencies expressed by the user are rep-
resented through control flow dependencies. For express-
ing the compatibility requirements among items, there is
a need for a knowledge base to store the rules.

More importantly, most of the systems developed do
not have enough facilities to automate the business pro-
cesses conducted by the user/customer. In this respect,
we propose to organize the electronic commerce processes
into workflow templates adaptable to user needs. The
workflow-based approach allows involved parties to define
their own tasks and to invoke already existing applica-
tions within the workflow and to re-structure the control
and data-flow among the tasks, in other words, to auto-
matically create a custom built workflow from the work-
flow template. The higher level of abstraction provided by
the workflow technology makes this customization of pro-
cesses for different users possible. In addition, the work-
flow definition makes it possible to invoke any number
of activities in parallel to provide efficiency and to dy-
namically reengineer the commerce processes not only to
the user needs but also to balance the system workload.
For example, the search and purchase of related items
from different stores can be activated in parallel. Fur-
thermore, the recovery functionality of a workflow system
allows us to automatically rollback the necessary activ-
ities if a dependent activity fails, e.g., a desk purchase
request of a user executing in parallel with his/her com-
puter purchase request can be automatically rolled back
if the computer purchase request fails.

The workflow system architecture is designed to con-
sist of functionality-based reusable components each of
which is realized through different types of agents. Use of
agents provides greater flexibility, agility and adaptabil-
ity especially due to their properties of being proactive

and responsive. They are proactive in the sense that they
can take the initiative when an unanticipated condition
occurs and are responsive so that they can sense and re-
spond to the changes in the environment. The negotiation
ability of agents provides for another aspect of flexibility
in the execution of workflow processes.

At the lowest level, there is a need to invoke differ-
ent types of tasks. To achieve this functionality, specific
task agents are designed which can be reused whenever
the need arises. There are task agents for querying the
XML documents, for negotiation and for handling activ-
ities requiring user attention. The scheduler of a workflow
determines the possible control and data-flow among task
agents. There could be modifications on the control-flow
depending on the negotiation among the agents at run-
time. This scheduling functionality is also designed as
an agent since the scheduler needs to adapt to dynamic
changes in the environment and also may need to nego-
tiate with other scheduling agents for delegating parts of
a workflow process. Such a scheduling agent implemented
according to a workflow DTD is a highly reusable com-
ponent, since it can enact any workflow definition written
in XML conforming to this DTD. It also gives the user
the flexibility to include any process definition conform-
ing to workflow DTD in the workflow template. Recov-
ery component takes the initiative when a failure or an
unanticipated change in the specification occurs and is
realized as an agent. Another type of agent is facilita-
tor agent whose responsibility is to allow agents to find
each other (through advertisements) and to provide ser-
vices such as a naming service. Interactions with the user
are handled by an agent called interface agent so that
the underlying complexity of the system is hidden from
the user. Interface agents provide graphical user inter-
faces to their users and get the requirements of the users
to compose workflow process definitions by adapting the
existing templates.

2. The interoperability infrastructure is based on
XML

For electronic commerce to become really ubiquitous
electronic commerce architectures should be open, that
is, they should be based on infrastructures providing
for semantic interoperability. The most promising pro-
posal in providing an open and interoperable electronic
commerce architecture seems to be the efforts of World
Wide Web Consortium (W3C) in providing data ex-
change and data semantic standards like XML, RDF
and CommerceNet’s efforts on developing an open elec-
tronic commerce framework based on Common Business
Library (CBL).

XML has gained a great momentum and is emerg-
ing as the standard for self-describing data exchange on
the Internet. Its power lies in its extensibility and ubig-
uity. Anyone can invent new tags for particular subject
areas and define what they mean in document type def-
initions. Content-oriented tagging enables a computer to
understand the meaning of data. But if every business

38 S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET

uses its own XML definition for describing its data, it is
not possible to achieve interoperability. The tags need to
be semantically consistent across merchant boundaries.
For this reason, CBL, which consists of product tax-
onomies and message formats as XML DTDs, has been
developed [B. Meltzer and R. Glushko 1998] and the base-
line version (1.1) is available from [VEO Systems Inc.,
1998]. CBL contains a set of building blocks common to
many business domains such as address (location.dtd),
price (value.dtd), purchase order (order.dtd) and stan-
dard measurements (measures.dtd), and thus provides
the much-needed basis to ensure interoperability among
XML applications. When this is complemented by a set
of DTDs common for specific industries, that is, for verti-
cal domains, the open electronic commerce infrastructure
will be achieved. In fact, some of the specifications for
vertical domains are already available like HL7 for ex-
changing healthcare records, OBI (Open Buying on the
Internet), OTP (Open Trading Protocol), and work is
going on for some other domains like for producing the
common terminology and structure of documents for per-
sonal computers [RosettaNet 1998]. The interoperability
infrastructure of MOPPET makes use of CBL and DTDs
for vertical domains. We provide our own specifications
for missing DTDs to be replaced by the originals when
they become available. In this respect, we provide DTDs
such as a DTD for workflow definition (workflow.dtd).
The advantage of defining a workflow as a DTD is that
as long as there is a workflow engine on the Internet that
can interpret this workflow.dtd, any workflow process de-
fined in XML conforming to this DTD can be executed.
This gives an enormous flexibility in terms of interoper-
ability. A further level of interoperability is necessary for
systems involving agents. For this purpose, we use Know-
ledge Query and Manipulation Language (KQML) which
is a language and a protocol for exchanging information
and knowledge among agents. Since KQML is designed
for knowledge sharing, we extend it for agent negotiation.

The organization of the paper is as follows: the fol-
lowing section presents our agent-based workflow man-
agement system architecture. In the next section, we pro-
vide an electronic marketplace environment, called MOP-
PET. Next, we explain the proposed architecture pro-
viding a detailed scenario. We then describe related work
for developing marketplaces and also some previous work
on building agent-based workflow management systems.
The final section includes conclusions.

2 Agent-based WfMS architecture

In this section, a workflow management system (W{MS)
architecture that is used as a building block in the MOP-
PET marketplace is described.

Workflow management deals with the specification
and execution of business processes. Workflow manage-
ment systems allow one to define, execute, manage, and

modify business processes. Business processes, especially
for electronic commerce are highly dynamic and unpre-
dictable — it is difficult to give a complete a priori specifi-
cation of all activities that need to be performed and how
they should be ordered. In addition, a workflow system
must include a flexible enactment system that is capable
of supporting scalability, where new resources can be in-
corporated easily within the workflow system; and adap-
tive workflows, where the workflow specification can be
changed or extended. With this in mind, electronic com-
merce processes in the marketplace are modeled through
agent-based components. In this way, it is possible to par-
tition a potentially large load among participating com-
ponents, i.e., agents and to guarantee minimal commu-
nication between these components which are essential
to achieve scalability where a workflow system may need
to support tens of thousands of active order processing
workflow instances such as in an electronic marketplace.

There are various agent-based workflow systems de-
veloped as explained in the related work section. How-
ever, they lack the means for interoperating with other
workflow systems and custom-built services. In order to
achieve this level of interoperability, we make use of stan-
dardization efforts like KQML [Y. Labrou and T. Finin
1997] and XML [XML 1998].

The Extensible Markup Language (XML) is a data
format for structured document interchange on the Web.
It provides a framework for tagging structured data by
allowing developers to define an unlimited set of tags
bringing great flexibility. XML resembles and comple-
ments HTML. XML describes data such as city name,
temperature, and HTML defines tags that describe how
the data should be displayed such as with a bulleted list or
a table. Document Type Definitions (DTDs) may accom-
pany an XML document, essentially defining the rules of
document, such as which elements are present and the
structural relationships between the elements. DTDs help
to validate the data. XML brings so much power and flexi-
bility to Web-based applications that it provides a num-
ber of benefits to developers such as being able to do more
meaningful searches.

2.1 Agents for workflow process enactment

In our architecture, workflow process enactment is per-
formed by means of agents that exchange XML through
KQML messages. In other words, all data and definitions
are written in XML such as workflow definition and all
agents in the system uses KQML for communicating with
other agents.

It should be noted that, KIF (Knowledge Interchange
Format) might also be used in KQML communications
among agents, but we prefer using RDF and XML due
to their power to lead to a more open and easy to un-
derstand architecture. XML is more restricted than RDF
since it only uses hierarchical representation of data, but
in most circumstances in MOPPET using XML is found

S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET 39

to be sufficient. In cases where it is not adequate, such as
describing roles, product taxonomies or related product
information, agents exchange documents in RDF.

There are five types of agents in the system: interface
agents, scheduling agents, task agents, recovery agents
and facilitator agents. In the following each agent’s func-
tionality is explained.

Interface agent. Interface agents are responsible for col-
lecting and collating relevant information from the user
to initiate a workflow process, presenting the returned re-
sults and explanations to the user, requesting the user
for additional information during recovery and asking for
user confirmation when necessary. By means of interface
agents, the complexity and underlying distribution are
hidden from the user. After getting initial specification
from the user, interface agent constructs the initial sched-
ule of tasks needed to satisfy user specification. Then,
it finds and contacts a scheduling agent to execute the
workflow through negotiation. The negotiation strategy
employed by agents is explained at the end of this section.

Scheduling agent. The scheduling agent is the agent do-
ing the real workflow enactment. It gets the workflow
definition in XML from the interface agent of the user and
tries to execute all the tasks and subprocesses according
to the control and data-flow given in the definition. It con-
tacts task agents to schedule the individual tasks or may
contact other scheduling agents to delegate some part of
the workflow. To find the relevant task/scheduling agent,
it negotiates with a possible set of agents and schedules
the job to one of them. One of the other responsibilities
of the scheduling agent is to ensure the correctness of the
workflow process in the presence of other concurrently ex-
ecuting workflows according to the algorithm provided in
[B. Arpinar et al. 1999],[B. Arpinar 1998].

