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Abstract  In this paper the effects of magnetic field and conduction on the transient free convective boundary layer flow 
over a vertical slender hollow circular cylinder with the inner surface at a constant temperature are investigated. The trans-
formed dimensionless governing equations for the flow and conjugate heat transfer are solved by using the implicit finite 
difference scheme. For the validation of the current numerical method heat transfer results for a Newtonian fluid case where 
the magnetic effect and conduction is zero are compared with those available in the existing literature, and an excellent 
agreement is obtained. Numerical results for the transient flow variables, average wall shear stress and average heat transfer 
rate are shown graphically. In all these profiles it is observed that the times needed to reach the steady-state and the temporal 
maximum increases as the magnetic parameter or conjugate heat transfer parameter increases. 
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1. Introduction 
Unsteady natural convection flows over vertical bodies 

have a wide range of applications in engineering and tech-
nology. In manufacturing processes such as hot extrusion, 
metal forming and crystal growing, heat transfer effects 
plays an important role. Free convection flow of air bathing a 
vertical cylinder with a prescribed surface temperature was 
first presented by Sparrow and Gregg[1] by applying the 
similarity method and power series expansion. Velusamy 
and Garg[2] presented the numerical solution for transient 
natural convection over heat generating vertical cylinders of 
various thermal capacities and radii. While Fujii and Ue-
hara[3] analyzed the local heat transfer results for arbitrary 
Prandtl numbers. Lee et al.[4] investigated the similar 
problem along slender vertical cylinders and needles for the 
power-law variation in the wall temperature. In general, 
Ganesan and Rani[5] have investigated the unsteady natural 
convection flow over a vertical cylinder with variable heat 
and mass transfer using the finite difference method. Re-
cently, Rani and Kim[6] investigated the unsteady effects for 
the similar problem with temperature dependent viscosity. 

In these studies the wall conduction resistance for the 
convective heat transfer between a solid wall and a fluid flow  
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was neglected considering a thin vertical wall. However, in 
practical systems the wall conduction resistances have a 
significant effect in the fluid flow and in the heat transfer 
characteristics in the vicinity of the wall. Thus the conduc-
tion in the solid wall and the convection in the fluid, known 
as conjugate heat transfer (CHT), should be determined 
simultaneously. These type of problems are usually referred 
to as conjugate heat transfer problems, and they have many 
practical applications, particularly those related to energy 
conservation in buildings, cold storage installations and 
cryogenic applications, such as medical and space technol-
ogy. The CHT problems have been studied by several re-
search groups[7-9] with the help of mathematical models for 
simple heat exchanger geometries. Gdalevich et al.[10] and 
Miyamoto et al.[11] reviewed the early theoretical and ex-
perimental works of the CHT problems for a viscous fluid. 
Miyamoto observed that a mixed-problem study of the 
natural convection has to be performed for an accurate 
analysis of the thermofluid-dynamic (TFD) field if the con-
vective heat transfer depends strongly on the thermal 
boundary conditions. Pozzi et al.[12] investigated the entire 
TFD field resulting from the coupling of natural convection 
along and conduction inside a heated flat plate by means of 
two expansions, regular series and asymptotic expansions. 
Moreover, Vynnycky et al.[13] studied the two dimensional 
conjugate free convection for a vertical plate of finite extent 
adjacent to a semi-infinite porous medium using finite dif-
ference techniques. Recently, Kaya[14] studied the effects of 
buoyancy and CHT on non-Darcy mixed convection about a 
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vertical slender hollow cylinder embedded in a porous me-
dium with high porosity. 

Also, magnetohydrodynamic (MHD) flow and heat 
transfer processes occur in many industrial applications such 
as the geothermal system, aerodynamic processes, chemical 
catalytic reactors and processes, spreading of chemical pol-
lutants in plants. Moreover, effects of thermophoresis on 
hydromagnetic flow along a flat plate were studied by 
Chamkha and Camille [15]. Recently, Mamun et al.[16] 
investigated the effects of magnetic field, viscous dissipation 
and heat generation on natural convection flow along and 
conduction inside a vertical flat plate. 

