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INTRODUCTION
Frailty is a random component designed to account for heterogeneity caused by unobserved individual-level factors that are 

otherwise neglected by the other predictors in the model. Vaupel et al. [1] suggested frailty models to account for the variations 
due to unobserved covariates. Several distributions like gamma, inverse Gaussian, positive stable distribution, power variance 
function, Weibull, compound poisson are used as frailty models for heterogeneity in the populations.

A class of random effect models which proved useful in survival analysis of related individuals is a class of frailty models 
which are based on the modifying the hazard function of individuals by introducing multiplicative effect on the baseline hazard 
function. Thus the frailty model is a random effect model for time to event data which is an extension of the Cox's proportional 
hazards model. Vaupel et al. [1], Keyfitz and Littman [2] showed that ignoring individual heterogeneity lead to incorrect conclusions.

Let T be a survival time with an absolutely continuous distribution. A non-negative random variable random variable Z is 
called ‘frailty’ if the conditional hazard functions given Z=z is given by

( ) ( )0|h t z zh t= ; t >0                                        	                                                                                                                            (1.1)

Where h0 (t) is called the baseline hazard function. Then the conditional survival function is given by,
( ( )( | ) )zH tS t z e −= ; t >0				                                                                                                                           (1.2)

Where ( ) ( )0
0

t
H t h u du= ∫  is the cumulative baseline hazard.

And the marginal survival function

( ) ( ) ( ) ( )( )| zH t
ZS t E S t z E e L H t− = = =     ; t >0	                                                                                                               (1.3)

Where ( ).ZL  is the Laplace transform of the frailty distribution.

In this paper, we consider the shared frailty model with the compound negative binomial distribution as a frailty distribution 
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and the Pareto and linear failure rate distribution as baseline distributions. The remainder of the paper is organized as follows. In 
Section 2, we give the properties of the general shared frailty models. In Section 3, we introduce the shared compound negative 
binomial frailty model. The baseline distributions are given in Section 4. In Section 5, we propose two different compound negative 
binomial frailty models. In Section 6, we discuss Bayesian method is used to estimate the parameters of the proposed models. 
We discuss the different model selection criterion by Bayesian approach in section 7. In Section 8 we present the simulation 
study. We present analysis of kidney infection data set and suggest a better model from these two proposed models in Section 9. 
Finally in Section 10, we discuss the conclusion of the study.

GENERAL SHARED FRAILTY MODEL
Shared frailty models explain correlations within groups (family, litter or clinic) or for recurrent events facing the same 

individual. i.e., the different events within each community share a common frailty, shared by each individual within the community 
and each unit belongs to precisely one category. The shared gamma frailty model was suggested by Clayton [3] for the analysis of 
the correlation between clustered survival times in genetic epidemiology.

Bivariate survival data arise when each subject understudy experiences two events. For e.g., failure times of paired 
organs like kidneys, eyes, ears or any other paired organs of an individual,   In industrial applications, the breakdown times of 
dual generators in a power plant or failure times of two engines in a two-engine airplane, recurrences of a given disease. Both 
monozygotic and dizygotic twins share date of birth and common pre-birth environment are the illustrations of bivariate survival 
data with the shared frailty [4].

In order to build the shared frailty model for such kind of the data it is assumed that survival times are conditionally 
independent, for a given shared frailty. i.e., there is an association between survival times only due to frailty.

Let a bivariate random variable 1 2( , )j jT T be the survival time of the ith ( i=1, 2) component of  the jth individual (j=1,2,..,n). 

Given the unobserved  the hazard function for the 1 2( , )j jT T  is given by,

( ) ( ) ( )'
0| , exp  i ij j j j i ij jh t z X z h t X β= , i=1,2		                                                                                                                 (2.1)

Where zj represents frailty acting as multiplicative effect at an individual level, ( )0  i ijh t is the baseline hazard at time tij > 0 and
 β is the vector of regression coefficients with k components and jX is the vector of observed covariates having k components. 

Integrating the hazard function ( )| ,i ij j jh t z X  we get, the conditional cumulative hazard function for the jth individual at the ith 
component survival time tij > 0 for the given frailty j jZ z=  is,

( ) ( )0| ,i ij j j j i ij jH t z X z H t η= 				                                                                                                                (2.2)

Where ( )'exp  j jXη β=   and ( )0i ijH t  is the cumulative baseline hazard function at time tij >0. The conditional survival 
function for the jth individual at the  ith  component survival time tij > 0 for the given frailty j jZ z=  is,

( ) ( )| ,| , i ij j jH t z X
ij j jS t z X e−=  ( )0j i ij jz H te η−= 				                                                                                                 (2.3)

When 1 jT  and 2 jT  for j=1,2,..,n are independent, the bivariate conditional survival function of 1 2( , )j jT T for the given frailty 
j jZ z=  is the product to conditional survival function of 1 jT  and 2 jT  for the given frailty j jZ z= . Thus, we have

( ) ( ) ( )( )01 1 02 2 
1 2, | , j j j jz H t H t

j j j jS t t z X e η− +
= 				                                                                                                 (2.4)

Where ( )01 1 jH t  and ( )02 2 jH t  be the cumulative baseline hazard functions of the first and the second component at 1 0 jt >  

and 0 respectively.

Integrate out the bivariate conditional survival function of 1 2( , )j jT T  over the frailty variable Zj having the probability function, 
fz (Zj) for the jth individual in order to obtain the unconditional bivariate survival function at time Tij >0.

( ) ( ) ( )( ) ( )01 1 02 2 
1 2, |  j j j j

j

z H t H t
j j j Z j j

Z

S t t X e f z dzη− +
= ∫

( ) ( )( )( )01 1 02 2jZ j j jL H t H t η= + 			                                                                                                                (2.5)

Where ( ).
jZL  is the Laplace transform of frailty the variable of Zj  for jth individual.