Task agent. Task agents act as wrappers of the actual
applications. A typical task agent knows the meta-model
of the task that it is associated with and the procedures
for executing the task or accessing the database if it is
a database task or collaborating with the users if the task
is a human task. It also communicates with scheduling
agents and recovery agents to report the current situ-
ation of the task (e.g., committed, failed, executing, etc.).
There are several types of tasks [J. Miller et al. 1998];
transactional, non-transactional, user, and web. Trans-
actional tasks are those that support ACID (Atomicity,
Consistency, Isolation, and Durability) properties. Non-
transactional tasks are used when an ordinary application
that does not enforce atomicity or isolation is included in
the workflow. A user task is used for purely manual tasks
like a user phone call. Web tasks are those that involve
a web application.

Depending on the type of the task they are in charge
with, task agents have different capabilities. For example,
for user tasks, task agents have worklist management ca-
pability.

Recovery agent. Recovery agents have knowledge of
currently running and past instances of the workflows
that they are associated with. They communicate with
scheduling agents and task agents to gather informa-
tion about running instances. A recovery agent has access
to the history database and should have mechanisms to
query this database. When a failure in a task or an unan-
ticipated change in the specification occurs, the recovery
agent takes the initiative. It produces the new path or
definition to follow by making backward recovery using
a compensation mechanism. It determines which tasks to
compensate and what to do next, and informs the rele-
vant scheduling agent about the new path.

Facilitator agent. It acts as a facilitator (in KQML ter-
minology) for agents in the system. It collects advertise-
ments from the agents in terms of their capabilities and
facilitates agents finding each other to satisfy their needs.
In order to increase efficiency, there should be more than
one facilitator in the system. Facilitator agents should
know each other’s address and query each other to an-
swer requests from the agents. Therefore in our system,
facilitator agents advertise themselves to other facilitator
agents.

The general structure of an agent is shown in Fig. 1.
This structure is common to all agents in the sys-
tem with the only exception that only interface agents
have graphical user interfaces (GUISs). There is an XML
parser/generator that helps agents to understand the
content of KQML messages and form a new KQML mes-
sage containing some XML content to be sent to another
agent. Message Queues are used to keep track of incom-
ing and outgoing messages so that an agent knows which
message to respond to and which messages it has sent and
has not received a response to yet. Agent code includes
the procedures and modules that help agents in realizing
their functionality.

Figure 2 shows the overall architecture consisting of
the components and agents taking part in our workflow
management system. The workflow system is initiated
by the user through a web browser. The interface agent
constructs the definition in XML conforming to a work-
flow.dtd (see Sect. 2.2). In order to start execution, the
interface agent sends this definition to a scheduling agent
capable of interpreting the definition. The scheduling
agent may enact the whole process or delegate some parts

8 les Agent Code Ly
" ¢ 3
g H|XML parser/generator |
=
H| KQML parser/generator |
T
| Communication Layer I/

Fig. 1. Structure of an agent

40 S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET

O

My

Interface Agent /—\
fy

Scheduling Agent

Web Browser

transactional or
non-transactional tasks

web or user task

History

— :KQML communication

Fig. 2. Workflow management system architecture

of it to other scheduling agents. In this way, an execu-
tion tree is formed having scheduling agents at interior
nodes and task agents at the leaves. During enactment,
a scheduling agent needs to find other scheduling and/or
task agents capable of doing the required work. This is fa-
cilitated by the facilitator agent that holds a repository
for storing agent advertisements.

Since agents are autonomous, there are no predefined
control dependencies among them, therefore, if an agent
requires a task which is managed by another agent, it can-
not simply instruct it to start the task [N.R. Jennings et
al. 1996]. Instead, agents should come to a mutual agree-
ment about the terms and conditions under which the
task is to be performed through negotiating with each
other. We call this type of negotiation as task-oriented
negotiation. We use an auction mechanism, Vickrey auc-
tion [W. Vickrey 1961], for this type of negotiation. In
the Vickrey auction model, each of the participants of
the auction submits a sealed bid known only by the re-
ceiving party. The participant with the lowest (high-
est) bid is awarded the work at the second-lowest (high-
est) bid price. For task-oriented negotiation, our auction
model supports more than one term in the bid. There-

fore, we have made a slight modification to the Vickrey
auction model. An agent should determine the winner
agent not only by looking at price offerings but also other
terms such as the proposed duration of the work. This is
achieved by assigning percentages of importance to the
terms involved in the negotiation. In this way, a single
value is obtained and the rules of the auction are applied
as before.

Thus, in agent interactions described above, all agents
use task-oriented negotiation during work delegation and
task invocation.

2.2 Workflow process definition

There is a need to define the work to be accomplished
and also the ordering principles (i.e., control-flow) among
the activities of workflow processes. In our framework, we
choose to use XML to define a workflow process. In this
way, a workflow definition can be interpreted by all other
agents or components that have the capability to parse an
XML document and have access to the DTD used.

XML by itself is not enough to enable plug and
play workflows. XML makes it easy to create specialized

S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET 41

markup languages that identify and describe workflows,
the goods or services, and the numerous other document
types. But if every business uses its own XML definitions
for describing its workflow it is not possible to achieve in-
teroperability. In this respect CBL will include a workflow
and service description in its future versions [VEO Sys-
tems Inc., 1998]. For the time being we have developed
our own DTD for workflow description to be replaced by
the original when it becomes available.

In our approach, a workflow process is defined as
a collection of blocks, tasks and subprocesses [A. Do-
gac et al. 1998a]. Processes and tasks have input and
output parameters. There are eight block types in our
workflow definition; serial, and-parallel, or-parallel, xor-
parallel, conditional, for-each, iterative, and contingency.
Activities (i.e., tasks, blocks or subprocesses) in a serial
block should be performed one after another. Similarly,
activities in a parallel block are executed in parallel.
And/or/xor parallel blocks differ in the sense that ter-
mination of all/some/one of the activities is required
for the termination of the block. Conditional block al-
lows us to constrain the execution of activities according
to the result of a conditional expression. The for-each
block is necessary when the same activities are to be
performed for each member of alist. An activity in an
iterative block is repeated as many times as the itera-
tion parameter requires. A contingency block is used to
define alternative paths in the definition. In an agent-
based workflow system, external events should also be
handled since some activities are activated according to
messages coming from other agents. Therefore, external
variables are also used in workflow definition and activ-
ities are placed in conditional blocks that are controlled
by conditions on external variables. The values of exter-
nal variables are dynamically updated and the flow of
workflow process is determined accordingly at run-time.
A document type definition, namely workflow.dtd used to
describe a workflow process having the above features is
provided in Appendix A.

In the following, we provide an example workflow pro-
cess written in XML conforming to the workflow.dtd.

if (found) if (confirmed)

" add-to-basket x
- payment

get-con irnfation
search-baok . add-to-basket

get-request _

= deliver
get-confjrmation

?Bh-book

for each (books)

Fig. 3. The selling process in a bookstore

Example 2.1. The following is asimplified workflow
definition of the selling process of a bookstore written in
XML. Parameters of some tasks and expressions for con-
ditions (see dots in the definition) are omitted to save
space. The process is also shown graphically in Fig. 3.

<process name=’bookstore’>
<variables>
<var type=INT>customer-id</var>
<var type=LIST>
<list type=XML>books</list>
</var>
<var type=INT>found</var>
<var type=INT>confirmed</var>
<var type=LIST>
<list type=STRING>basket</list>
</var>
</variables>
<block>
<task name=’get-request’
description=’http://www.srdc.metu.edu.tr/mpd/
get-request.RDF’>
<parameter mode=IN>customer-id</parameter>
<parameter mode=0UT>
<list>books</list>
</parameter>
</task>
<for-each-block type=AND-PARALLEL>
<list>books</list>
<task name=’search-book’
description=’http://www.srdc.metu.edu.tr/
mpd/search-book .RDF’>
<parameter mode=IN>
<list-element>books
<index>
<int>i
</int>
</index>
</list-element>
</parameter>
<parameter mode=0UT>found</parameter>
</task>
<conditional-block>
<condition> ... </condition>
<task name=’get-confirmation’ ...>
</task>
</conditional-block>
<conditional-block>

<condition> ... </condition>
<task name=’add-to-basket’ ...>
</task>

</conditional-block>
</for-each-block>
<task name=’payment’ type=SUBPROCESS ...>

42 S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET

</task>
<task name=’deliver’ role=’postman’
description=’http://www.srdc.metu.edu.tr/
mpd/deliver .RDF’>
</task>
</block>
</process> o

The customer request is obtained as alist of book
descriptions (books). For each of the books in the list,
searching from the bookstore database is done in paral-
lel. Customer confirmation is necessary for the books that
are found in the bookstore. Confirmed books are added to
the basket of the customer (basket). At the end, the pay-
ment subprocess is executed and delivery of the books is
scheduled. If there is nothing in the basket, payment and
delivery processes are bypassed. Payment subprocess may
include many tasks one of which may be to get the credit
card number of the customer. Delivery may be a user task
to be scheduled to a person as a work item who satisfies
the role given in the definition (i.e., postman) or it can be
a subprocess to find out the best possible delivery service
for the specific user and the item.

2.2.1 Task and role definitions

The workflow definition involves many types of tasks such
as transactional tasks, user tasks, etc., as described ear-
lier. In order for agents to advertise themselves as capable
of executing a task or to accept a task execution offer,
there is a need for a mechanism to describe the metadata
of tasks. The Resource Description Framework (RDF)
[RDF 1998] is used in this respect to define the metadata
of individual tasks.

RDF is afoundation for processing metadata for
providing interoperability between applications that ex-
change machine-understandable information. The model
of RDF is represented by named properties and prop-
erty values. The basic data model consists of three object
types: resources which are the things being described by
RDF, properties which are specific aspects, attributes or
relations describing a resource and statements that assign
a value to a property of a resource. For example the sen-
tence “Sena” is the creator of “http://www.srdc.metu.
edu.tr/~nural” is a statement in RDF, the resource is
“http://www.srdc.metu.edu.tr/~nural” and the property
is “creator”. The RDF data model provides an abstract,
conceptual framework for defining and using metadata.
A concrete syntax is also required and XML is used for
this purpose in [RDF 1998]. Meaning in RDF is expressed
through a reference to a schema that defines the terms
that will be used in RDF statements and gives specific
meanings to them. A variety of schema forms can be
used with RDF one of which is defined in [RDFSchema
1998] that has some specific characteristics to help with

automating tasks using RDF. There are also some con-
tainers defined in RDF; Bag, Sequence and Alternative to
refer to a collection of resources.