From the above studies, it can be noted that the CHT on 
the unsteady natural convective hydromagnetic flow of a 
viscous incompressible fluid over a vertical cylinder has 
received very scant attention in the literature. Hence, in the 
present investigation our attention is focused on the effect of 
magnetic field on the coupling of conduction inside and the 
laminar natural convection flow over the outside surface of a 
vertical slender hollow cylinder. The temperature of the 
inner surface of the cylinder is kept at a constant value which 
is higher than the ambient fluid temperature and the tem-
perature of the outer surface is determined by the conjugate 
solution of the steady-state energy equation of the solid and 
the boundary layer equations of the fluid flow. The govern-
ing equations are solved numerically by the implicit finite 
difference method to obtain the transient velocity and tem-
perature profiles, coefficient of skin-friction and heat trans-
fer rate for different values of conjugate heat transfer and 
magnetic parameters. 

In section 2, a detailed description about the formulation 
of the problem is given. Also, the governing equations, such 
as mass, momentum and energy equations of an incom-
pressible fluid flow past a vertical cylinder are derived and 
non-dimensionalized. In section 3, the details about the grid 
generation and numerical methods for solving the above 
governing equations are given. In section 4, transient 
two-dimensional velocity and temperature profiles, average 
skin-friction coefficient and heat transfer rate are analyzed. 
Finally, the concluding remarks are made in section 5. 

2. Formulation of the Problem 
An unsteady two-dimensional laminar free convective 

hydromagnetic flow of a viscous incompressible fluid past a 
vertical slender hollow cylinder of length l and outer radius 

0 0( )r l r>> is considered as shown in Fig. 1. The x-axis is 
measured vertically upward along the axis of the cylinder. 
The origin of x is taken to be at the leading edge of the cyl-
inder, where the boundary layer thickness is zero. The radial 
coordinate, r, is measured perpendicular to the axis of the 
cylinder. The surrounding stationary fluid temperature is 
assumed to be of ambient temperature ( T∞′ ). The tempera-
ture of the inside surface of the cylinder is maintained at a 
constant temperature of 0T ′ , where 0T T∞′ ′> . Initially, i.e., at 
time 0t′ =  it is assumed that the outer surface of the cylin-

der and the fluid are of the same temperature T∞′ . As time 
increases ( 0t′ > ), the temperature of the outer surface of the 
cylinder is raised to the solid-fluid interface temperature wT ′  
and maintained at the same level for all time 0t′ > . This 
temperature wT ′  is determined by the conjugate solution of 
the steady-state energy equation of the solid and the bound-
ary layer equations of the fluid flow and is discussed else-
where. It is assumed that the effect of viscous dissipation is 
negligible in the energy equation. It is further assumed that 
the interaction of the induced axial magnetic field with the 
flow is considered to be negligible compared to the interac-
tion of the applied magnetic field 0H , with the flow. Under 
these assumptions, the boundary layer equations of mass, 
momentum and energy with Boussinesq's approximation are 
as follows: 

 
Figure 1.  Schematic of the investigated problem 
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The corresponding initial and boundary conditions are 
given by 

0
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where wT ′ is the unknown solid-fluid interface tempera-
ture and is determined as follows: 

To predict the outer surface temperature of the cylinder 
wT ′ , an additional governing equation is required for the 

slender hollow cylinder based on the simplification that the 
wall of cylinder steady transfers its heat to the surrounding 
fluid. Since the outer radius of the hollow cylinder, 0r , is 
small compared to its length, l, the axial conduction term in 
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the heat conduction equation of the cylinder can be omitted. 
The governing equation for the temperature distribution 
within the slender hollow circular cylinder is given by 
Chang[17] as follows: 

2
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The general solution of Eq. (5) along with (6) is given by 
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On the other hand, Eq. (5) is coupled with the energy 
equation in the fluid region based on the condition that the 
temperature and the heat flux are continuous at the 
solid-fluid interface, namely 
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Using Eqs. (7) and (8), the temperature distribution wT ′  at 
the interface is given by 
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By introducing the following non-dimensional quantities 
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(the symbols are explained in the nomenclature) in the Eqs. 

