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ABSTRACT

This paper will describe an algorithm for detecting and classi&ing seismic and acoustic signals for unattended ground
sensors. The algorithm must be computationally eftlcient and continuously process a data stream in order to establish
whether or not a desired signal has changed state (turned-on or ofl). The paper will focus on describing a Fourier based
technique that compares the running power spectral density estimate of the data to a predetermined signature in order to
determine if the desired signal has changed state. How to establish the signature and the detection thresholds will be
discussed as well as the theoretical statistics of the algorithm for the Gaussian noise case with results from simulated data.
Actual seismic data results will also be discussed along with techniques used to reduce false alarms due to the inherent non-
stationary noise environments found with actual data.

Keywords: detectiow identificatio~ seismology, acoustics, unattended ground sensors

1. INTRODUCTION

There has been considerable interest in using seismic and acoustic sensors to detect and identi~ continuous wave (CW)
sources [1][2] [3][4][5]. This paper addresses the challenge of monitoring such sources within a seismic environment having
limited interfering sources and under the constraint that the algorithm runs in realtime in an unattended ground sensor system
and extends the techniques discussed in [4]. The focus of the paper is on a Fourier based technique that uses a running power
spectral density estimate of the data in order to determine if there was a turn-off or turn-on of a CW source of interest.

It is assumed that equipment in steady state vibrate at distinct frequencies and in many situations one does not know a priori
the frequencies that characterize the equipment. As such the first section describes a technique that detects turning-on or
turning-off a frequency or tone (state change). The detector is then constrained to report only when a settable number of
tones change state. The statistical properties of the detector are described as well as how the detector adapts to the changing
background level.

The second section describes a technique that can be used to identi~ the state changes for a particnkir piece of equipment if
one can determine the characteristic frequencies of the equipment a priori. In this case, the signature, referred to as a
template, can be used by the detector to determine when a particular set of frequencies, assumed unique, turn-on or tsun-off,
and thereby, make a classification decision. Two different procedures for developing templates are discussed: (1) a
frequency list approack and (2) a statistical regression analysis approach. In either case, the statistical properties of the
classifier are derived from the statistical discussion in the f~st sectio% and the same adaptive technique is used to adjust to
the background level.

In both sections, white Gaussian noise is used to establish the statistical properties and set the thresholds, which are tied to a
probability of false alarm. Synthetic data is then used to demonstrate the theoretical performance of both the detector and
classifier. Potential field performance is demonstrated by using actual seismic data. The last section provides a summary of
the results and examines future efforts to address potential improvements in pefiormance.

2. TONE DETECTOR
2.1 Background

Detecting the turning on and off of equipment without a priori knowledge of the equipment’s characteristic frequencies
essentially becomes a tone detection problem. That is, one wants to detect the turning on or off of a specified number of
frequencies or tones that are associated with equipment. Figure 1 shows the spectrogram from a GS-14 geophone located
200 meters away from a representative CW source turning o% running for 90 seconds (enough time to reach steady state),
and then turning off. Note the presence of many tones as well as the non-stationary properties during the turn-on. In addition
to the generator running, a large transient occurred at approximately 02:13:40. The goal is for the detector to detect the state
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changes of the tones without a false alarm from the transient or missing the turn-on due to the variable frequency
characteristics during the turn-on.

2.2 Assessing the frequency content of the signal

The FFT is a natural tool to use for the detector since it can be used to estimate the frequency content of a signal. Our
detector uses the Bartlett method for estimating the power spectrum of a data segment [6]. Given a da% buffer, the data is
segmented into K partitions of Iength N where bocontrols. the amount of overlapping:

X,(tn)=x (t. +@-j)

n = 0,1,...,N –1 (1)

k = 0,1,...,K –1.

Typically b. is selected such that there is a 50’%0overlap; l/2N*(K+l) samples of data are required. For each segment a
windowed periodogram estimate is formed (W represents the window weights and&is the fkequency value for bin 1)

1 N

()

2
– i2nftn

M.o=y ~xk (tn)w(tn)exP ~ *
n-o

(2)

and the short-term average (STA) of the power spectrum estimate is calculated by averaging the penodogram values for the
mti data buffer

(3)

2.3 Thresholds

The STA at a specific frequency fi will be used to decide if a tone at this frequency has turned on or off. But before this can
be done, one needs an estimate of the noise floor or background power level that is present. Forming a long-term average
(LTA) of the STA values as well as calculating the variance of the STA values (STAVAR) characterizes the background
level where M is the number of data buffers used. Note that these values are calculated using “delayed” STA values in order
to remove any bias that could be created by a state change during the current STA buffer of data. A delay greater than one is
useful for detectimz eauiument that takes Iomzer in time than a data buffer to reach steady state during a turn-on. Once a state
change is detecte~, ~e~ one has to go th.&gh an initialization process to re-chara~terize the ~ackground level. This
procedure is discussed later.