The RDF metadata descriptions are stored in the
marketplace directory to be used by the agents. Pointers
to the descriptions are given in workflow process defin-
ition as an attribute as shown in Example 2.1.

Below is an example metadata description of a task,
namely ‘deliver’ given in Example 2.1.

Example 2.2.

<rdf :RDF
xmlns:rdf="http://www.w3.org/TR/WD-rdf-syntax#"
xmlns:t=" http://www.srdc.metu.edu.tr/
mpd/schemas/task#">
<rdf:Description about="http://www.a.b.c/
deliver.xml">
<t:name>deliver</t:name>
<t:type>UserTask</t:type>
<t:duration>12 hours</t:duration>
<t:priority>1</t:priority>
<t:deadline>25/11/98</t:deadline>
<t:participant>
<rdf:ALT>
<rdf:1i> delivery-company </rdf:1i>
<rdf:1i> postman </rdf:1i>
<rdf:1i> office-boy </rdf:1i>
</rdf:ALT>
</t:participant>
</rdf:Description>
</rdf :RDF>

In the above RDF description, the schema for task de-
scription, namely “http://www.srdc.metu.edu.tr/mpd/
schemas/task” is defined elsewhere (resides in the mar-
ketplace directory) by using RDF Schema specification
described in [RDFSchema 1998].

Furthermore, in order to assign user tasks of a work-
flow to a user capable of performing them, we need meta-
data of the users and roles involved in the workflow man-
agement system. These role and user descriptions are also
written in RDF. An example role definition is provided
below.

O

Example 2.3.

<rdf :RDF
xmlns:rdf="http://www.w3.org/TR/
WD-rdf-syntax#"
xmlns:r="http://www.srdc.metu.edu.tr/
mpd/schemas/roles#">
<rdf:Description
about="http://www.srdc.metu.edu.tr/
roles/postman#">
<r:users>
<rdf:BAG>
<rdf:1li
resource="http://www.a.b.c/users/
John.Doe/">

S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET 43

<rdf:1li
resource="http://www.a.b.c/users/
Mary.Doe/">

<rdf:1li

resource="http://www.a.b.c/users/
Bob.Smith/">
</rdf :BAG>
</r:users>
</rdf :Description>
</rdf :RDF>

2.8 Communication among agents

In our framework, we use KQML ([Y. Labrou and T. Finin
1994],[Y. Labrou and T. Finin 1997)) for inter-agent com-
munication. KQML is a language and a protocol for ex-
changing information and knowledge.

KQML uses aset of standard message types an ex-
ample of which is given below:

(ask-one
:content (PRICE IBM 7price)
:receiver stock-server
:language LPROLOG
:ontology myOntology)

In KQML terminology, “ask-one” is a performative.
A performative sets parameters that are introduced by
keywords such as “sender”, “language”, etc. The above
message represents a query about the price of a share of
IBM stock. The ontology assumed by the query is identi-
fied by the token “myOntology”, the receiver of the mes-
sageis “stock-server” and language used is “LPROLOG”.

The performatives of KQML are organized in three
categories. Discourse performatives (ask-if, ask-all, ask-
one, stream-all, tell, insert, delete-one, delete-all, achieve,
advertise, subscribe, and some more) are used in the con-
text of an information and knowledge exchange kind of
discourse between two agents. Intervention and mechan-
ics of conversation performatives are used either to pre-
maturely terminate a conversation (error, sorry) or over-
ride the default protocol (standby, ready, next, rest and
discard). Networking and facilitation performatives al-
low agents to find other agents that can process their
queries (register, forward, broadcast, broker-one, broker-
all, recommend-one, recommend-all, recruit-one, recruit-
all, and some more).

KQML is essential so that the agents of heteroge-
neous nature can communicate. However, since KQML
is designed for knowledge sharing, certain aspects of the
language are inadequate for agent negotiation. If negoti-
ation is implemented using the existing performatives of
KQML, it becomes necessary to associate a new interpre-
tation to the performatives, which it was not originally
intended for. As an example, when we consider a price
negotiation between two agents, the capabilities offered
by KQML in this respect could be the use of insert per-
formative. That is, an agent, say Al, could insert the

price it is offering to the counter agent’s (A2) knowledge
base (KB) and A2 could see whether this is acceptable.
If not, A2 might make a counter proposal by inserting
a new price to the KB of A1l. However, this is not a natu-
ral way of handling negotiation. First, an agent must have
been advertised that it will accept such an insert. Second,
what is inserted is not a global fact but only the items
of negotiation. For the above reasons, we propose to add
the following three performatives to KQMUL: propose and
counter-propose and accept. In the following, their syntax
and intended meanings are provided:

(propose
:sender <word>
:receiver <word>
:in-reply-to <word>
:reply-with <word>
:language <word>
:ontology <word>
:content <conditions>)

This performative indicates that the :content expression
of the message whose id is specified :in-reply-to is true
of the :sender under the conditions specified in :content.
This performative should be sent :in-reply-to one of ask-
all, ask-if, ask-one, stream-all or achieve messages. It is
intended for providing the terms of negotiation.

(counter-propose

:sender <word>
:receiver <word>
:in-reply-to <word>
:reply-with <word>
:language <word>
:ontology <word>
:content <conditions>)

This performative is sent :in-reply-to a previous propose
message. It is intended for providing a counter proposal to
a previous message.

(accept
:sender <word>
:receiver <word>
:in-reply-to <word>
:reply-with <word>
:content <condition>)

This performative is used to terminate the negotiation
with agreement under the conditions referred in :content.
It must be sent in-reply-to a previous propose or counter-
propose message. Sorry performative of KQML can be
used also to terminate the negotiation, but this time with-
out an agreement.

Having defined these three new performatives, below
we provide an example in which agents negotiate via these
performatives.

Example 2.4. In Fig. 4, a task-oriented negotiation be-
tween two agents is illustrated. Agent 2 wants to have
the task “Get-Product-Info” performed by another agent
that is capable of it. Agent 1 has been advertised to the

44 S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET

(achieve
:content (<process>

<task hame='Get-Product-Info’>
<[task>

</process>))

©
(accept

‘in-reply-to_1d-propose

(propose W%?Q&gnth id-propose
<negotiation-terms>
<Wor|_<—st1ratéor/1>_ "
<minute>5</minute>
</work-duration> (forward

</negotiation-terms>))

@

Facilitator 1

:content <negotiation-terms>...)

:content (advertise
:sender agent:

(recommend_one
:content (achieve
:content (<process>
<task name="Get-Product-Info’>

</task>
@ </process>)))

Fig. 4. Task-oriented negotiation example

facilitator agent that it can accept achieve messages con-
taining this task as the content, that is, Agent 1 is ca-
pable of executing (achieving) “Get-Product-Info” task.
Normally, there might be more than one agent which
has advertised, but we show only one agent (Agent 1)
in this example. First, Agent 2 contacts the facilitator
agent and asks for an agent that is capable of perform-
ing the task (1). Second, facilitator recommends Agent 1
to Agent 2 for the task in question (2). Then an auction
(task-oriented negotiation) is started by Agent 2 through
sending the 3rd message. Agent 1 replies to this message
with a propose message (4) and if Agent 2 has not re-
ceived any better proposal, it accepts the offer of Agent 1
and confirms this by sending the accept (5) message to-
gether with the conditions accepted in the content part.
After this point, it is the responsibility of Agent 1 to ex-
ecute the task and to send any results back to Agent 2.
Only the important parts of the messages are shown in
the figure. 0O

2.4 Marketplace architecture

Having explained our workflow management system ap-
proach, we now discuss how this approach is used in build-
ing an electronic marketplace, MOPPET, where sellers
and buyers meet and negotiate to make the best deal.

As discussed before, there are various electronic com-
merce models such as e-shops, e-procurement models, e-
malls, value chain integrators, third party marketplaces,
etc., as classified in [P. Timmers 1998]. In this paper, we
describe an electronic marketplace model using the agent-
based workflow management system presented in previ-
ous sections. However, note that, other models can also
be realized using the workflow management system as the
basis and adding (or removing) a few special components
to meet the specific needs of other models.

Electronic commerce, which is a complex business
process itself, cannot be modeled effectively by the cur-
rent marketplaces that support buyer/seller behavior in
an overly simplistic manner. For this reason, we pro-
pose to exploit workflow systems to model buying and/or
selling processes. In other words, instead of a single buy-
ing/selling agent, a number of agents are coordinated to
realize the electronic commerce processes.

At the core of MOPPET (Fig. 5), there is a directory
which provides document type definitions (DTDs), a dic-
tionary of synonyms, repositories to be used by the facili-
tator agent, workflow templates, a knowledge base (KB)
for item compatibility checks and some library modules
for agents’ own use.

In the following, the use of main components in the
marketplace directory is explained.

Document Type Definitions (DTDs): we use DTDs in var-
ious parts of the system for different purposes such as:

— to describe the workflow process (workflow.dtd)

— to describe the customer interests (customer.dtd)

— to describe the individual items/services
(computer.dtd, car.dtd, etc.)

— to describe the terms of negotiation (terms.dtd)

We have already mentioned workflow.dtd in Sect. 2.2.
The customer.dtd is used by buyers to describe them-
selves and their interests so that a seller who is trying to
sell a product can find those buyers who might be inter-
ested in it. The following is the part of customer.dtd that
we are currently using:

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE simple [
<VELEMENT customer (address?,interested-in)>
<!ATTLIST customer

customer-id ID #REQUIRED>
<!-- address element description is omitted -—>
<!ELEMENT interested-in (item+)>

S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET 45

Buyer Side

Task Agent

@)

Buyer j;

Marketplace Directory
l Agent Library (Modules) ‘

2 ; Repositor Facilitator
ep y

o [KB]

workflow templates

Seller Side

— . KQML communication

O
Seller k

Fig. 5. Architecture of the marketplace, MOPPET

<!ELEMENT item ANY>
/1>

The DTDs mentioned in the third item are detailed prod-
uct descriptions that are to be produced by industry
groups. In this respect, there is an effort by RosettaNet
[RosettaNet 1998] to produce specifications for com-
puters that can possibly be implemented through XML
DTDs. In fact, Common Business Library (CBL) [VEO
Systems Inc., 1998] includes a DTD for laptop computers,
namely laptop.dtd which conforms to the specification
generated by RosettaNet [RosettaNet 1998]. Throughout
the paper, we are using our own DTDs to be replaced by
the originals when they become available.