(1)-(3), they reduced to the following form: 
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The corresponding initial and boundary conditions in 
non-dimensional quantities are given by 

0 : 0, 0, 0 for all and

0 : 0, 0, 1 at 1

0, 0, 0 at 0
0, 0, 0 as
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3. Numerical Procedure 
In order to solve the unsteady coupled non-linear gov-

erning Eqs. (11)-(13) an implicit finite difference scheme of 
Crank-Nicolson type has been employed. The finite differ-
ence equations corresponding to Eqs. (11) - (13) are as fol-
lows: 
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To solve the finite difference Eqs. (15)-(17), the region of 
integration is considered as a rectangle composed of the lines 
indicating Xmin = 0, Xmax = 1, Rmin = 1 and Rmax = 16, 
where Rmax corresponds to R = ∞  which lies very far from 
the momentum and energy boundary layers. In the above Eqs. 
(15)-(17) the subscripts i and j designate the grid points along 
the X and R coordinates, respectively, where X = i ∆X and R = 
1 + (j -1) ∆R and the superscript k designates a value of the 
time t (= k ∆t), with ∆X, ∆R and ∆t the mesh size in the X, R 
and t axes, respectively. In order to obtain an economical and 
reliable grid system for the computations, a grid independent 
test has been performed. The steady-state velocity and tem-
perature values obtained with the grid system of 100 × 500 
differ in the second decimal place from those with the grid 
system of 50 × 250, and in the fifth decimal place from those 
with the grid system of 200 × 1000. Hence, the grid system 
of 100 × 500 has been selected for all subsequent analyses, 
with mesh size in X and R direction are taken as 0.01 and 
0.03, respectively. Also, the time step size dependency has 
been carried out, from which 0.01 yielded a reliable result. 

From the initial conditions given in Eq. (14), the values of 
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velocity U, V and temperature T are known at time t = 0, then 
the values of T, U and V at the next time step can be calcu-
lated. Generally, when the above variables are known at t = k 
∆t, the variables at t = (k + 1) ∆t are calculated as follows. 
The finite difference Eqs. (16) and (17) at every internal 
nodal point on a particular i-level constitute a tridiagonal 
system of equations. Such a system of equations is solved by 
the Thomas algorithm [18]. At first, the temperature T is 
calculated from Eq. (17) at every j nodal point on a particular 
i-level at the (k + 1)th time step. By making use of these 
known values of T, the velocity U at the (k+1)th time step is 
calculated from Eq. (16) in a similar manner. Thus, the val-
ues of T and U are known at a particular i-level. Then the 
velocity V is calculated from Eq. (15) explicitly. This process 
is repeated for the consecutive i-levels; thus the values of T, 
U and V are known at all grid points in the rectangular region 
at the (k + 1)th time step. This iterative procedure is repeated 
for many time steps until the steady-state solution is reached. 
The steady-state solution is assumed to have been reached 
when the absolute difference between the values of velocity 
as well as temperature at two consecutive time steps is less 
than 510−  at all grid points. The truncation error in the em-
ployed finite difference approximation is 2 2( )O t R X∆ + ∆ + ∆  
and tends to zero as ∆X, ∆R and ∆t → 0. Hence the system is 
compatible. Also, this finite difference scheme is uncondi-
tionally stable and therefore, stability and compatibility 
ensure convergence. 

4. Results and Discussion 
For the validation purpose, the present simulated velocity 

and temperature profiles are compared with those of the 
available steady-state, isothermal results of Lee et al.[4] for 
air (Pr = 0.7) without conduction and magnetic effects i.e., 
P = 0.0 and M = 0.0, as there are no experimental or ana-
lytical studies available to compare with the present prob-
lem. The current results are found to be in good agreement 
with the previous results available in literature as shown in 
Fig. 2. 

 
Figure 2.  Comparison of the velocity and temperature profiles 

The simulated results are presented to outline the general 

physics involved in the effects of different M ( = 0.2, 0.5, 
0.8 and 1.0) and P ( = 0.1, 0.5, 1.0 and 2.0) with fixed Pr 
[ = 0.71 (air)] on the transient velocity and temperature pro-
files. The simulated transient behaviour of the dimen-
sionless flow variables, average wall shear stress and heat 
transfer rate are discussed in detail in the succeeding sub-
sections. 