SHARED COMPOUND NEGATIVE BINOMIAL FRAILTY MODEL
A compound distribution is a model for a random sum Z=X1+X2+…+XN where the number of terms N is uncertain. We assume 
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that the variables Xi are independent and identically distributed and that each Xi is independent of N. The random sum Z can be 
interpreted the sum of all the measurements that are associated with certain events that occur during a fixed period of time. For 
example, compound distribution is the random variable of the aggregate claims generated by an insurance policy or a group of 
insurance policies during a fixed policy period. In this setting, N is the number of claims generated by the portfolio of insurance 
policies and X1 is the amount of the first claim and X2 is the amount of the second claim and so on. The random sum Z is said to 
have a compound Poisson distribution if N follows the Poisson distribution.

The Compound Poisson variable Z is defined as 

1 2      ; 0
    0                               ; 0    

NX X X N
Z

N
+ +…+ >

=  =

Where N is Poisson distributed with mean ρ while 1 2, , , NX X X…  are independent gamma distributed with scale parameter  
  and shape parameterξ.

The distribution of Z can be partitioned into two parts, one a discrete part corresponding to the probability of zero susceptibility 
and second is due to continuous part on the positive real line.

The discrete part is given as  

( ) ( )0 expP Z ρ= = −

Which is decreases as ρ decreases.

The distribution of the continuous part is given by conditioning Z and with X having gamma distribution.

Aalen [5,6] introduced compound Poisson distribution as a mixing distribution in survival models. In many situations hazard 
rates or intensities are raising at the start, reaching a maximum value and then declining, that’s why the intensity has a unimodal 
shape with finite mode.

For e.g. death rates for cancer patients, divorce rates. 

The reason to start decline in the population intensity is that the high risk individuals have already died or been divorced in 
case of above examples.

Also in is often seen that the total integral under the intensity or hazard rate is to be finite. It occurs due to the distribution 
is defective. It means that some individuals have zero susceptibility; they will survive forever.

In the case of above examples some patients survive their cancer, some people never marry, and some marriages are not 
prone to be dissolved. In such kind of data compound Poisson distribution plays an important role of mixing distribution.

Even though the compound Poisson distribution has many attractive properties, in non-susceptible or zero susceptibility 
type of data a convenient frailty distribution. Some other examples of zero susceptibility type of data if N > 0 then we can interpret 
Z as aggregate heterogeneity due to failures before we get first success or in general rth success can be given as, in case of 
marriage data, Z may represents heterogeneity due to difficulties in finding a marriageable partner before individual meet first 
suitable partner. In case of fertility, Z may be heterogeneity due to miss-carriages observed or unable to conceive a child with a 
couple before they have their first child or second child. Some mothers would like to deliver babies until she delivers a baby boy 
or two baby boys. Politicians go on contesting elections until they win once or twice and so on. Individuals go on changing the jobs 
until he/she gets a suitable job. In such situations negative binomial distribution or geometric distribution is a suitable choice of 
distribution for variate N. 

So, we decide to consider compound negative binomial distribution as a frailty distribute-ion to model zero susceptibility 
type data in our study.

When the number of successes is equal to one, the compound negative binomial distribution reduces to compound 
geometric. There is a relation between compound negative binomial distribution and compound Poisson distribution. If Z1 and Z2 
are respectively follows compound Poisson and compound negative binomial distribution with Z1=X1+X2+…+XN1 and Z2=X1+X2+…
+XN2 where N1 is Poisson random variate with intensity λ and N2 is and negative binomial random variate with parameters, number 
of successes  and probability

of success  then Z1 and Z2 are identically distributed if r log pλ = − .

The compound negative binomial distribution is defined as

1 2      ; 0
    0                               ; 0    

NX X X N
Z

N
+ +…+ >

=  =

Where N is negative binomial variate with parameters r and p; r and p denotes respectively, the number of successes and 
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the probability of success while X1,X2,…,XN are independent gamma distributed with scale parameter ν and shape parameter ξ.

The distribution of Z consists of two parts; a discrete part which corresponds to the probability of zero susceptibility, and a 
continuous part on the positive real line. 

The discrete part is,
( )0 rP Z p= = . 

The distribution of the continuous part can be found by conditioning N and using the fact that the X's are gamma distributed. 
It can be written as

( ) ( )
( )0

;              0, 0, 0, 0,1, 2,
11              ; 1, 2,

1 Ã
0 1

nn
r Z

n

Z n
q Zn r

f Z p e r
rZ n

p

ξ
ν

ν ξ
ν
ξ

∞
−

=

> > > = …
+ − 

= = … −  < <
∑ 	                                                   (3.1)

is the density function of compound negative binomial distribution.

The expectation and variance of Z are 
( ) /E Z rq pξ ν=  and ( ) ( )2 2 2/ ( )var Z rq p pσ ξ ξ ν= = +   

The Laplace transformation of Z is given by,

( ) ( ) ( )( )1 2 Ns X X XsZ
ZL s E e E e− + +…+−= =

( )( )N
XE L s=

( )( )( )N XL ln L s= −

1 1

r

p
sq

ξ

ν

−

 
 
 =  

  − +    

In order to solve the non-identifiability problem, we take E (z) =1 which leads to a ( ) ( ) ( )2 /var Z p rqσ ξ ξ= = + . Thus, we have 
the following form of Laplace transformation. 

( )    

1 1

r

Z
pL s

psq
rq

ξ

ξ

−

 
 
 =  

  − +    

                                                                                                                                                      (3.2)

The unconditional bivariate survival function for the jth individual at the time t1j > 0 and t2j > 0 by replacing the above 
mentioned Laplace transformation in equation (2.5) we have,

( )
( ) ( )( )

1 , 2

01 1 02 2

  

1 1

r

j j

j j j

pS t t
p H t H t

q
rq

ξ
η

ξ

−

 
 
 
 =  

  +
  − +
    

                                                                                                                 (3.3)

Where ( )01 1 jH t  and ( )02 2 jH t are the cumulative baseline hazard functions of lifetime random variables T1j and T2j respectively.