During negotiation, agents must use the same vocabu-
lary for terms of negotiation. For example, if an agent uses
hours for duration and the other one uses minutes, they
cannot be compared with each other if it is not known
whether the scale is minutes or hours. In order to achieve
a common terminology for the terms of negotiation, we
use terms.dtd given in the following. In producing this
DTD, we use the modules provided by CBL. CBL in-
cludes a group of DTDs for weights and measures, the
description of time and location and the terms of trade.
For example, “transaction.unit.of.measure” is defined in
measures.mod in CBL and “amount.monetary” is defined
in value.mod.

<?xml version="1.0" encoding="UTF-8"7>

<!DOCTYPE simple [

<!ELEMENT negotiation-terms
(price?,work-duration?,quality?,

quantity?,delivery-time?)>

<!ELEMENT price (amount.monetary)>

<!ELEMENT work-duration
(year?,month?,week?,day?,hour?,
minute?,second?)>

<IELEMENT quality ANY>

<!ELEMENT

quantity (transaction.unit.of.measure)>

<!ELEMENT

delivery-time (hour?,day,month,year)>

/1>

Agents give the names of DTDs in the :ontology part
of the KQML messages so that they can understand the
context of each other’s questions or responses as demon-
strated in Example 3.2.
Dictionary of synonyms: interface agents are responsi-
ble for obtaining the product/service requests from the
buyer. However, the user may not know the right term
(i.e., the term used in DTD for that item) to use for the
item s/he is looking for. Therefore, a dictionary of syn-
onyms which evolves over time should be used [A. Dogac
et al. 1998b]. For example, consider a computer store that
uses a computer.dtd in describing its products and ser-
vices. If a buyer wants to buy a “CPU” and uses the “Pro-
cessor” while “CPU” is the term used in the DTD, then
the dictionary of synonyms is searched to match the word
“Processor” with “CPU”.

The dictionary of synonyms is empty at the very be-
ginning. During marketplace activities, however, it learns
the synonyms for the terms with the help of users and af-

46 S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET

terwards and it can answer queries about the terms it has
learned so far.

Knowledge base for compatibility requirements: there
should be two sets of rules in the knowledge base.

— relationships among items. For example, a customer
who buys a computer can be interested in purchas-
ing a printer. These rules are checked by the interface
agent in order to be able to provide related offerings to
the buyer.

— compatibility requirements among items. For ex-
ample, a customer may want a software product that
has a specific memory requirement. These compati-
bility rules are checked when a buyer makes a request
so that if there are incompatibilities among the items
requested, the buyer is warned and the request is
adapted.

Currently, we are developing a simple knowledge base to
contain the above information. However, there is a need
for further research and development for representing and
processing these relationships among items.

3 Agents’ responsibilities in the marketplace

The general functionality of agents is described in Sect. 2.
In this section, the features and the responsibilities of
the agents specific to the marketplace environment are
described.

Interface agents: we differentiate two main types of
users, buyers and sellers, and two modes of these users,
active and passive. The active buyer is the buyer who
makes requests for items to be bought and the passive
one waits until a request comes from a seller who is try-
ing to sell his/her product. Similarly, an active seller tries
to sell a specific product and the passive one waits for
buyers who are interested in buying his/her products.
These roles are introduced for modeling different market-
ing policies. Interface agents, especially the graphical user
interfaces of the agents, differ for these types and modes
of users. In the following, we briefly describe the functions
of interface agents for both modes of sellers and buyers:

— For an active buyer: the interface agent of an ac-
tive buyer is responsible for constructing the initial
workflow process definition. The buyer gives the items
and/or services s/he wants to purchase and also de-
pendencies among the items if there are any, through
a Java applet provided by the interface agent as shown
in Fig. 6a. The buyer may not know the details of
the item/service s/he wants. For example, s/he may
want to buy a computer but s/he may not know the
properties of the computer such as CPU, board, etc.
This information is searched by the interface agent
from the DTDs in the marketplace directory with the
help of a particular task agent (capable of doing such
a search). Then, the fields obtained from the DTD are

[=l Netscape: Buyer Applet Ta
Fi= Edit View G0 Communicabr Heip |
'Iq!'hm A Location: File: /howell fraral fphd Saypapess buper. htal .-|H ‘l Netscape: Seller Applet | - ‘J
_: File Edit View Go Cormmunicator Hela
Welcome to MOPPET | v| Mt' Bookrmatks & Location [;_file'fhnmellfnural/phdfmypapersf: /‘
Ihem and Sanvice Desariptions lhemiService Detalls 0 Welcome to MOPPET
EXIFTRER [moa s [ironciomi-] _ p— Browse |
desk I amputer |I.l i |-'QJ°"'”""-"|
lem/Service Details
i compute] woRom 1 | " - MI
—_— oo [J[wrew [
5 computs ICDROM | | Iggaru |EPentiumI|
Change |
=il com putes " "
I | | I Descriptic |A |
Unregister
Criteria of Negotiation
Sell Now
Price g 900-1500
Duration @ 2dayd
IDeadIme :
E]2 b op 2|

(@

(b)

Fig. 6. Interfaces for (a) buyers and (b) sellers

S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET 47

presented to the buyer (see Item/Service Details part
in Fig. 6a) and filled by the buyer if there are prefer-
ences for them. The buyer can also provide negotiation
details for the items s/he requested if there are any.
Additionally, interface agents are capable of provid-
ing related items or services once a buyer requests an
item. For example, a customer looking for a computer
can also be interested in buying some software suitable
for his/her computer. These related items can auto-
matically be offered to the customer by the interface
agent. To achieve this functionality, a knowledge base
that holds the rules and compatibility requirements
among the items is searched. This knowledge base is
stored in marketplace directory as described before.
Interface agent of the buyer translates the buyer in-
quiry to the workflow definition in XML by modifying
the appropriate workflow template obtained from the
marketplace directory and finds a scheduling agent by
starting an auction among suitable scheduling agents.
Then it transfers the work to the winner scheduling
agent through a KQML message. The workflow tem-
plates for each type of buyer and seller will be de-
scribed in the next section.

In addition, throughout the workflow process execu-
tion, if user intervention is required the interface agent
handles it. Monitoring of the workflow can be added to
the capabilities of interface agent by providing a mod-
ule (from agent library) to the agent.

For a passive buyer: the interface agent of the passive
buyer is activated when a buyer registers (advertises)
him/herself to the marketplace by providing his/her
interests (conforming to customer.dtd). An example
advertisement is shown in Example 3.2. Afterwards,
it waits idle until a request comes from a seller. From
this point on, interface agent adapts the workflow
template and activates a workflow instance by finding
a suitable scheduling agent through task-oriented ne-
gotiation as described before.

For a passive seller: the interface agent for this type
of seller is mainly responsible for registering the
seller to the marketplace. It can do this by list-
ing the previously registered catalogs such as “com-
puter”, “book”, etc., and the seller chooses the suit-
able one for him/her, or the catalog to be registered
can be anew one (Fig. 6b). Sellers who have more
than one item/service should register for each of the
items/services.

The interface agent uses advertise KQML message to
introduce the seller to the marketplace. An example
advertisement message for a seller is provided in Ex-
ample 3.2. The registered catalog name must exist in
one of the DTDs that the marketplace knows or has
access to.

The interface agent of the passive seller also obtains
a workflow template from the marketplace directory.
The workflow is initiated by a request coming from
a buyer similar to the case of passive buyer.

— For an active seller: the seller might also initiate a sell-

ing process by providing the details of the product
s/he is trying to sell. This type of interface agent pro-
vides a GUI similar to the one provided by the inter-
face agent of the buyer. Whenever the seller clicks the
“Sell” button, the interface agent initiates a workflow
process by contacting a scheduling agent and sending
it the workflow definition obtained by adapting the
template for active sellers (Fig. 6b).

Apart from sellers and buyers, there might be inter-
face agents for other end-users of the workflow system.
For example, a person who is responsible for physi-
cally delivering a product to a buyer has an interface
agent. This type of interface agent has a different type
of GUI that displays the work items assigned to the
users. In other words, some interface agents are only
responsible for providing the worklists to the users.
The interface agent types described above are the ones
required for realizing a electronic marketplace envi-
ronment. If other electronic commerce models such as
supply-chain integration, e-procurement, e-mall, etc.,
([P. Timmers 1998]) are to be realized, different in-
terface agents must be implemented. The underlying
workflow system can be used for any kind of workflow
processes that such models require.

Task agents: the marketplace contains many types of
specific task agents in addition to the task agents of other
workflow activities. These can be categorized as:

— Negotiation task agents: these are used for negotia-

tion between sellers and buyers for a specific item. We
name this type of negotiation as item-based negotia-
tion. For this type of negotiation, task agents use the
negotiation criteria of the users obtained at the begin-
ning by the interface agents. A number of propose and
counter-propose messages are exchanged between the
task agents of the seller and buyer sides until an agree-
ment is reached. Negotiation task agents should know
what to offer next and how to determine the end of
negotiation. Many attributes may be negotiated be-
tween the sides such as price, deadline, delivery time,
etc. Therefore, a multi-issue, multi-party negotiation
algorithm is used for item-based negotiation [M. Yil-
maz 1999)].

The negotiation model is based on Raiffa’s bilateral
(two parties, many issue) negotiation [H. Raiffa 1982].
This bilateral negotiation model is transformed into
a multilateral (many parties, many issues) negotia-
tion model by using a set of mutually-influencing two-
parties, many issues negotiations [P. Faratin et al.
1998]. This type of negotiation is also called integra-
tive bargaining.