(4)

With the background level established, one can perform a threshold test to determine if the STA vaIue represents a state
change or not. A simple tes$ having its roots in the Gaussian assumptio% would be to check whether the STA value is within
a set number of standard deviations of the LTA, such as

ONm(J): ST~(jj–LT~ @,)> 3.0904’~-. (5)

This test represents a significance tesl and, if the STA values are normal and stationary, then the probability this test will
erroneously declare a turn-on is approximately 0.001. The testis concerned with detecting events that are highly unlikely if
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the background level is well characterized and not changing-indicating a state change. However, since the STA values are
actually power spectral density estimates, they are not Gaussian but known to be related to the chi-square distribution if the
input signal is Gaussian [7]. The chi-square distribution is defined by the degrees of freedom (v); v is approximately 2*K for
the STA value. Note that this assumes that each periodogram value is independent (no overlap) and a rectangular window is
used, For our case of 50% overlap and a Harming window, we assume the values are independent.

The tests become

oNm(j):

OFFm(J) :

where

(6)

(7)

The threshold value #~jP is found from the chi-square distribution tables for a specified probability of false alarm (a) and is

normalized by the degrees of freedom. Note there are two different threshold values since the chi-square distribution is not
symmetric. The test relies on the assumption that the LTA characterizes the background level very well, or in essence
represents, in the absence of the source in questio% the true power ~ensity value for fi.

Figure 2 shows the output of the detector for noise (white, random Gaussia% data sampled at 1000 Hz) for &=75.2,using

N=1024, K=4, M=12, and ct=O.05. Calculating the degrees of freedom to be 8, tie on threshold ( %&g5 ) is 1.9388 ad the

off threshold (X&05 ) is 0.3416. The x-axis is the dab btier index IWthe Y-MS is the STA, LTA, ~d the scaled ~esho1d

values, and stars are used to indicate when the STA value passes either of the tests. Ideally the LTA would be a flat line at
one (the standard deviation of the noise was set at 32), but does have a variance. Note that the first 12 STA values are used to
initialize the LTA and a test is not perfobed for these values. The graph shows 14 on-detects and 12 off-detects for the 200
tests performed (212 STA values) indicating a probability of false alarm (PFA) of 0.07 and 0.06 for on’s and offs
respectively. Creating a 30 minute time series of data yielded a PFA for on’s of 0.059 and offs of 0.052.

The same data set was used, but the processing parameters M and the degrees of ii-eedom were changed to examine the
affects on the PFA; see Table 1. The results show that changing the degrees of freedom by 1 has much more of an affect on
the PFA than reducing the variance of the LTA by half. In general terms, a fractional estimate for degrees of freedom
between 7 and 8 is required, and increasing the LTA window length improves the accuracy of the test. For the purposes of
this paper, the original estimate for the degrees of freedom (v=8) and the shorter LTA window length (M=12) will be
considered adequate for predicting the PFA.

LTA window length Degrees of Freedom PFA Off PFA On PFA Avg
(M) (v)
12 8 0.059 n n<9 n n<<<

48 8 0.057
12 7 0.044
ii

,
7 0.049

Table1 PFA results for white Gaussian noise.



2.4 Adaptive thresholds

Figure 3 shows the output of the detector for the same noise data with a signal turning on and then off (sine wave with a
fi’equency of 75.2 Hz). Notice that when the signal is present the thresholds are much too large and no false alarms occur.
This is not surprising since the thresholds assume noise only and are tied to the processing parameters instead of the signal; a
measure of the STA’S variance needs to be factored in. Since the thresholds are controlled by the degrees of freedom, one
could use STAVAR to estimate “equivalent degrees of fi-eedom” and then calculate the threshold value, which would adapt
to the signal characteristics. The variance of a chi-square random variable is related to the degrees of freedom by [8]

VA&)= 2V ,

and the sampling distribution for the power spectral estimate is [7]

again assuming the LTA represents the

STAm@,)_X;

LTAm(fl) V ‘ ““

(8)

(9)

true power spectral density (PSD) value for t. Thus, the equivalent degrees of
freedom for a signal can be determined from

From [8], the Chi-Squared table look-up to determine the on-threshold X~jl_a can be approximated by

x,;,-a=v{l-$+z,.ag~

where Z1.. sets the PFA and is determined from a Normal distribution table

P(z<zp)=p.