In this paper, we consider the two baseline distributions namely Pareto and linear failure rate distribution which yield two 
compound negative binomial frailty models.

BASELINE DISTRIBUTIONS
The Pareto distribution is a skewed, heavy-tailed distribution that is sometimes used to model the distribution of incomes. 

This distribution is not limited to describing wealth or income, but to many situations in which an equilibrium is found in the 
distribution of the "small" to the "large".

The first baseline distribution is the Pareto distribution [7]. A continuous random variable T is said to follow the Pareto 
distribution with the scale parameter  and the shape parameter α if its survival function is,
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( ) ( )
0

1      ; 0, 0, 0 
0                     ;              

t tS t
otherwise

αλ λ α− + > > >= 


                                                                                                                                 (4.1)

and the hazard function and the cumulative hazard function as 

( ) ( )0

      ;    0, 0, 0
1   

            0          ;                       

t
th t

otherwise

α λ λ α
λ

 > > > += 



                                                                                                                        (4.2)

( ) ( )
0

       1    ;    0, 0, 0 
  

  0              ;     
log t t

H t
otherwise

α λ λ α+ > > >
= 


                                                                                                                        (4.3)

Observe that h0(t) decreases with t; λ> 0, α > 0. Hence this distribution belongs to the Decreasing Failure Rate class.

The exponential and Rayleigh are the two most commonly used distributions for analyzing lifetime data. These distributions 
have several desirable properties and nice physical interpretations. Unfortunately the exponential distribution only has constant 
failure rate and the Rayleigh distribution has increasing failure rate. The linear failure rate distribution generalizes both these 
distributions. We consider this is the second baseline distribution.

The linear failure rate distribution of a continuous random variable T with the parameters α >0 and λ >0, will be denoted by 
LFRD (α,λ) has the following survival function 

( )
2

0

     ; 0, 0, 0
2

0                           ;          

exp t t t
S t

otherwise

λα α λ  − − > > >  =  


                                                                                                                            (4.4)

It is easily observed that the exponential distribution (ED (α)) and the Rayleigh distribution (RD (λ)) can be obtained from 
LFRD (a, b) by putting λ =0 and α =0 respectively. Moreover, the probability density function (PDF) of the LFRD (α,λ) can be 
decreasing or unimodal but the failure rate function is either constant or increasing only. See for example Bain [8], Sen and 
Bhattacharya [9], Lin et al. [10], Ghitany and Kotz [11] and the references cited therein. 

The hazard function and the cumulative hazard function of linear failure rate distribution are respectively as stated below:

( )0

      ;    0, 0, 0
            0          ;                       

t t
h t

otherwise
α λ α λ+ > > >

= 
                                                                                     (4.5)

( )
2

0
         ;    0, 0, 0 

2
  0              ;     

tt tH t
otherwise

α λ α λ


+ > > >= 


                                                                                                                                         (4.6)

PROPOSED MODELS
Here we present the two compound negative binomial frailty models say Model I and Model II by putting respectively the 

cumulative hazard function of the baseline distributions namely Pareto and linear failure rate distribution in the unconditional 
survival function of bivariate random variable ( )1 2 ,j jt t  given in equations (4.3) and (4.6).

( )
( ) ( )( )

1 , 2

1 1 1 2 2 2 1  1
1 1

r

j j

j j j

pS t t
p log t log t

q
rq

ξ
α λ α λ η

ξ

−

 
 
 
 =  

  + + +
  − +
    

1 2;  0, 0j jt t> > 	                                                                     (5.1)

( )1 , 2
2 2
1 2

1 1 1 2 2 2

 

2 2
1 1

j j

j j
j j j

pS t t
t t

p t t

q
rq

ξ

α λ α λ η

ξ

−

 
 
 
 
 
 
 

=  
      
 + + +               − +  
  
   
  

 1 2; 0, 0j jt t> >                                                                                             (5.2)

Here onwards, equations (5.1) and (5.2) as Model I and Model II which correspond to compound negative binomial frailty 
models with baseline Pareto and linear failure rate distributions respectively.
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ESTIMATION OF PARAMETERS BY BAYESIAN APPROACH
For the bivariate life time distribution, we use the bivariate censoring scheme given by Hanagal and Dabade [12]. 

Suppose that there are n independent pairs of components under study and the jth pair of the component have lifetimes 
( )1 2 ,j jt t  i.e. there are n individuals with a pair of components having lifetimes ( )1 2 ,j jt t for j=1, 2,… , n. The life time times 

associated with jth individual is given by,

( )

( )
( )
( )
( )

1 2 1 1  2 2

1 2 1 1  2 2

1 2

1 2 1 1  2 2

1 2 1 1  2 2

 ,       ;      ,   

 ,       ;   ,   
,

 ,       ;    ,   

 ,       ;    ,   

j j j j j j

j j j j j j

j j

j j j j j j

j j j j j j

t t t c t c

t c t c t c
T T

c t t c t c

c c t c t c

 < <

 < <= 

> <


> >

Where c1j and c2j be the observed censoring times for jth individual (j=1,2,…,n) with a pair of components respectively. We 
assume that the lifetimes and censoring times are independently distributed.