Sequence of offers and counter-offers in two-party ne-
gotiation is called a negotiation thread. Offers and
counter-offers are generated by linear combinations of
simple functions, called tactics. The term strategy is
used to denote the way in which an agent changes the

48

S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET

weights of the different tactics over time. By the help
of strategies agents make use of internal reasoning
model and history of negotiations and could influence
other negotiation threads.

In the bilateral negotiation model, the agent scoring
function stemming from MAUT is used in order to de-
cide which offer is better than other, each agent has
a scoring function which returns the score of a given is-
sue, that is, it assigns a value to an issue in the range
of acceptable values, and these scores are kept in the
interval [0,1] for convenience. The next element of the
model is the relative importance that an agent as-
signs to each issue under negotiation. These weights
are normalized, that is, the sum of weights of each
issue is 1. With these elements, an agent scoring func-
tion for a contract is defined as the sum of scores of
each issue multiplied by its weight.

In order to prepare a counter offer, that is, the next of-
fer in the negotiation thread, the agent uses a set of
tactics that generates new values for each variable in
the negotiation set. Three different families of tactics
based on the needs of business process applications
are developed [P. Faratin et al. 1998]; time-dependent,
resource-dependent, and behavior-dependent.

Tactics are a set of functions that compute the value
of an issue by considering a single criterion. The set
of values for the issues are then the range of the func-
tion, and the single criteria — time, resource, etc., —
is its domain. Agents may want to consider more than
one criterion to compute the value for single issues;
this could be achieved by generating counter proposals
as a weighted combination of different tactics covering
the set of criteria.

In order to determine the best course of action, which
will result in an agreement on a contract that maxi-
mizes the scoring function, the agent utilizes the strat-
egy. When an agent receives an offer that is unsatisfac-
tory, it generates a counter offer and it uses different
combinations of tactics for a particular issue.

Further details of the negotiation can be found in
[M. Yilmaz 1999].

User task agents: when a user activity is to be exe-
cuted by the scheduling agent, this type of task agent
is required. The user task agent stores the request
(work item) in a worklist. The user task agent should
decide on which user this work is to be scheduled. It
achieves this by looking at RDF metadata of rules
and users that exist in the marketplace directory as
explained in Sect. 2.2.1. According to the decision, it
sends an appropriate KQML message to the interface
agent of the user. For example, suppose the work to be
assigned is the delivery of a product to a buyer. Sup-
pose also that this is a manual task and there are five
people who can deliver this package. The user task
agent first finds the interface agents of those five peo-
ple through the RDF metadata of ‘postman’ role (see
Example 2.3) and negotiates with them to find the

most appropriate one. Then, this work item is stored
into the worklist of that person and interface agent for
that person is informed about this new work item.

— Query task agents: these task agents are required
for especially querying the seller catalogs. Sellers ex-
port their catalogs as XML pages, and throughout
the marketplace activities these catalogs need to be
searched for specific items/services. We use XML-QL,
that is, a submission to the World Wide Web Con-
sortium (W3C) [A. Deutsch et al. 1998] for querying
XML documents. There are many efforts going on
querying semi-structured data ([S. Abiteboul et al.
1997],[P. Buneman et al. 1996]) and SGML [K. Bohm
et al. 1997] and some of the approaches are also
adapted to query XML documents [D. Suciu 1998].
Query task agents use the Document Object Model
(DOM) [DOM 1998] implementation together with an
XML parser and a XML-QL query processor to an-
swer queries. DOM provides a uniform mechanism to
access and manipulate parsed XML or HTML docu-
ments. Specificallyy, DOM defines an object-oriented
APT of an XML document.

Example 3.1 shows an example query written in XML-QL
for querying a computer shop’s catalog.

Example 3.1. The computer shop’s catalog contains
product entries conforming to the following simplified
DTD:

<!ELEMENT

item (computer,description?,price_info,item*)>
<!ELEMENT computer (memory,board,cdrom?,disk)>
<!ELEMENT description (paragraph | img)* >
<!ELEMENT img EMPTY>
<IATTLIST img src CDATA #REQUIRED>
<IELEMENT paragraph (#PCDATA)>
<!ELEMENT

price_info (productno, price,

avail, warranty?)>

The following is a query written in XML-QL that asks for
the computers having disks 4 GB or larger and having
price lower than $1200.

WHERE <item>
<computer> <disk> $d </> </>
<description>
<price_info> <price> $p </> </>
</>
</> IN "www.a.b.c/computer.xml",
d > 4GB, p < 1200 =

Facilitator agent: apart from facilitating the agents of
the workflow system, the facilitator agent is also respon-
sible for storing the advertisements of the sellers and the
buyers. In fact, these advertisements are also done by the
agents, but they serve as the catalog information which
is specific to a marketplace environment. In the following
example, several advertisement messages that should be
sent to the facilitator agent are described.

S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET

Ezxample 3.2. The following is an advertise message of
a seller (sellerl) who sells computers:

(advertise
:sender sellerl
:receiver facilitatorl
:language KQML
:ontology kgml-ontology
:content
(ask-all

:receiver sellerl
:language XML
:ontology =xml-ql
:content (WHERE <computer>$c</>
IN "http://www.a.b.c/sellerl.xml")))

This message says that the agent sellerl can respond
to ask-all messages that contains a query about a “com-
puter” in seller’s catalog (sellerl.xml).

Similarly, a buyer (buyerl) who is interested in pur-
chasing a computer can use the following message:

(advertise
:sender buyer1l
:receiver facilitatorl
:language KQML
:ontology kgqml-ontology
:content (ask-one
:receiver buyeril
:language XML
:ontology customer.dtd
(<?7xml namespace
name="http://www.srdc.metu.edu.tr/
mpd/computer.dtd" as "c" 7>
<customer customer-id=’1234’>
<interested-in>
<item>
<c:computer>
</c:computer>
</item>
</interested-in>
</customer>)))

:content

for:each (seller)

find-sellers .

if (result<>0)

49

Other agents in the system should also advertise them-
selves by giving the capabilities offered. A sample mes-
sage from a scheduling agent (schl) is the following:

(advertise
:sender schl
:receiver facilitatorl
:language KQML
:ontology kgml-ontology
:content (achieve
:receiver schl
:language XML
rontology http://www.srdc.metu.edu.tr/
mpd/workflow.dtd

:content (<process> </process>)))

This message indicates that schl can execute the given
workflow definition in achieve:content. Since the defin-
ition includes only the jprocess; tags, not a specific pro-
cess or a task, it means that it can schedule all kinds of
workflow processes conforming to workflow.dtd. O

3.1 Templates for seller and buyer workflows

In the marketplace, there are mainly two types of parties:
buyers and sellers. We further categorize these parties as
passive and active buyers/sellers. A buyer is active when
s/he wants to buy items and/or services and is passive
when s/he prefers to wait for some seller to come and try
to sell him/her items and/or services. The same holds for
the sellers as well.

The templates reside at the marketplace directory and
are configured by the interface agent according to the
mode (active or passive) of the user. A buyer or a seller
can behave both as active and passive at the same time by
contacting more than one interface agent. In the follow-
ing, the simplified versions of the templates generated by
the interface agent for each mode of both buyers and sell-
ers are provided (XML versions of the templates are given
in Appendix B).

negotiate

* negotiat

find-sellers

for each (items)

?_cﬁte

payment

Fig. 7. Workflow template for active buyers

50 S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET

product-info

if (request)
request :

if (confirmed)

()
_/

user-confirmation

()
N

negotiate

payment

Fig. 8. Workflow template for passive buyers

Workflow Template for Active Buyer: the template given
in Fig. 7 is further modified when a buyer inquiry is made.
For example, “for-each (items)” is replaced with a series
of other types of blocks when the constraints and the or-
derings among the items are collected. Note that, if there
is no dependency or a specific order among the items,
“for-each (items)” block is preserved and only the details
of items are included in the definition. These modifica-
tions will be clear with the example given in the following
section.

Workflow Template for Passive Buyer: workflow of the
passive buyer (Fig.8) is initiated by external events/
variables, which comes from a seller workflow. ‘User-
confirmation’ is the task to be done when a ‘request’
and ‘product-info’ comes from an active seller. After this
point, the flow is the same with the active one. ‘Negotiate’
task is scheduled and according to the result of negotia-
tion, ‘payment’ subprocess is to be scheduled.

Workflow Template for Active Seller: the workflow tem-
plate of active sellers (Fig.9) is similar to the one for
active buyers. Product details are obtained from the seller
through the interface and then the ‘find-buyers’ task is

for:each (buyer)

if (reply)

scheduled to find possibly interested buyers. Finding in-
terested buyers is done by the facilitator agent by looking
at advertisement messages of the buyers conforming to
the customer.dtd (see Example 3.2). A request is sent to
each of the buyers found. For those who replied positively,
‘negotiate’ tasks are scheduled. Finally, according to the
result of negotiations, payment and delivery are sched-
uled.

Workflow Template for Passive Seller: the passive seller is
activated by the message coming from an agent of the ac-
tive buyer. This message initiates the workflow (Fig. 10)
and the first task is to query the seller’s catalog. It sends
the result of the query and waits to see if the buyer is still
interested in buying the product. If so, as in other tem-
plates, ‘negotiate’ task is scheduled and ‘payment’ and
‘deliver’ tasks may also be invoked.

4 The scenario

In this section, we provide ascenario for an active
buyer /passive seller pair to further describe the MOP-
PET architecture.

When a buyer wants to buy an item from the mar-
ketplace it reaches the marketplace through its URL.
The marketplace can be spread over many sites to pro-
vide scalability and availability. When more than one
marketplace directory exist, they are linked together
similar to the traders linked in the Object Management
Group (OMG)’s Trading Object Service specification
[TOS 1997]. Therefore, querying a marketplace directory

get-product-info

send-request

?‘“%‘—6

negotiate

payment

Fig. 9. Workflow template for active sellers

query if (request)
request .

~

interest

N

query-catalog

N

deliver
if (interest)
negotiate payment deliver

Fig. 10. Workflow template for passive sellers

S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET 51

involves querying the others that are linked to the current
one if the current one can not answer the query.