 
(3a) 

 
(3b) 

Figure 3.  The simulated transient velocity at (1, 1.78) for (a) variation of 
M ; (b) variation of P 

4.1. Velocity 

The simulated transient velocity (U) at (1, 1.78) for dif-
ferent values of magnetic parameter M and conjugate heat 
transfer parameter P against t is shown graphically in Fig. 3. 
Fig. 3a depicts the variation of M with fixed P = 0.5 and Fig. 
3b for the variation of P with fixed M = 0.2. From Figs. 3a 
and 3b it is observed that the velocity increases with time, 
reaches a temporal maxima, then decreases and at last 
reaches the asymptotic steady-state. For example, in Fig. 3a 
when M = 0.2, the velocity increases with time monotoni-
cally from zero and reaches the temporal maximum, then 
slightly decreases with time and becomes asymptotically 
steady. It is observed that at the very early time (i.e., t < < 1), 
the heat transfer is dominated by conduction. Shortly later, 
there exists a period when the heat transfer rate is influenced 
by the effect of convection with the increasing upward ve-
locities along the time. When this transient period is almost 
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ending and just before the steady-state is about to be reached, 
there exist overshoots of the velocities. From Figs. 4a and 4b 
it can be observed that velocity profiles reach their maximum 
value approximately at (1, 1.78). Similarly, the velocity at 
other locations also exhibits somewhat similar transient 
behaviour. As noted in Fig. 3a, the magnitude of this over-
shoot of the velocities decreases as M is increased, since with 
the increasing M the velocity diffusion is increased (refer Eq. 
(12)). Hence, there is a high resistance to the fluid flow in the 
region of the temporal maximum of velocity. The time 
needed to reach the temporal maximum of the velocity in-
creases as M increases. It is also noticed that for small values 
of M the temporal maximum is reached at early times. For all 
values of P, Figure 3b reveals that it has the same trend as the 
transient behaviour with respect to M shown in Fig. 3a, but 
the temporal maximum of velocity decreases as P increases. 
In association with the transient characteristics of the veloc-
ity, similar trends of the temperature fluctuation can be ob-
served and will be described in Fig. 5. 

 
(4a) 

 
(4b) 

Figure 4.  The simulated steady-state velocity profile at X =1.0 for (a) 
variation of M ; (b) variation of P 

Figure 4 depicts the simulated steady-state velocity pro-
files against the R at X = 1.0 for different values of M and P. 
Fig. 4a shows the variation of M with fixed P = 0.5 and Fig. 
4b for the variation of P with fixed M = 0.2. From these 
figures it is observed that the velocity profile start with the 
value zero at the wall, reach their maximum and then 
monotonically decrease to zero along the radial coordinate 
for all t. Also it is observed that in the vicinity of the wall the 

magnitude of the axial velocity is rapidly increasing as R 
increases from Rmin (=1). From Fig. 4a it is observed that the 
velocity decreases with the increasing values of M because 
the effect of velocity diffusion gets increased for high values 
of M. The magnetic parameter M , representing the Lorentz 
force, which opposes the flow. The peak velocity decreases 
with the in creasing M due to this retarding effect as shown 
in Fig. 4a. As a result, the separation of the boundary layer 
occurs earlier since the momentum boundary layer becomes 
thicker. When M is increased, the thermal convection is 
confined to a region near the hot wall, while the momentum 
diffusion is propagated far from the hot wall and hence the 
high velocity profiles are observed close to the hot wall. It is 
also observed that the time required to reach the steady-state 
increases as M increases. Fig. 4b reveals that it has the same 
trend as the variation of steady-state time with respect to M 
as shown in Fig. 4a, but the velocity profile is influenced 
significantly and decreases when the value of P increases. 

4.2. Temperature 

The simulated transient temperature (T) for different val-
ues of M and P with respect to t is shown at the point (1, 1.15) 

 
(5a) 

 
(5b) 

Figure 5.  The simulated transient temperature at (1, 1.15) for (a) variation 
of M ; (b) variation of P 

in Fig. 5. Figure 5a shows the variation of M with fixed P 
= 0.5 and Fig. 5b for the variation of P with fixed M = 0.2. 
From Figs. 5a and 5b it is observed that these profiles in-
crease with time, reach a temporal maxima, decrease and 
again after a slight increase attain the steady-state asymp-
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totically. The temperature at other locations also exhibits 
somewhat similar transient behaviour. During the initial 
period, the nature of the transient temperature profiles is 
particularly noticeable. From Fig. 5a it is observed that for all 
values of M, the transient temperature profiles initially co-
incide and then deviate after some time. Also, the time re-
quired to reach the temporal maximum of the temperature 
increases with the increasing values of M. It can be noticed 
that for small values of M the temporal maximum is attained 
at an early times. Here, it is observed that the maximum 
value of temperature increases with the increasing M. Figure 
6b shows that it has the same trend as the transient behaviour 
with respect to M shown in Fig. 5a, but the temporal maxi-
mum of temperature decreases as P increases. From Figs. 5a 
and 5b it is noticed that during the initial time, the variation 
of temperature with P is observed to be larger than that with 
M. This result implies that the temperature field is more 
strongly affected by the conjugate heat transfer parameter, 
since an increased value of P corresponds to a lower wall 
conductance sk and promotes larger surface temperature 
variations as mentioned in Fig. 5b. 