Now the likelihood of the sample of size n is given by,

( ) ( ) ( ) ( )
31 2 4

2
1 1 2 2 1 2 3 1 2 4 1 2

1 1 1 1

 , , (  , )  ,   ,   ,  
nn n n

j j j j j j j j
j j j j

f t t f t c f c t f c cθ β σ
= = = =

    
=     
    
∏ ∏ ∏ ∏ 			                                        (6.1)

Where 2, ,θ β σ  are the vector of parameters of the baseline distributions, the vector of regression coefficients and the 

frailty parameter respectively. Let the counts ,  and  be the number of individuals for which the first and the second 

components failure times ( )1 2 ,j jt t lie in the ranges; 1 1  2 2 1 1  2 2  1 1  2 2  ,    ;  ,     ;    ,   j j j j j j j j j j j jt c t c t c t c t c t c< < < > > < and 1 1  2 2      j j j jt c t c> >  
respectively and 

( ) ( )2
1 2

1 1 2
1 2

,
, j j

j j
j j

S t t
f t t

t t
∂

=
∂ ∂

( ) ( ) ( ) ( ) ( ) ( )( )( )
( )( ) ( )( )( )

2 2
01 1 02 2 1 2 1 2

22

1 2 1 2

  , 1 1 ,  

, ,

j j j j j j j

j j j j

p h t h t S t t q r t t

rq t t q t t

ξ

ξ

η ξ ξ φ

ξ φ φ

− + + +
=

 −  

( ) ( ) ( ) ( )
( ) ( )( )

1 2 01 1 1 2
2 1 2 1

1
1 2 1 2

,  ,   
 ,

, 1 ,

j j j j j j
j j

j
j j j j

S t c ph t S t c
f t c

t t c q t c
ξξ

η

φ φ
−+

∂
= − =

∂    −    

( ) ( ) ( ) ( )
( ) ( )( )

1 2 02 2 1 2
3 1 2 1

2
1 2 1 2

,  ,   
,

, 1 ,

j j j j j j
j j

j
j j j j

S c t ph t S c t
f c t

t c t q c t
ξξ

η

φ φ
−+

∂
= − =

∂    −    

( ) ( )4 1 2 1 2 ,  ,j j j jf c c S c c= 										                               (6.2)

Where

( ) ( ) ( )( )01 1 02 2
1 2, 1

j j j
j j

p H t H t
t t

rq

η
φ

ξ

+
= +

Thus, we get the two likelihood functions for the two proposed compound negative binomial frailty models namely Model I, 
Model II by substituting the corresponding hazard functions and cumulative hazard functions in the likelihood function given by 
equation (6.1) with ( )1 2,j jS t t

stated in equation (5.1) and (5.2).

The likelihood function is obtained for the

Model I with

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( )( ) ( )( )

2 2 1 1 2 2
1 2 1 2

1 1 2 2
1 1 2 22

1 2 1 2

 , 1 1 ,
1 1

,

, ,

j j j j j
j j

j j

j j j j

p S t t q r t t
t t

f t t

rq t t q t t

ξ

ξ

α λ α λη ξ ξ φ
λ λ

ξ φ φ

 − + + + + +  
=

  −  
  
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( ) ( ) ( )

( ) ( )( )

1 1
1 2

1 1
2 1 2 1

1 2 1 2

 ,   
1

,
, 1 ,

j j j
j

j j

j j j j

p S t c
t

f t c
t c q t c

ξξ

α λ η
λ

φ φ
−+

+
=

   −    

( ) ( ) ( )

( ) ( )( )

2 2
1 2

2 2
3 1 2 1

1 2 1 2

 ,   
1

 ,
, 1 ,

j j j
j

j j

j j j j

p S c t
t

f c t
c t q c t

ξξ

α λ η
λ

φ φ
−+

+
=

   −    

( ) ( )4 1 2 1 2 ,  ,j j j jf c c S c c= 	

Where

( ) ( ) ( )( )1 1 1 2 2 2
1 2

 1  1
, 1

j j j
j j

p log t log t
t t

rq

α λ α λ η
φ

ξ

+ + +
= +                                                                                                                     (6.3)

Model II with 

( )
( ) ( ) ( ) ( )( )

( )( ) ( )( )

2 2
1 1 1 2 2 2 1 2 1 2

1 1 2 22
1 2 1 2

 ( )( ) , 1 1 ,  
 ,

, ,

j j j j j j j

j j

j j j j

p t t S t t q r t t
f t t

rq t t q t t

ξ

ξ

η α λ α λ ξ ξ φ

ξ φ φ

 + + − + + + 
 =

  −  
  

( ) ( )
( ) ( )( )

1 1 1 1 2
2 1 2 1

1 2 1 2

( ) ,   
,

, 1 ,

j j j j
j j

j j j j

p t S t c
f t c

t c q t c
ξξ

α λ η

φ φ
−+

+
=

   −    

( ) ( )
( ) ( )( )

2 2 2 1 2
3 1 2 1

1 2 1 2

( ) ,   
,

, 1 ,

j j j j
j j

j j j j

p t S c t
f c t

c t q c t
ξξ

α λ η

φ φ
−+

+
=

   −    

( ) ( )4 1 2 1 2,  ,j j j jf c c S c c=

Where

( )

2 2
1 2

1 1 1 2 2 2

1 2

2 2
 , 1

j j
j j j

j j

t t
p t t

t t
rq

α λ α λ η

φ
ξ

    
    + + +
        = +

                                                                                                                     (6.4)

Each of the proposed models consists of eleven parameters, computing the maximum likelihood estimators (MLEs) involves 
solving a eleven dimensional optimization problem for these model. As the method of maximum likelihood fails to estimate the 
several parameters due to convergence problem in the iterative procedure, so we use the Bayesian approach. The traditional 
maximum likelihood approach to estimation is commonly used in survival analysis, but it can encounter difficulties with frailty 
models. Moreover, standard maximum likelihood based inference methods may not be suitable for small sample sizes or situations 
in which there is heavy censoring [13]. Thus, in our problem a Bayesian approach, which does not suffer from these difficulties, is 
a natural one, even though it is relatively computationally intensive.

Several authors have discussed Bayesian approach for the estimation of parameters of the frailty models. Some of them 
are, Ibrahim et al. [14] and Santos and Achcar [15]. Santos and Achcar [15] considered the parametric models with Weibull and the 
generalized gamma distribution as the baseline distributions and gamma and log-normal as frailty distributions. Ibrahim et al. 
[14] and references therein considered Weibull model and the piecewise exponential model with gamma frailty. Therefore we 
proposed Bayesian inferential approach in this study to estimate the parameters of the model, which is a popularly used method, 
because computation of the Bayesian analysis becomes feasible due to advances in computing technology. 