An interface agent is activated and this agent sends
an applet to the buyer site. The buyer only needs Web
browser capability to conduct business at the market-
place. From this point on, the interface agent interacts
with the buyer as shown in Fig. 6a. According to the
information gathered in this step, the interface agent
adapts the related workflow template. This involves
adapting the control flow and data flow in the tem-
plate as well as adding or deleting activities or subpro-
cesses. A user-defined subprocess can also be scheduled
if the user wishes so, as long as the definition con-
forms to the workflow.dtd. The interface agent then
looks for scheduling agents to schedule this workflow
instance (Fig. 11). A negotiation (task-oriented negoti-
ation) with different scheduler agents are necessary for
two reasons: (1) since schedulers are agents, they can-
not be instructed to do things and (2) more impor-
tantly, some of these schedulers may not be capable
of executing the workflow for several reasons, like be-
ing overloaded already or not having access to some of
the related task agents. An example task-oriented ne-
gotiation is illustrated in Fig. 11. The interface agent of
the buyer (Intl) negotiates with two scheduling agents
(Schl and Sch2) whose names are recommended by the
facilitator agent. It starts negotiation by sending a mes-
sage containing an achieve performative. Then schedul-
ing agents make proposals conforming to the terms.dtd.
Among the agents, suppose that Schl makes the best
offer and therefore Intl sends it an accept message
and sends Sch2 a sorry message to finalize the negotia-
tion.

Similarly, scheduling agent (Schl) which gets the job
of enactment finds task agents to execute related tasks.

The workflow at the seller side is initiated when
a buyer task agent sends a query to a seller’s interface
agent. The query is the event that activates the pas-
sive seller’s interface agent (see Fig. 10). The interface
agent, after adapting the template for passive sellers,
finds a scheduling agent for that workflow instance. The
scheduling agent starts executing the workflow instance
and schedules the first task (“query-catalog”) to a query
task agent. We assume that the seller catalogs are ex-
pressed in XML and the query is expressed in XML-QL
as mentioned previously. The results are sent to the buyer
task agent who had originally sent the query. Once the

Interface Agent
Intl

(sorry ...)
AR)

(propose)

Scheduling Agent
Sch2

(propose zf 3/

zcontent (<neg0t|)a)t|on -terms>

Scheduling Agent
Schl

Fig. 11. Finding a scheduling agent

Interface Agent
Intl

Scheduling Agent
Schl

Scheduling Agent Task Agent
Sch3 TAL

\ Buyer side
Task Agent Task Agent Task Agent
TA2 TA3 TA4
/
/ |result /. ‘rewlt , \ result
/ / I‘
,/ Query Tas< Agent Query Tad< Agent /’ Query Task Agent
4 QA-SL QA-S2 QA-S3
\QUGW ,
Sellers Side

A
Query

A N\
Interface Agent Interface Agent
Int-S2 Int-S3

Fig. 12. Interactions of task agents of the buyer and query task
agents of sellers

N
Interface Agent
Int-S1

buyers and sellers are thus identified the negotiation
starts. This phase is shown in Fig. 12.

Item-based negotiation is performed by negotiation
task agents at both sides (Fig. 13). The negotiation pro-
cess at the seller side is initiated by an external “in-
terest” event sent by a negotiation task agent of the
buyer. The negotiation process is realized according to
a multi-party, multi-attribute negotiation scheme as de-
scribed in [P. Faratin et al. 1998] through the suggested
propose, counter-propose KQML messages, and finalized
with a sorry or an accept KQML message. Once an agree-
ment is reached, payment processes are scheduled at both

Interface Agent
Intl

Scheduling Agent
Schl

Scheduling Agent Task Agent
Sch3 TA1l

Buyer side

Negotiate Task Negotiate Task Negotiate Task
A Agent NTAL A Agent NTA2 | Agent NTA2
’ ’ 1
, ‘ \
,,,,,, P o SN N i O AU kS
) counter- | ;" counter- | ! counter- |

| propose y /, propose ‘ |

Sellers Side

Fig. 13. Interactions of negotiate task agents

52 S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET

sides. The task agent responsible for making the pay-
ment at the buyer side gets the user preference for pay-
ment type such as credit card, on-site, etc., and other
related information such as a credit card number. For
user interaction, the agent contacts the interface agent
of the buyer. The task agent then sends this information
to the seller side task agent that activates the payment
process.

At the seller side, there is another task, namely ‘de-
liver’ to deliver the purchased product to the customer.

buy CD-1

buy

/ <c:.computer>
<c:memory>64M</c:memory>
<c:board>Pentium-11300</c:board>
<c:.cdrom>Creative-40x</c.cdrom>
<c.disk>Quantum-6GB</c:disk>

</c:computer>

Fig. 14. Workflow process of the buyer request

This task may be a user task, that is, a user task agent
may be necessary to execute the task. This requires an-
other turn of auctions. There might be many postmen
who can deliver this item. They all have interface agents
running on their behalf. One of the interface agents gets
the job as a result of an auction and displays the work to
be done (item properties and address of delivery, delivery
time, etc.) as a work item of the worklist of that postman.

Ezxample 4.1. The example given in this section de-
scribes a scenario for an active buyer. The scenario is as
follows: “There is a buyer who wants to buy a computer
and a desk for the computer. He also needs three game
CDs.” Whenever, the customer (buyer) connects to the
marketplace (by contacting a URL) an interface agent
becomes active to interact with the user. The interface
agent obtains the request from the buyer as depicted in
Fig. 6a. In the window, the details for the computer are
shown but the details of the desk and CDs are also gath-
ered. Afterwards, the interface agent converts this request
into an initial workflow process definition in XML (see
Appendix C) by adapting the workflow template (Fig. 7)
obtained from the marketplace directory for an active
buyer. Graphical representation of the initial workflow
process definition that contains only the buyer require-
ments is shown in Fig. 14.

Buy the desk

if (result<>0)

for;each (seller)
quer,

find-sellers * °,

Buy the computer

for;each (seller)

find-sellers * °,

if (result<>0)

find-sellers «

OR

Buy CDs

Fig.15. Adapted workflow process

S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET 53

Figure 15 illustrates the final workflow definition as
adapted from the template using the definition of the
buyer request given in Fig. 14.

The other steps are executed as described in the
scenario. a

4.1 Related work

There are several marketplace architectures proposed and
some of them are being commercially used.

One of the early marketplaces is Kasbah [A. Chaves
and P. Maes 1996]. Kasbah is a Web-based system where
the users create autonomous agents that buy and sell
goods or services on their behalf. Selling agents try to
sell themselves by going into the marketplace contact-
ing interested buying agents and negotiating with them
to find the best deal. The marketplace’s job is to facili-
tate interaction between the agents. In Kasbah, a specific
communication language is used since their agents are lo-
cally built and can communicate via a predefined set of
methods.

In [M. Tsvetovatyy et al. 1997], an architecture
(MAGMA) for a marketplace that includes the infras-
tructure required for conducting commerce on the In-
ternet is proposed. MAGMA supports communication
among agents and allows for various forms of automated
and human-controlled transactions. The Vickrey mech-
anism ([W. Vickrey 1961]) is implemented as the nego-
tiation strategy. There are several trader agents, an Ad-
vertising server and a Bank in MAGMA. Trader agents
are responsible for buying and selling goods. The Adver-
tisement server provides a classified advertisement that
includes search and retrieval of ads by category. Finally,
the Bank provides a set of basic banking services such as
checking accounts and electronic cash. All agents commu-
nicate with each other through socket connections.

OFFER [M. Bichler et al. 1998] is an electronic bro-
kering architecture which uses OMG’s CORBA as a dis-
tribution infrastructure. There are three main compo-
nents: suppliers, customers, and e-brokers. A customer
can search for aservice either directly in the e-catalog
of the supplier or use the e-broker to search all the e-
catalogs of all the suppliers, which are registered with
this broker. CORBA is chosen as the communication in-
frastructure to solve the interoperability problem. As the
negotiation mechanism e-brokers employ simple auction
implementations.

EMP [S.Boll et al. 1999] is a marketplace that has
a DBMS based architecture. Business transactions within
the electronic market are realized by aset of modular
market services like offering, buying, registration, au-
thentication, etc. Product data are stored in a DBMS
and accessed by the market server through a JDBC (Java
DataBase Connectivity) interface.

In [B. Reich and I. Ben-Shaul 1998], the Global Elec-
tronic Market (GEM) system developed using Java is

described. It provides a generic market framework and in-
frastructure along with the specifications of component
interfaces that need to be implemented and plugged into
the framework in order to obtain an operational market.

In [A. Dogac et al. 1998¢], we present some initial ideas
on a workflow based electronic marketplace on the Web.

In [K. Decker et al. 1996], the notions of agent match-
making and brokering behaviors are defined. KQML per-
formatives are used in describing roles and interactions
among agents. Some experiments are conducted to eval-
uate performance tradeoffs of matchmade and brokered
systems. The authors conclude that the brokered sys-
tems allow efficient load balancing and have a lower over-
head while matchmade systems are more robust and re-
tain dynamic naming capabilities, which are required in
marketplaces.

In [K. Sycara and D.Zeng 1996], an architecture
for coordinating multiple intelligent software agents is
presented. The authors classify the agents as interface
agents, task agents, and information agents. Interface
agents are those whose main task is information filter-
ing to alleviate the user’s cognitive overload. Task agents
help users perform tasks by formulating problem solving
plans and carrying out these plans through querying and
exchanging information with other agents. Information
agents provide access to a possibly heterogeneous collec-
tion of resources. The architecture suggested in this paper
has influenced the component-based design of MOPPET.

In [Q. Chen et al. 1998], a dynamic-agent infrastruc-
ture which supports dynamic behavior modification of
agents is proposed. Functions and actions of the dynamic
agent are not predefined but can be loaded and modified
at run-time. The architecture supports mobility of the
agents. The authors also present how service provisioning
can be realized through the use of dynamic agents.