 
(6a) 

 
(6b) 

Figure 6.  The simulated steady-state temperature profile at X = 1.0 for (a) 
variation of M ; (b) variation of P 

The simulated steady-state temperature profiles for dif-
ferent values of M and P at X = 1.0 against the R are shown in 
Fig. 6. Figure 6a reveals the variation of M with fixed P = 0.5 
and Fig. 6b for the variation of P with fixed M = 0.2. From 
these figures it is observed that the temperature profiles start 

with the hot wall temperature and then monotonically de-
crease to zero along the radial coordinate for all time. It is 
related to the fact that the effect of velocity diffusion gets 
increased for higher values of P, which allows higher ve-
locity near the hot wall. From Fig. 6a it is observed that the 
steady temperature value increases with increasing values of 
M for fixed P. Larger M values give rise to thicker tem-
perature profiles, since a larger M value means that the 
thermal diffusion from the wall is prevailing while the ve-
locity diffusion tries to move close to the wall. The increased 
value of the magnetic parameter increases the thickness of 
the thermal boundary layer . Temperature at the interface 
also varies since the conduction is considered with in the 
cylinder. Also, time taken to reach the steady-state increases 
as M increases. Figure 6b reveals that the steady temperature 
value decreases as the heat transfer parameter P increases. A 
lower wall conductance sk  or greater convective cooling 
effect due to larger k f  increases the value of P as well as 
causes higher temperature difference between the two sur-
faces of the cylinder. This is due to the reason that the tem-
perature at the solid-fluid interface is decreased since the 
temperature at the inner surface of the cylinder is kept con-
stant. As a result the temperature profile as well as the ve-
locity profile moves downwards in the fluid. It is also ob-
served that the time taken to reach the steady-state increases 
with increasing values of P. 

4.3. Average Skin-friction Coefficient and Heat Transfer 
Rate 

For engineering purposes, one is usually interested in the 
values of the skin-friction coefficient and heat transfer rate. 
The friction coefficient is an important parameter in the heat 
transfer studies since it is directly related to the heat transfer 
coefficient. The increased skin-friction is generally a dis-
advantage in technical applications, while the increased heat 
transfer can be exploited in some applications such as heat 
exchangers, but should be avoided in others such as gas 
turbine applications, for instance. For the present problem 
these skin-friction coefficient and heat transfer rate are de-
rived and given in the following equations: 

The wall shear stress at the wall can be expressed as 
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then the local skin-friction coefficient can be written as 
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The integration of the Eq. (20) from X = 0 to X = 1 gives 
the following average skin-friction coefficient. 
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The local Nusselt number is given by 
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where the heat transfer, wq  is given by 
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Thus, with the non-dimensional quantities introduced in 
Eq. (10), Eq. (22) can be written as 
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The integration of the above Eq. (23) with respect to X 
from 0 to 1 yields the following average Nusselt number. 

Nu = −
1

10 R

T dX
R =

∂ 
 ∂ ∫                (24) 

The derivatives involved in Eqs. (21) and (24) are evalu-
ated by using a five-point approximation formula and then 
the integrals are evaluated by using the Newton-Cotes closed 
integration formula. The simulated average non-dimensional 
skin-friction and heat transfer coefficients have been plotted 
against the time in Figs. 7 and 8 for different values of M and 
P. 