To apply markov chain monte carlo (MCMC) methods, we assume that, conditional on observed covariates and on the 
entire set of parameters, observations are independent and prior distributions for all parameters are mutually independent. We 
used the Metropolis-Hastings algorithm within Gibbs sampler technique which is the most basic MCMC method used in Bayesian 
Inference. Convergence of Markov chain to a stationary distribution is observed by the trace plots, the coupling from the past 
plots, the Gelman-Rubin convergence statistic, and the Geweke test. The trace plots are used to check the behavior of the chain 
and the coupling from the past plots can be used to decide the burn-in period. The Gelman-Rubin convergence statistic values are 
approximately equal to one then sample can be considered to be come from the stationary distribution. The Geweke test examine 
the convergence of a Markov chain based on the sub parts of a chain at the end and at the beginning of the convergence period. 
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The large standardized difference between ergodic averages at the beginning and at the end of the convergence period indicates 
non convergence. The sample autocorrelation plots can be used to decide the autocorrelation lag. 

In Bayesian paradigm the parameters of the model are viewed as random variables with some distribution known as prior 
distribution. It enables us to combine both the prior information and the data at hand to update the information of parameter. 
Thus, posterior density of a parameter is the distribution of a parameter updated by combining its prior distribution and the 
likelihood function. We assume that, conditional on explanatory variables and on the entire set of parameters, observations are 
independent and prior distributions for all parameters are mutually independent while applying MCMC methods.

Let ( ) |L yθ  be the likelihood function and ( )p θ be the prior density of a parameter then posterior density function of a 
parameter ( ) | yπ θ  is given by, 

( ) ( ) ( )| |y L y pπ θ θ θ∝ 		                 	                                                                                                                           (6.5)

In our case the joint posterior density function of a parameter for given failure times (t1j, t2j) is  ( )2
1 1 2 2 1 2  ( , , , , ,  |( ,  )j jt tπ θ α λ α λ σ β=

as
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=

∝ = ∏
                                                 (6.6)

Where ( )  .  ig for  1, 2, ..,5 denotes the prior density function with known hyper parameters of corresponding argument 
for baseline parameters and frailty variance; ( )i ip β  is the prior density function for regression coefficients βi for  i =1, 2, ..,k.,. And 
the likelihood function L (.) is given by equation (6.1).

Algorithm consists in successively obtaining a sample from the conditional distribution of each of the parameter given all other 
parameters of the model. These distributions are known as full conditional distributions. Since the full conditional distributions 
are not easy to integrate out therefore full conditional distributions are obtained by considering that they are proportional to the 
joint distribution of the parameters of the model. The samples are then obtained from these full conditional distributions.

MODEL SELECTION CRITERION BY BAYESIAN APPROACH
Bayesian model comparison is commonly performed by computing posterior model probabilities. In order to compare 

proposed models we use the akaike information criterion (AIC), the Bayesian information criterion (BIC), the deviance information 
criterion (DIC) and the Bayes factor. These are the most common methods of Bayesian model assessment. 

Akaike [16] suggested that, given a class of competing models for a data set, one choose the model that minimizes

( )  2 θ= +AIC  p D 					                                                                                                                       (7.1)

where p represents number of parameters of the model. D( )θ represents an estimate of the deviance evaluated at the 
posterior mean,  (  | ).E dataθ θ=  The deviance is given by, ( )  2 log (  )D Lθ θ= − , Where θ is a vector of unknown parameters of the 
model and (  )L θ is the likelihood function of the model.

Bayesian information criterion (BIC) was suggested by Schwarz [17]. Shibata [18] and Katz [19] have shown that the AIC tends 
to overestimate the number of parameters needed, even asymptotically. The Schwarz criterion indicates that the model with the 
highest posterior probability is the one that minimizes

( ) ( )    log BIC D p nθ= + 				                                                                                                                             (7.2)

Where  is the number of observations, or equivalently, the sample size.

DIC, a generalization of AIC, is introduced by Spiegelhalter et al. [20] and is defined as;
( )  2 DDIC D pθ= +                                                                                                                                                                              (7.3)

Where  Dp  is the difference between the posterior mean of the deviance and the deviance of the posterior mean of 

parameters of interest, that is, ( ) Dp D D θ= −  and ( )  ( | )D E D dataθ= .

Models with smaller values of the AIC, BIC and DIC are preferred.

Kadane and Lazar [21] review model selection from Bayesian and frequent perspectives. The Bayes factor BJK for a model MJ 

against MK or given data ( )1 2  ; ; 1, 2, , j jD t t j n= = …  is

Where ( ) ( )|  ( | , ) |  k k k k k k
S

P D M P D M M dθ π θ θ= ∫                                                                                                                        (7.4)

 is the parameter vector under model MK and ( )|k kMπ θ  is prior density and  is the support of the parameter kθ

http://en.wikipedia.org/wiki/Observation
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. Raftery [22], following Jeffreys [23], proposes the rules of thumb for interpreting twice the logarithm of the Bayes factor. For two 
models of substantive interest, MJ and MK twice the log of the Bayes factor is approximately equal to the difference in their BIC 
approximations. 

To compute Bayes factor we need to obtain ( | )k kI P D M= . By considering one of the approaches given in Kass and Raftery 
[24], we obtain the following MCMC estimate of IK which is given by,

( )
1

1
1

( | )
    

N i
i

k

P D
I

N
θ

−
−

=
  =  
  

∑                                                                                                                                                           (7.5)

Which is harmonic mean of the likelihood values. Here  represents the posterior sample size and ( ) ,   1 , 2 ,..., }i i N{θ = is the 
sample from the prior distribution.