There is some previous work on realizing a workflow
system with the use of agents. DartFlow workflow man-
agement system [T. Cai et al. 1997] uses Web-browser
embedded Java applets as its front end and transportable
agents as the backbone. A transportable agent is a pro-
gram that migrates machine to machine in a heteroge-
neous network. In DartFlow, each business process can
be handled by an agent. Agent Tcl system is used to im-
plement transportable agents. Since agents in DartFlow
do not use a standard communication language, its us-
age is limited to those who make use of the Agent Tcl
system.

[M.N. Huhns and M.P. Singh 1998] present the us-
age of co-operating agents to manage heterogeneous
transaction workflows. Agents communicate through
a common ontology to realize the parts of a transaction.
There are two kinds of computational agents: actors and
knowledge-based systems. The actors are used to control
interactions among the components of the architecture.
The knowledge-based agents are used when reasoning is
needed such as deciding what tasks should be performed
next.

54 S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET

In [J. Miller et al. 1998], the use of Web technol-
ogy for workflow is presented with the METEOR2 Web-
based workflow management system (WebWork). Web-
Work is said to be web-based rather than web-enabled
since both interfaces and communication/distribution in-
frastructures are built using Web technology. Data flow is
realized through exchanging HTML pages and CGI is the
main communication mechanism with servers.

[N.R. Jennings et al. 1996] designs and implements
the business process management using an agent-based
approach. In this work, the business process is viewed
as a collection of autonomous problem solving entities
that negotiate with one another to coordinate their sub-
activities. Agents communicate through a specific Agent
Communication Language (ACL) which is only inter-
pretable by the native agents.

While [N.R. Jennings et al. 1996] emphasize the ne-
gotiation aspects, [T. Tesh and K. Aberer 1998] focus on
how agreements among agents can be enforced without
a central control. The authors present a formal framework
for contract management among autonomous agents.
The agents tell a contract manager their interests in the
deal and the contract manager is responsible for forming
a contract acceptable to both parties and to schedule the
exchanges in a way that considers the individual interests.

5 Conclusions

The electronic commerce process models developed thus
far, like e-shops, e-malls, etc., [P. Timmers 1998] imitate
their offline counterparts. However, to further accelerate
the diffusion of electronic commerce, the opportunities
and technologies offered by the electronic medium should
be fully exploited to provide the users with better com-
merce environments. The complexities of commerce pro-
cesses must be hidden from the users through appropriate
exploitation of advanced technologies. Providing an open
and interoperable architecture is also very important.

This paper proposes an architecture that addresses
these issues by providing the users with an able and
user-friendly environment to express their needs, and the
system handles the underlying complexities through an
agent-based workflow architecture. MOPPET architec-
ture is also based on an open and interoperable infrastruc-
ture namely XML and CBL.

MOPPET is currently being implemented. Agents
are implemented to use the KQML parser of JATLite
from Stanford University which follows the full KQML
grammar both for standard and extended performatives
[JatLite 1999]. JATLite also provides mechanisms for
communication among agents. For parsing XML docu-
ments (contents of KQML messages), agents make use
of DataChannel’s XJParser which is a validating (using
both DTDs and XML data) XML parser together with
a DOM implementation [XJParser 1999].

Acknowledgements. This work is being partially supported by Mid-
dle East Technical University, Project Number: AFP-97-07-02-08,
and by the Scientific and Technical Research Council of Turkey,
Project Number: 197E038.

References

1. Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J.:
The Lorel query language for semistructured data. Int. J. on
Digital Libraries 1(1):68-88, 1997

2. Arpinar, B.: Formalization of Workflows and Correctness Is-
sues in the Presence of Concurrency. Ph.D. thesis, Middle East
Technical University, Dept. of Computer Engineering, Novem-
ber 1998

3. Arpinar, B., Halici, U., Arpinar, S., Dogac, A.: Formalization
of Workflows and Correctness Issues in the Presence of Con-
currency. Distributed and Parallel Databases 7(2):199-248,
1999

4. Bakos, Y.: The emerging role of electronic marketplaces on the
Internet. Communications of the ACM 41(8):35-42, 1998

5. Bichler, M., Beam, C., Segev, A.: OFFER: A broker-centered
object framework for electronic requisitioning. In: IFIP Con-
ference “Trends in Electronic Commerce” ’98, 1998

6. Bohm, K., Aberer, K., Neuhold, E., Yang, X.: Structured
document storage and refined declarative and navigational
access mechanisms in HyperStorM. The VLDB Journal
6(4):296-311, 1997

7. Boll, S., Gruner, A., Haaf, A., Klas, W.: EMP-a database
driven electronic marketplace for business-to-business com-
merce on the internet. In: Dogac, A. (ed.), 1999 (to appear)

8. Buneman, P., Davidson, S., Hillebrand, G., Suciu D.: A query
language and optimization techniques for unstructured data.
In: Proc. ACM SIGMOD Int. Conf. on Management of Data,
Montreal, Canada, 1996

9. Cai, T., Gloor, P.A., Nog, S.: DartFlow: A workflow manage-
ment system on the web using transportable agents. Technical
report, Dartmouth College, 1997

10. Chaves, A., Maes, P.: Kasbah: An agent marketplace for buy-
ing and selling goods. In: Proc. 1st Int. Conf. on the Practical
Application of Intelligent Agents and Multi-Agent Technol-
ogy, London, UK, 1996

11. Chen, Q., Chundi, P., Dayal, U., Hsu, M.: Dynamic-agents for
dynamic service provisioning. In: Proc. 3rd Int. Conf. on Co-
operative Information Systems, New York, 1998

12. Decker, K., Williamson, M., Sycara, K.: Matchmaking and
brokering. In: Proc. 2nd Int. Conf. on Multi-Agent Systems,
1996. ICMAS-96

13. Deutsch, A., Fernandez, M., Florescu, D., Levy, A., Suciu, D.:
XML-QL: A query language for XML. 1998. W3C Document,
http://www.w3.org/TR/NOTE-xml-ql

14. Dogac, A. (ed.): ACM Sigmod Record Special Section on Elec-
tronic Commerce. 27(4):5-6, 1998

15. Dogac, A. (ed.): Distributed and Parallel Databases, Special
Issue on Electronic Commerce. Boston, MA: Kluwer Academic
7(2), April 1999

16. Dogac, A., Gokkoca, E., Arpinar, S., Koksal, P., Cingil, I.,
Arpinar, B., Tatbul, N., Karagoz, P., Halici, U., Altinel, M:
Design and implementation of a distributed workflow man-
agement system: METUFlow. In: A. Dogac, L. Kalinichenko,
T. Ozsu, A. Sheth (eds) Workflow Management Systems and
Interoperability, 1998. Berlin Heidelberg New York: Springer-
Verlag. NATO ASI Seriesa

17. Dogac, A., Durusoy, I., Arpinar, S., Gokkoca, E., Tatbul, N.,
Koksal, P.. METU-EMar: An agent-based electronic market-
place on the web. In: Nicolaou, C., Stephanidis, C. (eds.):
1998b

18. Dogac, A., Durusoy, I., Arpinar, S., Tatbul, N., Koksal, P.,
Cingil, I., Dimililer, N.: A workflow-based electronic market-
place on the web. In: Dogac, A. (ed.): pp. 25-31, 1998¢c

19. DOM.: Document Object Model Level 1 Specification. W3C
Recommendation. http://www.w3.org/TR/REC-DOM-Level-
1, 1998

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET 55

Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision
functions for autonomous agents. Int. J. Robotics and Au-
tonomous Systems 24(3+44):159-182, 1998

Huhns, M.N., Singh, M.P.: Managing heterogeneous transac-
tion workflows with co-operating agents. In: Jennings, N.R.,
Wooldridge, M.J. (eds.): Agent Technology: Foundations, Ap-
plications, and Markets, 1998. Berlin Heidelberg New York:
Springer-Verlag

JATLite (1999) http://java.stanford.edu/JATLite-index.html
Jennings, N.R., Faratin, P., Johnson, M.J., Norman, T.J., P.
O’Brien, Wiegand, M.E.: Agent-based business process man-
agement. Int. J. Cooperative Information Systems 5(2+3):105—
130, 1996

Labrou, Y., Finin, T.: A semantics approach for KQML -
a general purpose communication language for software
agents. In: 3rd Int. Conf. on Information and Knowledge Man-
agement, 1994. CIKM’94

Labrou, Y., Finin, T.: A proposal for a new KQML specifica-
tion. Technical Report TR~CS-97-03, University of Maryland,
Baltimore County, MD, 1997

Meltzer, B., Glushko, R.: XML and electronic commerce: En-
abling the network economy. In: Dogac, A. (ed.): pp.21-24,
1998

Miller, J., Palaniswami, D., Sheth, A., Kochut, K., Singh, H.:
WebWork: METEOR2’s web-based workflow management
system. J. Intelligent Information Systems 10(2):1-30, 1998
Nicolaou, C., Stephanidis, C. (eds.): Research and advanced
technology for digital libraries. Lecture Notes in Computer
Science, 1998. Berlin Heidelberg New York: Springer-Verlag
Raiffa, H.: The Art and Science of Negotiation. Harvard Uni-
versity Press, 1982

RDF (1998) Resource Description Framework (RDF) Model
and Syntax Specification. W3C Working Draft. http://
www.w3.org/TR/WD-rdf-syntax

31.

32.
33.
34.

35.

36.

37.

38.
. Tsvetovatyy, M., Gini, M., Mobasher, B.,

40.

41.
. Vickrey, W.: Counterspeculation, auctions, and competitive

43.

44.