 
(7a) 

 
(7b) 

Figure 7.  The simulated average skin-friction for (a) variation of M ; (b) 
variation of P 

The effects of different values of M and P on the simulated 
average skin-friction coefficient are shown in Figs. 7a and 7b, 
respectively. From Figs. 7a and 7b it is observed that for all 
values of M and P the average skin-friction coefficient in-

creases with time, attains the maximum value and, after 
slight decrease, reaches asymptotically steady-state. Because 
the buoyancy-induced flow velocity is relatively low at the 
initial transient period, as seen in Fig. 3, the wall shear stress 
remain small, as shown in Fig. 7. However, the wall shear 
stress increases as the time proceeds, yielding an increase in 
the skin-friction coefficient. It is also observed from Fig. 7a 
that for increasing values of M the average skin-friction 
coefficient decreases. This result lies in the same line with 
the velocity profiles plotted in Fig 4a. The magnetic force 
opposes the flow , as mentioned previously, and reduces the 
wall shear stress. From Fig. 7b it is observed that the average 
skin-friction coefficient decreases as P increases. It is related 
to the fact that the increased value of P decreases the velocity 
of the fluid within the boundary layer region, as mentioned in 
Fig. 4b, and decreases the viscosity of the fluid. It is also 
noticed that from Figs. 7a and 7b during the initial period, the 
variation of skin-friction with P is observed to be larger than 
that with M. This result means that the average skin-friction 
coefficient is more strongly affected by P compared to the 
magnetic parameter M. 

 
(8a) 

 
(8b) 

Figure 8.  The simulated average Nusselt number for (a) variation of M ; (b) 
variation of P 

In Figs. 8a and 8b the effects of different values of M and 
P on the simulated average heat transfer rate are shown, 
respectively. From Figs. 8a and 8b it is observed that at short 
times, after t = 0, the average Nusselt numbers are almost the 
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same for all values of P and M. This shows that initially there 
is only heat conduction. Fig. 8a reveals that an increase in the 
value of M leads to a decrease in the values of the average 
heat transfer rate. Increasing M retards the spatial decay of 
the temperature field near the heated surface because of 
increased flow velocity near the wall, yielding a decrease in 
the rate of heat transfer. Further the heat transfer rate de-
pends on the gradient of temperature. As the gradient de-
creases with the increasing M, the average heat transfer rate 
also decreases. From Fig. 8b it is observed that with the 
increasing values of P i.e with lower wall conductance ( sk ), 
the average heat transfer rate decreases as P increases. 

5. Conclusions 
Conjugate heat transfer analysis on unsteady natural 

convection hydromagnetic flow of a viscous incompressible 
fluid over a vertical slender hollow cylinder has been studied. 
An implicit finite difference scheme of Crank-Nicolson type 
has been used to solve the governing unsteady, non-linear 
and coupled equations. The resulting system of equations is 
solved by using the tridiagonal algorithm. The computations 
are carried out for different values of magnetic parameter M 
( = 0.2, 0.5, 0.8 and 1.0) and conjugate heat transfer pa-
rameter P ( = 0.1, 0.5, 1.0 and 2.0). For the velocity and 
temperature profiles it is observed that the time elapsed to 
reach the temporal maximum increases with the increasing 
values of M and P. Time needed to reach the steady-state 
increases as M and P increases. It is noticed that the velocity 
and average skin-friction coefficient of the fluid decreases 
with the increasing values of M. The values of flow variables 
(U, T) of the fluid decreases as P increases. It is also ob-
served that as P or M increases the steady-state values of 
average Nusselt number decreases. 

Nomenclature 
C f         dimensionless average skin-friction coefficient 
C f         dimensionless local skin-friction coefficient 
cp          specific heat at constant pressure 
g         acceleration due to gravity 
Gr         Grashof number 

0H         applied magnetic field 
,k kf s       thermal conductivity of the fluid and the solid    

            cylinder, respectively 
l          length of the cylinder 
M         magnetic parameter 
Nu         dimensionless average Nusselt number 

XNu        dimensionless local Nusselt number 
P         conjugate heat transfer parameter 
Pr         Prandtl number 
r          radial coordinate 

0,ir r        inner and outer radii of the hollow cylinder,  
            respectively 
R          dimensionless radial coordinate 
t′          time 
t          dimensionless time 

0T ′        temperature at the inside surface of the cylinder 
sT ′         solid temperature 

T ′         temperature of the fluid 
T          dimensionless temperature of the fluid 
u, v        velocity components in x, r directions respect 
            tively 
U, V       dimensionless velocity components in X, R  
            directions respectively 
x          axial coordinate 
X          dimensionless axial coordinate 
Greek Letters 
α           thermal diffusivity 
β           volumetric coefficient of thermal expansion 
ρ           density 
σ           electrical conductivity of the fluid 
μ           viscosity of the fluid 
υ           kinematic viscosity 
 
 
Subscripts 
w            conditions on the wall 
∞            free stream conditions 
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