(10)

(11)

(12)

The approximation is very accurate for v large (greater than 30), but for our purposes, will be considered adequate for even
small v (but greater than 4). The off threshold is determined by using the negative of Z1~. Figure 4 shows the detector
output using the same signal with the adaptive thresholds set at a PFA of 0.05 (Zo.g5=l.645). After the LTA has stabilized to
the signal with noise level, there are nearly 100 tests performed before the turn-off. During this period there are 4 false turn-
on’s and 10 false turn-off’s. A 30 minute test signal with additive noise yielded a PFA of 0.062 for on’s and 0.066 for off’s,
which is high because the periodograms are not totally independent, and the statistics may not be exactly chi-square.
However, the results are encouraging considering the approximations and assumptions used.

2.5 Persistence testing and non-stationary decision logic

Knowing that a signal should be persistent for some amount of time can be used to reduce significantly the number of false
alarms from spurious noise sources and transient events. By insisting that the there are a certain number of detections (q) for
a specified number of data buffers (r) one can create a “q out of r“ persistence test, which has a PFA determined from the
binomial distribution

PFA = ‘! (z*(l – ay-q .
q!(r - q)!

(13)
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Requiring a signal to be persistent for -16 seconds, but allowing for a few missed detections, would require r8, q=6 and
produce a PFA of approximately 4X10A-7or one every 60 days for stationary Gaussian noise using the processing parameters
previously specified. Of course, this represents the PFA only for ilequency fI, and it is highly unlikely that the background
will be stationary Gaussian noise.

As seen in Figure 1, the turn-on and turn-off of a signal is a non-stationary process and decision logic is required to determine
when a state change has taken place and put the detector into a wait state until the new background level is characterized.
Figure 5 shows the flow diagram for detecting the state changes and performing the persistence test. When the process is
started, or an event is declared, the algorithm goes into a wait state until the background statistics are learned. Once the
detector has characterized the statistics there are three possible detection states:

(1) Detecting On (DON)
(2) Detecting Off (DOFF)
(3) Not Detecting (ND).

Once in one of these three states, three different test results can occur and have to be assessed turn-on, turn-off, and no
detect (none). As indicated, generally the first turn-on test result puts the algorithm into the DON state and likewise for a
turn-off test result. If the algorithm is not in the ND state, then the q out of r persistence test is applied to the ensuing test
results. Note that the persistence test resets atler r-q misses and can declare an event before q tests are completed. When an
event is declare~ the algorithm goes into a wait state in order tore-learn the background statistics.

Adding such logic and the 8 out of 6 detector to the adaptive threshold technique provides the results shown in Figure 6 for
the synthetic signal test case. There are no false alarms and the turn-on and turn-off were both detected.

2.6 Tone detector test with actual seismic data

The data depicted in Figure 1 is a subset of a test where ten turn-on’s and off’s were performed over a half-hour period. A
large transient event occurred during each turn-off and turn-on period. Due to the inherent difficulties with false alarms for
actual data, ct was chosen to be 0.001 (ZMgg=3.090). Data taken from a geophone, at a much farther distance, had a much
weaker signal and is shown in Figure 7 for the entire test period. The weak signal had an SNR less than 15 dB for the 75.2
Hz tone, which was measured by integrating the area of the tone and dividing by the noise power for the same frequency
range when the source was off. Note that the signal is undetectable in the time domain (time series data not shown in a
figure). This is significantly less than the nearly 50 dB measured for the 75.2 Hz tone depicted in Figure 1.

The detector results are shown in Figures 8 and 9 respectively. Unfortunately, the first turn-on is missed since there is not
enough data before the turn-on to characterize the background. For the high SNR signal, all the possible turn-on’s and off’s
were detected with only one false turn-off during the half-hour period. For the low SNR signal, 7 of 9 possible turn-on’s
were detected and 4 of 10 possible turn-offs were detected. Evident in the plots is the significant jump in the LTA after the
transient occurs while the source is off. We are cumently exploring techniques to remove this undesirable affect.

2.7 Summary

The tone detector can be used to detect the turning on and off of frequencies in seismic data that may be indicative of
equipment turning-on and off. The technique is based on the statistical properties of the FFT for random Gaussian data, with
adjustments made to handle signals embedded in random noise. Adaptive thresholds are used to adjust to the variance of the
background level with the thresholds controlled by a parameter determined from an acceptable PFA. A persistence testis
used to reduce significantly the PFA. The next section describes how to use this detector when the characteristic frequencies
of the equipment to be detected are known.
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3. TEMPLATE DETECTOR
3.1 Background

If one can develop a template of characteristic frequencies for a particular type of equipment to be monitored, then one can
use the same principals of the tone detector to build a template detector that identifies when that particular type of equipment
turns on or oft and as SUCLclassify the seismic signals. In essence, a dot product of the template is taken with the
frequencies (zero to Nyquist) of the power spectral estimate to form the template detection statistic or short-term average

N12

T_ STAm. ~STAm(jJT(jj,
1=0

(14)

where T(J) is the template value at fi. The long-term average (T_ LTAm) and the variance of the T_STA values

(T_ STAVARm) can be calculated in a similar manner as described above; the thresholds and test statistics are calculated

in a similar reamer as well. How to determine the template values is discussed in the next sections.