Appendix A: DTD for a workflow process definition

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE simple [
<!ENTITY % activity ’(task,retry?,undo?,compensation?)|assignment|block]|

iterative-block|conditional-block|for-each-block’>
<!-- Top level Container: workflows -->
<!ELEMENT workflows (#PCDATA,process+)>

<!ELEMENT process (variables?,parameter*,jactivity;*)>

<!ATTLIST process
name CDATA #REQUIRED
duration CDATA #IMPLIED >
<!ELEMENT variables (varx)>
<!ELEMENT var (#PCDATA | list)>
<!ATTLIST var
mode (INTERNAL|EXTERNAL) "INTERNAL"
type (INT|STRING | XML |XML-QL|LIST)>
<!ELEMENT parameter (#PCDATA,content?)>
<!ATTLIST parameter
mode (IN|OUT)>
<!ELEMENT task (parameterx)>
<!ATTLIST task

name CDATA #REQUIRED

type (TASK | SUBPROCESS) "TASK"
role CDATA #IMPLIED

user CDATA #IMPLIED

description CDATA #IMPLIED>
<!ELEMENT retry (condition?)>
<!'ATTLIST retry

number CDATA #REQUIRED>
<!ELEMENT undo (condition?,%activity;*)>
<!ELEMENT compensation (%activity;*)>

<!ELEMENT assigment ((lhs-expr|list-element),rhs-expr)>

RDFSchema (1998) Resource Description Framework (RDF)
Schema Specification. W3C Working Draft, 1998, http:
//www.w3.org/ TR/WD-rdf-schema

Reich, B., Ben-Shaul, I.: A componentized architecture for dy-
namic electronic markets. In: Dogac A. (ed.): pp. 4047, 1998
RosettaNet.: 1998, http://www.rosettanet.org/general /finish-
ed-project/laptop.html

Suciu, D.: Semistructured data and XML. In: Proc. Int. Conf.
on Foundations of Data Organization, 1998

Sycara, K., Zeng, D.: Coordination of multiple intelligent
software agents. Int. J. Cooperative Information Systems
5(2+3):181-212, 1996

Tesh, T., Aberer, K.: Scheduling non-enforceable contracts
among autonomous agents. In: 3rd Int. Conf. on Cooperative
Information Systems, 1998. COOPIS’98. New York

Timmers, P.: Business models for electronic markets. In: Gra-
dient, Y., Schmid, B.F., Selz, D. (eds.): EM- Electronic Com-
merce in Europe. EM-Electronic Markets 8(2), 1998 http://
www.ispo.cec.be/ecommerce/busimod.htm

TOS (1997) Trading Object Service. OMG Document
Wieckowski, Z.:
MAGMA: An agent-based virtual market for electronic com-
merce. Applied Artificial Intelligence 11(6):501-524, 1997
Yilmaz, M.: Design and Implementation of an Agent Architec-
ture for an Electronic Marketplace. MSc Thesis, Dept. of Com-
puter Eng., Middle East Technical University, March 1999
VEO Systems Inc.: 1998, http://www.veosystems.com

sealed tenders. J. Finance 16(8):8-37, 1961

XJParser.: 1999, http://xdev.datachannel.com/downloads/
Xjparser
XML.: 1998, Extensible Markup Language (XML) 1.0.

W3C Recommendation. http://www.w3.org/TR/REC-xml-
19980210

56 S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET

<!ELEMENT block (activity;*, compensation?)>
<!ATTLIST block
type (SERIAL|AND-PARALLEL |OR-PARALLEL | XOR-PARALLEL | CONTINGENCY) "SERIAL"
name CDATA #IMPLIED >
<!ELEMENT iterative-block (condition,%activity;*,compensation?)>
<!ELEMENT conditional-block (condition,%activity;*,compensation?,else?)>
<!ELEMENT else (%activity;,compensation?)>
<!ELEMENT for-each-block (list,%activity;*,compensation?)>
<!ATTLIST for-each-block
type (AND-PARALLEL |OR-PARALLEL | XOR-PARALLEL) "AND-PARALLEL">
<!ELEMENT condition(lhs-expr,comparison-operator,rhs-expr)>
<!ELEMENT 1lhs-expr (#PCDATA)>
<!ELEMENT comparison-operator EMPTY>
<!'ATTLIST comparison-operator

type (EQUALITY|GREATER|LESS|GEQ|LEQ|NOTEQUAL) >
<!ELEMENT rhs-expr (int|listl|string), (operator,(int|listl|string))*>
<!ELEMENT operator (l|+l||l|_l||l|*l||l|/l||l|'/'l|)>

<!ELEMENT int (#PCDATA)>
<!ELEMENT string (#PCDATA)>
<!ELEMENT 1list (#PCDATA)>
<VATTLIST list
type (INT|STRING|XML|XML-QL) "STRING" >
<!ELEMENT list-element (#PCDATA,index,content)>
<!ELEMENT index (int) >
<!ELEMENT content ANY>

1>

Appendix B: Workflow templates

Active buyer template

<workflows>wf-templ
<process name=’active-buyer’>
<parameter mode=IN>items</parameter>
<variables>
<var type=XML-QL>result</var>
<var type=LIST><list type=XML-QL>items</list></var>
<var type=LIST><list type=STRING>sellers</list></var>
</variables>
<block>
<for-each-block type=AND-PARALLEL>
<list>items</list>
<task name=’find-sellers’ description=’http://www.srdc.metu.edu.tr/mpd/find-sellers.RDF’>
<parameter mode=IN><list-element>items<index><int>i</int></index>
</list-element></parameter>
<parameter mode=0UT>sellers</parameter>
</task>
<for-each-block type=AND-PARALLEL>
<list>sellers</list>
<task name=’query’ description=’http://www.srdc.metu.edu.tr/mpd/query.RDF’>
<parameter mode=IN><list-element>items<index><int>i</></index>
</list-element></parameter>
<parameter mode=IN><list-element>sellers<index><int>j</int></index>
</list-element></parameter>
<parameter mode=0UT>result</parameter>

</task>
<conditional-block> <condition>... </condition>
<task name=’negotiate’ ...> ... </task>

</conditional-block>
</for-each-block>
</for-each-block>
<task name=’payment’ type=SUBPROCESS ...> ... </task>

S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET

</block>
</process>
(definitions of other processes eg. payment)
</workflows>
Passive buyer template
<workflows>wf-temp2
<process name=’passive-buyer’>
<variables>
<var mode=EXTERNAL type=INT>request</var>
<var mode=EXTERNAL type=XML>product-info</var>
</variables>
<conditonal-block>
<condition>
<lhs-expr>request</lhs-expr><comparison-operator type=EQUALITY/>
<rhs-expr><int>1</int></rhs-expr>
</condition>

<task name=’user-confirmation’ description=’http://www.srdc.metu.edu.tr/mpd/user-confirmati

<parameter mode=IN>product-info</parameter>
<parameter mode=0UT>reply</parameter>

</task>
<conditional-block> (if reply is OK (1))
<condition> ... </condition>
<task name=’negotiate’ ...> ... </task>
</conditional-block>
<task name=’payment’ type=SUBPROCESS ...> ... </task>
</process>
</workflows>

Active seller template

<workflows>wf-temp3
<process name=’active-seller’>
<variables>
<var type=XML>product-info</var>
<var type=LIST><list type=STRING>buyers</list></var>
</variables>
<block>

<task name=’get-product-info’ description=’http://www.srdc.metu.edu.tr/mpd/get-product-inf

<parameter mode=0UT>product-info</parameter> </task>

<task name=’find-buyers’ ...> <parameter mode=0UT>buyers</parameter> </task>
<for-each-block type=AND-PARALLEL>
<list>buyers</list>

<task name=’send-request’ description=’http://www.srdc.metu.edu.tr/mpd/send-request.RDF’

<parameter mode=IN>product-info</parameter>
<parameter mode=0UT>reply</parameter>

</task>

<conditional-block> (if reply is positive)
<condition> ... <condition>
<task name=’negotiate’ ...> ... </task>

</conditional-block>
</for-each-block>

<task name=’payment’ type=SUBPROCESS ...> ... </task>

<task name=’deliver’ role=’postman’ ...> ... </task>
</block>
</process>
</workflows>

Passive seller template

<workflows>wf-temp4

57

58 S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET

<variables>
<var mode=EXTERNAL type=INT>request</var>
<var mode=EXTERNAL type=XML-QL>query</var>
<var mode=EXTERNAL type=INT>interest</var>
<var type=XML-QL>result</var>
</variables>
<conditonal-block>
<condition> (if request is 1)
<lhs-expr>request</lhs-expr><comparison-operator type=EQUALITY/>
<rhs-expr><int>1</int></rhs-expr>
</condition>
<task name=’query-catalog’ description=’http://www.srdc.metu.edu.tr/mpd/query-catalog.RDF’>
<parameter mode=IN>query</parameter>
<parameter mode=0UT>result</parameter>

</task>
<conditional-block> (if interest is 1)
<condition> ... </condition>
<task name=’negotiate’ ...> ... </task>
</conditional-block>
<task name=’payment’ type=SUBPROCESS ...> ... </task>
</process>
</workflows>

Appendix C: Adapted workflow template

<workflows>WF1
<process>
<variables>
<var type=XML-QL>result</var>
<var type=LIST><list type=STRING>sellers</list></var>
<var type=XML>computer-info</var>
<var type=XML>desk-info</var>
<var type=XML>CD-infol</var>

</variables>
<block>
<task name=’find-sellers’ description=’http://www.srdc.metu.edu.tr/mpd/find-sellers.RDF’>
<parameter mode=IN>computer-info
<content>
<?7xml namespace name=’http://www.srdc.metu.edu.tr/mpd/computer.dtd’ as "
<c:item><c:computer>
<c:memory>64M</c:memory>
<c:board>Pentium-II300</c:board>
<c:cdrom>Creative-40x</c:cdrom>
<c:disk>Quantum6GB</c:disk>
</c:computer></c:item>
</content> </parameter>
<parameter mode=0UT>sellers</parameter>
</task>
<for-each-block type=AND-PARALLEL>

<task name=’query’ description=’http://www.srdc.metu.edu.tr/mpd/query.RDF’>
<parameter mode=IN>computer-info<content> ... </content>
</parameter>

</task>
</for-each-block>

<block type=0R-PARALLEL>
<task name=’find-sellers’ ...>

S. Arpinar et al.: An open electronic marketplace through agent-based workflows: MOPPET

<parameter mode=IN>desk-info </parameter>
</task>

<block type=0R-PARALLEL>

<task name=’find-sellers’ ...> <parameter mode=IN>CD-infol ... </parameter> </task>
</block>
</block>
<task name=’payment’....> ... </task>
</block>
</process>

</workflows>

59