SIMULATION STUDY
A simulation study is done to evaluate the performance of the Bayesian estimation procedure. For the simulation purpose 

we have considered only one covariate X1 and we assume that it follows normal distribution. The frailty variable Z is assumed to 
have compound negative binomial distribution. Life times (T1j,T2j) for the jth individual are conditionally independent for the given 
frailty Zj=zj. We considered that Tij (i=1,2;j=1,2,…,n) follows one of the baseline distributions, namely, Pareto (Model-I) or linear 
failure rate (Model-II) distribution respectively. As the Bayesian methods are time consuming, we generate only twenty, fourty and 
sixty pairs of lifetimes using inverse transform technique. Here we have generated different random samples of size n=20, 40 and 
60 for lifetimes T1j and T2j. But here we are giving procedure for sample generation of only one sample size, say, n=20. Samples 
are generated using the following procedure:

1. Generate a random sample of size 20 from the compound negative binomial distribution with shape  and the scale 
parameter ν as shared frailties (zj) for jth (j=1,2,…,20) individual.

To generate random observation from compound negative binomial distribution, we firstly generate a random observation 
N=n from negative binomial distribution with parameters 

r=1, p=0.2.

Then we consider the following two cases:

(i) If N=0; take frailty Z=0.

(ii) If N>0; generate  gamma variates say X1,X2,…,XN with the shape parameter ξ =0.2 and scale parameter 
( )

0.8 
rq

p
ξ

ν = =
then frailty is taken as Z=X1+X2+…+XN.

2. Generate 20 covariate values for X1 from the normal distribution.

3. Compute 1( )Xe βη −=  with the regression coefficient β=0.5.

4. Generate 20 pairs of lifetimes (t1j, t2j) for the given frailty (zj) using the following generators,

for Model-I and Model-II respectively, 

1
1

1 1

1 1j
j

A
t exp

λ α
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A
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Where 1
1

log
j

j j

rA
z η
−

= and 2
2

log
j

j j

rA
z η

−
=   and rij i=1,2 are random sample from U (0,1).

5. Generate the censoring times (c1j and c2j) from the exponential distribution.

6. Observe the ith survival time tij= min(tij, cij)  and the censoring indicator δij for the jth individual (i= 1;2 and j=1,2,….,20), Where

ij ij1       ;            t   c
       0      ;            ij otherwise

δ
<

= 


Thus we have data consists of 20 pairs of the survival times 1j 2 j(t  t; ) and the censoring indicators .ijδ

We run two parallel chains for the proposed model with the different starting points using Metropolis-Hastings algorithm 
within Gibbs sampler based on normal transition kernels.
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We iterate both the chains for 95,000 times. In our study we use non-informative prior for the frailty parameter σ2 and the 
regression coefficient βI. Since we do not have any prior information about baseline parameters, α1,λ1,α2, and λ2 prior distributions 
are assumed to be flat. A widely used prior for frailty parameter  is the gamma distribution with mean one and large variance, 
G (φφ) say with a small choice of  and for the regression coefficients I=1,2,..,k, we use the normal prior with mean zero and 
large variance 2.ε Similar types of prior distributions are used in Ibrahim et al. [14], Sahu et al. [25] and Santos and Achcar [15]. We 
set hyper-parameters φ=0.0001, ε2=1000. We consider the non informative prior distribution for baseline parameters as the 
Gamma (1,0.0001).

For both the chains the results were somewhat similar so we present here the analysis for only one chain (i.e. chain 1) 
for the resulting model. Also due to lack of space we are not providing graphs. Simulated values of the parameters have the 
autocorrelation of lag k, so every kth iteration is selected as a sample from posterior distribution. The posterior mean and standard 
error with credible intervals for different sample sizes are reported in Tables 1 and 2 for Model-I, Model-II respectively. From these 
Tables, it can be observed that the estimated values of the parameters are close to the true values of the parameters and the 
standard errors decrease as the sample size increases. 

Parameter α1 λ1 α2 λ2 ρ ξ β1

True values 5.5 0.5 5.5 0.5 0.2 0.2 0.5
Sample size=20

Burn in period =2160                                                                                                           Autocorrelation lag=180 

estimates 5.495265 0.4825503 5.519549 0.5052762 0.192014 0.2092385 0.4716779

standard error 0.1779357 0.05413933 0.170599 0.05805617 0.02155833 0.0546049 0.170429

lower credible limit 5.212513 0.4034647 5.213434 0.4063945 0.1613895 0.1095084 0.2124834

upper credible limit 5.78779 0.591469 5.786101 0.5966154 0.2363334 0 .2962317 0.7802635
Sample size=40

                                 Burn in period=3180                                                                                                             Autocorrelation lag=175
estimates 5.512785 0.5162308 5.481029 0.4817246 0.1780525 0.2431996 0.5472664

standard error 0.1689113 0.05611794 0.1722812 0.0514482 0.01668905 0.04252427 0.1600458

lower credible limit 5.214905 0.4081556 5.208617 0.402791 0.1603109 0.1479856 0.2352484

upper credible limit 5.79289 0.5972417 5.776535 0.5842291 0.2227113 0.2983601 0.7861975

Sample size=60

                                     Burn in period = 3110                                                                                                          Autocorrelation lag=800
estimates 5.476585 0.4719628 5.529323 0.5212741 0.1748693 0.2539005 0.4671208

standard error 0.1789366 0.05523213 0.1701266 0.05339679 0.01332308 0.03512942 0.1510194
lower credible limit 5.215819 0.4018427 5.226985 0.4110774 0.1603077 0.1728933 0.2225904
upper credible limit 5.78585 0.5900244 5.788103 0.5962147 0.2118279 0.2982968 0.7729958

Table 1. Posterior summary for simulation study of Model-I.

Table 2. Posterior summary for simulation study of Model-II.