3.2 Frequency list template

A simple technique for determining a template is to identify unique and prominent frequencies one wants to use to detect the
equipment. Careful analysis of the data shown in Figure 1 identifies prominent frequencies at 75.2, 100 and 150 Hz. The
75,2 Hz tone is much stronger than the other tones, and the template will reflect this through repetition in the list. Also, one
may expect the frequencies to vary somewhat over time. Therefore, the template consists of a composite mask formed by
creating a subset-template for each frequency with the following weights

f f f f“ f )={u0-3,0.6,lQ 03J@T1& ,fI_2, I.-I>I>1+1?1+2 Y 1+3 (15)

where all other frequencies are assigned a zero value. The template is the sum of the subset-templates

and a particular frequency can be given more weight by repetition in the list. The template is then normalized by

(16)

(17)

Figure 10 shows the template detector results for the fi={72.5, 72.5, 100, 150} template. The 9 turn-on’s and the 10 tur-
noff’swere detected with one false alarm. The next section describes a procedure for deriving templates using statistical
regression analysis.

3.3 Statistical regression analysis template

As described above, templates can be determined by examining the spectral output associated with a known signal, and
selecting obvious peaks. If there is considerable noise in the specm or if there is more than one signal present within the
spectrmq choosing the appropriate peaks can be difficult. If a series of spectra are available that encompass the on-off cycle
of the equipment, factor analysis methods can be used to calculate a template, based on the variance of the signal. Factor
analysis methods are those techniques that effectively reduce the dimensionality of the data matrix, while maintaining the
information content of the data. By using the entire frequency range for the template greater prediction precision is possible.

One such method is principal components analysis (PCA), which creates a linearIy independent basis set based on the
maximum variance in the spectral data. The variance described by the basis vectors is largest in the first vector and decreases
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with additional vectors. Each subsequent vector is orthogonal to the previous. A spectral data matrix, ~, with r samples, each
sample containing n points (r c n), can be interpreted as an ensemble of r points inn dimensional space. PCA is the process
of fitting a series of “lines and planes of closest fit to systems of points in space’’[9]. The “closest fit” in this case is the least
squares fit.

The vectors within this new basis set are referred to as PCA loadings and scores. If the noise within the data is randomly
varying, it will be contained in later loadings and scores of the PCA decomposition. Estimating the data set by using only the
significant PCA loadings can effectively filter random noise.
Mathematically, PCA can be described as the decomposition of a data matrix, X, with rank q, into a series of rank 1 matrices.
If the variation in a given signal is linear, and there is no noise in the data, the resulting data matrix will be rank 1. For real
data containing noise, q = r. For Xwith dimensions r x n

x= A41+M2+M3+... +k?q. (18)

Each of the rank 1 matrices can be written as outer products of two vectors: a score vector, th, and a loading vector, p ‘h,where
the apostrophe (’) represents the transpose

X = t,p’,+t2p’2+t3@3+...+ t#’h +tqp’q. (19)

Each vector this r x 1 and eachp ‘hvector is 1 x n. The equation above can be represented in matrix notation as:

X= TP’. (20)

The loading vectors, PIy,can be thought of as the spectral, or frequency features, while the scores, th, can be thought of as the
concentration, or amount, of that spectral feature contained in the sample. This can allow for the separation of signals, as
long as they do not co-vary within the calibration data. The insignificant loadings and scores can be deleted and the data
matrix estimated using only the significant PCA factors, 1:k, keg

(21)

where

E = q~+l).P’(~+,)q, (22)

represents the error. Note that

(23)

where ~ is the estimate of X.

Many methods exist for calculating scores and loadings. Details will not be discussed here, but the reader is refenred to work
on the Nonlinear Iterative Partial Least Squares (NIPALS) method [10], [11], and the Singular Value Decomposition method
(SVD)[12].