Parameter α1 λ1 α2 λ2 ρ ξ β1

True values 5.5 0.5 5.5 0.5 0.2 0.2 0.5

Sample size=20
Burn in period=2590                                                                                                                                        Autocorrelation lag=175

estimates 5.482741 0.4997339 5.509842 0.4993959 0.1854986 0.2204464 0.4549848

standard error 0.1739062 0.05775292 0.1697222 0.05738042 0.0201024 0.05059383 0.1586061

lower credible 
limit 5.215199 0.4055352 5.221458 0.4037915 0.1609234 0.1176498 0.2115565

upper credible 
limit 5.783958 0.5951022 5.783743 0.5946693 0.2335115 0.2962933 0.7648207

Sample size=40
Burn in period=1950                                                                                                                                  Autocorrelation lag=800

estimates 5.518256 0.4961739 5.497526 0.4986062 0.1747031 0.246543 0.4915105 

standard error 0.1584283 0.06212257 0.167403 0.05550285 0.01471476 0.0415707 0.1597369
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lower credible 
limit 5.210711 0.4019986 5.207941 0.4086488 0.1602437 0.1530928 0.2092465 

upper credible 
limit 5.783837 0.5967012 5.789753 0.5939387 0.219531 0.297743 0.7606974

Sample size=60

Burn in period=1940                                                                                                                           Autocorrelation lag=900

estimates 5.446878 0.4899263 5.525997 0.5001326 0.1729319 0.2578155 0.4514856 

standard error 0.1722099 0.05835875 0.1735858 0.05696716 0.01154164 0.0157387 0.1518377
lower credible 

limit 5.212004 0.4024134 5.214769 0.4045295 0.1603077 0.1909802 0.2208491

upper credible 
limit 5.771953 0.5971016 5.7874 0.5923991 0.2035887 0.2983601 0.7444531

ANALYSIS OF KIDNEY INFECTION DATA
To study the Bayesian estimation procedure we use kidney infection data of McGilchrist and Aisbett [4]. The data is regarding 

recurrence times to infection at point of insertion of the catheter for 38 kidney patients using portable dialysis equipment. For 
each patient, first and second recurrence times (in days) of infection from the time of insertion of the catheter until it has to 
be removed owing to infection is recorded. The catheter may have to be removed for reasons other than kidney infection and 
this regard as censoring. So survival time for a patient given may be first or second infection time or censoring time. After the 
occurrence or censoring of the first infection sufficient (ten weeks interval) time was allowed for the infection to be cured before 
the second time the catheter was inserted. So the first and second recurrence times are taken to be independent apart from the 
common frailty component. The data consists of three risk variables age, sex and disease type GN, AN and PKD where GN, AN 
and PKD are short forms of glomerulo neptiritis, acute neptiritis and polycyatic kidney disease.

Let T1 and T2 be represents first and second recurrence time to infection. Five covariates age, sex and presence or absence 
of disease type GN, AN and PKD are denoted by X1, X2, X3, X4, and X5. To analyze kidney infection data success is defined as getting 
infection first time so we define r=1.

First we check goodness of fit of the T1 and T2. If marginal distributions of T1 and T2 for two proposed distributions fit well then 
the bivariate distribution of T1 and T2 may be fit well for the same. We used Kolmogorov-Smirnov Goodness-of-Fit Test. Thus from 
p-values of K-S test we can say that there is no statistical evidence to reject the hypothesis that data are from proposed models 
in the univariate case and we assume that the models also fit for the bivariate case. Table 3 gives the p-values of Kolmogorov-
Smirnov test for the proposed models. Figure 1 shows the parametric versus non-parametric plots.

Model K-S statistic p-value

T1                                T2 T1                            T2
Model I  0.154412              0.2164123 0.44909              0.18199
Model II 0.1513085             0.2357491 0.58947               0.11738

Table 3. Goodness-of-Fit Test: p-values K-S statistic for kidney infection data.
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Figure 1. Survival function plots for  (K-M survival and parametric survival).

To analyze kidney data set, various models have been applied by different researchers.

Some of them are, McGilchrist and Aisbett [4] McGilchrist [26], Sahu et al. [25], Boneg [27], Yu [28] and Santos and Achcar [15]. 
McGilchrist and Aisbett considered semi-parametric Cox proportional hazards model with log-normal frailty distribution and 
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applied Newton-Raphson iterative procedure to estimate the parameters of the model. McGilchrist [26] and Yu [28] both considered 
the same model as in McGilchrist and Aisbett but McGilchrist estimated the parameters of the model using BLUP, ML and REML 
methods and Yu proposed modified EM algorithm and penalized partial likelihood method. Sahu et al. considered four parametric 
models first two are piecewise exponential model with constant baseline hazard say λK within each interval having gamma prior 
for λK for Model-I and for Model-II normal prior to. Both the models have frailty distribution as gamma. Other two models are 
multiplicative gamma frailty as Model-III and additive frailty as Model-IV with Weibull as baseline distribution. Santos and Achcar) 
used MCMC method to estimate the parameters of parametric regression model with Weibull and generalized gamma distribution 
as baseline and gamma and log-normal as frailty distributions. Boneg considered Cox proportional hazards model and also 
parametric frailty models. In parametric frailty models he considered Weibull distribution as the baseline and log-normal, Weibull 
as frailty distributions. He applied MHL and RMHL methods to estimate the parameters of the models.

We run two parallel chains for both models using two sets of prior distributions with the different starting points using 
Metropolis-Hastings algorithm and Gibbs sampler based on normal transition kernels. On the similar line of simulation, here also 
we assume same set of prior distributions. We iterate both the chains for 95000 times. We present here the analysis for only 
one chain with G (a1; a2) as prior for baseline parameters, for both the proposed models. Due to lack of space we are presenting 
trace plots, coupling from the past plots and sample autocorrelation plots for the parameters of Model I only as shown in Figures 
2-4. Gelman-Rubin convergence statistic values are nearly equal to one and Geweke test statistic values are quite small and 
corresponding p-values are large enough to say the chains attain stationary distribution. Simulated values of parameters have 
autocorrelation of lag k, so every kth iteration is selected as sample. The posterior mean and standard error with 95% credible 
intervals for baseline parameters, frailty parameter and regression coefficients are presented in Table 4. The AIC, BIC and DIC 
values for both the models are given in Table 5. The Bayes factor for the proposed models is also computed.
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Figure 2. Trace plot (Chain I) for model II.