Once the scores and loadings are obtained, they can be used to relate the spectral information to external values, such as
concentration, class or in this case, on-off status of equipment. Once the data matrix is estimated by the appropriate number
of PCA loadings, a least squares solution can be found to relate the vector containing the state of the external variable, y, to

~. The relationship between y and ~ can be defined as:

y=i*b+E
Y

(24)

————. . —-. . . . . .,— — , —---- ,_
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where b is a regression vector relating y to X in a least squares sense and Ey is the error vector. For the data shown below,

the value of the external variable was set to Ofor the off state and 1 to the on state. Substituting scores and loadings for ~ I

gives: I
1

Y ‘[Trxk *@nxk)] *b+Ey (25) 1

The regression vector b (n x 1) can be estimated in a least squares sense by I

bG[Tnk*(&)]-’*y . (26)

The resulting regression vector is the template, and statistics presented in previous sections can be used to evaluate the result
of the template applied to an incoming signal. In the analysis to be she% scores and loadings calculated were related to the
instrument status as described above, often called Principle Components Regression (PCR). Another commonly used
multivariate method, known as Partial Least Squares (PLS), uses the external variable information (instrument status) to
adjust the rotation of the loading or scores vectors at each step of the factor calculation slightly altering the final regression
vector. In either case, the resulting template can be plotted and the resulting peaks and valleys compared to the known
signals. If there is more than one signal present within the data used to create the template, the template will account for the
second signal orthogonally, resulting in a ‘net’ template for the signal of interest.

The PCR method for calculating templates was applied to the data discussed in section 2.6. For the high SNR data, templates
were created for the equipment using data between data buffer index 260 and 430 with the small subsets of data removed
(during the transients and when the equipment was in a transitioning between states]. The resulting predicted values are 1:
shown in Figure 11. While the equipment template is sensitive to some of the transients, there are no false alarms and all the
turn-on and turn-off events were detected.

‘
4. SUMMARY AND CONCLUSIONS

This paper describes algorithms for detecting and classifying seismic and acoustic signals flom unattended ground sensors in
the sense that the algorithms are computationally efficient. The Fourier based technique compares the running power spectral
density estimate of the data to a predetermined signature in order to determine if the desired signal has changed state.
Detection thresholds adapt to the changing background level by forming an “equivalent degrees of freedom” measure that is
used to form a Chi-Squared based significance test. The significance of the test (or PFA) is determined by the normal
cumulative probability distribution and is easy to set. A persistence test that insures the significance testis passed at least q
out of r times reduces the false alarm rate tremendously. The signatures or templates are developed either from a frequency
list associated with a particular we of equipment or using statistical regression analysis. The algorithm was run on actual
seismic data and shown to have a probability of classification of one for a strong SNR signal with 1!) events and no false
alarms over a half-hour test with 20 transients. The current method for characterizing the background level becomes
significantly biased when transient events occur as seen by the LTA value plots for the seismic data. We are investigating
techniques for fbsing a time domain transient detector into the background level characterization process. Studies are also
underway to explore the false classification statistics of the regression templates.
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1. Figure 1 Spectrogram of representative CW source tumingm and off.
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3. Figure 3 Tone detector results for sine wave and random Gaussian noise, fixed thresholds.
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4. Figure 4 Tone detector results for sine wave and random Gaussian noise, adaptive thresholds.



.

F Wait State 4

.

Yes

Ready To Detect

orf---- ‘On

I
None

Detecting Off

I R

Y

Pas&Fail

+-Fai-%j=
Pa&ed

r+

E!5zEl

I ‘ec’areEven’~
I I

5, Figure5 Flowtiagramforstate change (non-stationay pruss)detection andpemistenMt=t.

;



,

[ .EiIe Edit Iools &/mdow Help

jjlD#kl&$\KA7/\PPO ‘“
. ..— .—. ——..—. .—. .

f
Detector Results forf[ = 75.2 Hz, VVith Persistence and State Logic

50 100 150 200
Data Buffer Index m

6, Figure 6 Tone detector results for sine wave with random Gaussian noise, adaptive thresholds, persistence test, and non-stationary state logic.

II Tm-on&offcycIe,75.2 fitone ~ Verv Weak CW Source (dBJ

Do

7, Figure 7 Weak CW source and transients. Ten tum+m and off events. Transient events occurred during each period the source was
The event circled corresponds in time with the representative CW source shown in Figure 1.

on and off.
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8. Figure 8 Detector results for seismic data with CW source and transients (see Figures 1 and 7).
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9, Figure 9 Detector results for seismic data with weak CW source and weak transients (see Figure 7).
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10. Figure 10 Template detector results for seismic data with CW source and transients. Frequency list template using ~5.2, 75.2,100,150 Hz}.
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11, Figure 11 Template detector results for seismic data with CW source and transients. Template derived from statistical regression analysis using

the forth and fifth events.