 

0 3000

0.
02

0.
06

(a)

Iteration number

al
ph

a1

0 3000

0.
00

10
0.

00
25

(b)

Iteration number

la
m

da
1

0 3000

0.
00

05
0.

00
25

(c)

Iteration number

al
ph

a2

0 3000

0.
00

05
0.

00
30

(d)

Iteration number

la
m

da
2

0 3000

0.
00

00
5

(e)

Iteration number

p

0 3000

75
0

85
0

(e)

Iteration number

ga
m

m
a

0 3000

-0
.0

6
0.

00

(f)

Iteration number

be
ta

1

0 3000

-5
-3

-1

(g)

Iteration number

be
ta

2

0 3000

-2
0

2

(h)

Iteration number

be
ta

3

0 3000

-2
0

2
4

(i)

Iteration number

be
ta

4

0 3000

-4
0

2
4

(j)

Iteration number

be
ta

5

Figure 3. Coupling from the past plots for model II.
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Figure 4. Autocorrelation graphs for model II.

Parameter Estimates Standard errors Credible Intervals
Lower Upper

Model-I
Burn in period=4290; Autocorrelation lag=165

α1 188.677 5.852149 179.5511  198.4807
λ1 0.001499921  0.0004127996 0.001018017   0.002643678
α1 83.66022 5.617377 74.49408   93.32466

λ2 0.002519979   0.000608146 0.001433446   0.00377513

ρ 8.324508e-05 2.647687e-05 4.247646e-05  0.0001352153

ξ 0.09982988  0.005377886 0.09099296
[1] 0.1094011  0.1094011

β1 -0.03098565   0.01499194 -0.06100589  0.001318125
β2 -2.232593   0.5281014 -3.262621   -1.185981
β3 0.2489173  0.7285625 -1.259335   1.633234
β4 0.8977515  0.7253961 -0.4573143   2.309644

β5 -0.1771244 1.087419 -2.360675   1.969119

Model-II
Burn in period=3360; Autocorrelation lag=345

α1 0.05648459   0.0207349 0.02031303  0.09277614
λ1 0.001774532  0.0005236752 0.001025109  0.00289744
α2 0.002125575  0.0008264149 0.0005656352 0.003393323
λ2 0.00205937   0.000452556 0.001109531  0.003051102
ρ 8.372903e-05   4.18004e-05 2.187317e-05   0.0001699641
ξ 791.7109   43.40519 717.4634  866.5391
β1 -0.006614582  0.01437798 -0.03282809  0.02471562
β2 -3.059486   0.5444863 -4.304183   -1.934005
β3 0.368245   0.6982481 -1.021127   1.74352
β4 1.13813   0.7731091 -0.3421089   2.798761
β5 -0.3338178   1.175335 -2.707662  1.93735

Table4. Posterior summary for kidney infection data.

Model Distribution AIC values BIC values DIC values
I Pareto 705.8871 723.9006 696.5783

II linear failure rate 690.1407 708.1542 681.47

Table 5. AIC, BIC and DIC values for kidney infection data.
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From the Table 4, we can observe that for these two models, the value zero is not a credible value for the credible interval of 
the regression coefficient X2 so X2 that is sex variable seems significant. Negative value of β2   indicates that the female patients 
have a slightly lower risk of infection. The remaining all the covariates X4 i.e. age, X5 i.e. disease type PKD X3 i.e. disease type GN 
and covariate X4 i.e. disease type AN are insignificant for both the Models.

The estimate of from two models shows that there is a strong evidence of high degree of heterogeneity in the population 
of patients. Some patients are expected to be very prone to infection compared to others with same covariate value. This is 
not surprising, as seen in the data set there is a male patient with infection time 8 and 16, and there is also male patient with 
infection time 152 and 562.

The comparison between two proposed models is done using AIC, BIC and DIC values given in Table 5. It is observed that 
both Model I and Model II have AIC, BIC except DIC values are near about same. An alternate way to take the decision about the 
best model between the proposed Model I and Model II, we use the Bayes factor which is defined as,

 2 i
ij

j

I
M log

I
 

=   
 

                                                                                                                                                                             (9.1)

Where  is as defined as in equation (7.5)

Using Equation (9.1) we computed Bayes factor which is 6.3162 for our proposed models.

We can observe that the Bayes factor of Model II vs Model I is 6.3162 implies that, there is positive evidence against Model-I, 
so Model-II is better than Model-I. Thus, Model II is best model of the proposed compound negative binomial frailty models. Now, 
we are in a position to say that, we have suggested a new shared compound negative binomial frailty model with linear failure 
rate distribution as the baseline distribution is best for modeling of kidney infection data. For simulation study and to analysis the 
kidney infection data we used R software.

CONCLUSIONS
In the present study we discuss results for the two proposed models of compound negative binomial frailty namely Pareto, 

linear failure rate distribution as the baseline distributions. Our aim is to find the model which fit best between proposed models. 
For maximum likelihood estimate, likelihood equations do not converge and method of maximum likelihood fails to estimate 
the parameters so we use Bayesian approach. Using the Bayesian approach we perform simulation study and analyze kidney 
infection data. The estimate of frailty variance from different models (Model-I=1.0009; Model-II=1.0001) shows that there is a 
strong evidence of high degree of heterogeneity in the population of patients. The covariate sex is significant for both models. 
Negative value of the regression coefficient (β2) of covariate sex indicates that the female patients have a slightly lower the risk 
of infection. Negative value of the regression coefficient (β5) of covariate, the disease type PKD indicates that the patient with the 
absence of this diseases have a slightly lower the risk of infection. On the basis of AIC, BIC, DIC and Bayes factor, the Model II, the 
shared compound negative binomial frailty with linear failure rate distribution is best model for kidney infection.
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