View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by CiteSeerX

GridRun:

A lightweight packaging and execution environment for
compact, multi-architecture binaries

John Shalf
Lawrence Berkeley National Laboratory
1 Cyclotron Road, Berkeley California 94720

{jshalf@Ibl.gov}

Tom Goodale
Louisiana State University
Baton Rouge, LA 70803
{goodale @cct.lsu.edu}

Abstract

GridRun offers a very simple set of tools for creating
and executing multi-platform binary executables.
These "fat-binaries" archive native machine code into
compact packages that are typically a fraction the size
of the original binary images they store, enabling
efficient staging of executables for heterogeneous
parallel jobs. GridRun interoperates with existing
distributed job launchers/managers like Condor and
the Globus GRAM to greatly simplify the logic
required launching native binary applications in
distributed heterogeneous environments.

Introduction

Grid computing makes a vast number of
heterogeneous computing systems available as a
virtual computing resource. It is desirable to run
native binary programs in order to use these resources
efficiently. However, executing native programs in
heterogeneous distributed environments typically
requires careful staging of the native binary images,
complex RSL’s or clever job-launcher scripting to
select the appropriate executable to run on each
hardware platform. Although there are many robust
resource selection systems available as an integrated
part of Grid schedulers, progress in deploying
production metacomputing applications has been
hampered as a result of the non-uniformity and
inherent complexity of methods employed to mange
native code for parallel heterogeneous environments.

Interpreted languages and Virtual Machines are often
employed as an abstraction layer that hides
architectural heterogeneity [2]. This includes scripting
languages, byte-codes, and virtual machines of various
forms. However, these solutions have a significant
performance impact for compute-bound applications.
Native binary programs still offer the most efficient
execution environment for compute-bound

applications and will continue to play a very important
role in distributed applications for the foreseeable
future. Therefore, we focus our attention squarely on
the issue of simplifying the management and
distribution native executables as multiplatform binary
packages (fat-binaries).

In order to support a seamless multiplatform execution
environment in lieu of virtual machines, we extend the
familiar concept of the “fat-binary” to apply to multi-
operating system environments. The fat-binary has
been a very well-known and successful design pattern
for smoothing major instruction-set-architecture
transitions within a single Operating System
environment. A fat-binary file contains complete
images of the binary executables for each CPU
instruction set it supports. The operating system’s
file-loader then selects and executes appropriate
binary image for the CPU architecture that is running
the program. Fat-binaries have been used successfully
for packaging Windows NT programs that could
execute at native performance on both DEC Alpha and
Intel x86 architectures. In a more widely known
example, Apple Computer Inc. used fat-binary
executables as an alternative to emulation during the
transition from the 680x0 processors to the PowerPC
architecture.

From a user’s standpoint, the fat-binaries appear to be
ordinary program files that execute at native speed on
machines with radically different CPU architectures
without any additional effort on their part. However,
the only available examples of fat-binary execution
environments are systems that support different CPU
architectures that run the same operating system. We
desire this same degree of elegance for binaries that
work across multiple Operating Systems as well as
different CPU architectures in order to support
heterogeneous Grid environments. A Grid-oriented
fat-binary execution architecture must support more
robust selection criteria than the prior Microsoft and

https://core.ac.uk/display/357329076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Apple examples. In addition, some level of
compression must be employed to ensure that these
“fat-binaries” do not get unmanageably large given
the larger number of target platforms it must support.
Finally, the file format must work well with existing
job launchers for both parallel and distributed
environments including Condor, Globus GRAM,
GridLab GRMS, and various implementations of MPI
[4,7].

In the paper we describe a simple multiplatform
execution environment called GridRun that simplifies
the creation and management of fat-binary executables
for heterogeneous collections of computing resources.
GridRun reduces the size of file transfers required to
stage the executables, simplifies storage and selection
of the correct executable image, and even reduces the
complexity of Globus RSL’s and Condor submit files
for these kinds of jobs. GridRun easily accommodates
additional selection criteria that account for
heterogeneity in operating systems, instruction sets,
and even software libraries.

Related Work

The most typical method for managing binary
executables in a heterogeneous environment is to
manually stage the executables on each machine.
These methods are typically employed when
launching parallel MPI-based metacomputing jobs
that span multiple sites and computer architectures.
Examples of this include the Gordon-Bell winning
runtime optimizing transcontinental black-hole
simulations performed by Dramlitsch et al In 2001 [9].
MPICH-G2 was used to launch the job on 1500
processors spread across 4 heterogeneous
supercomputer systems located on multiple continents
(via DUROC), but the executable images had to be
manually staged on each of those respective systems.
DUROC was also used to provide a separate RSL for
the job-launch on each system. Fat-binaries would
allow the a single binary image to be staged across the
heterogeneous resources as an integrated part of the
job launching procedure with considerably less
variation in the subjob RSL’s.

Some systems manage heterogeneous execution
environments using a service model that treats pre-
installed native binaries as resources. Platform-neutral
RPC interfaces are used to abstract the differences
between underlying computing platforms. Systems
like NetSolve [6] are typical of an agent-based remote
computing service model where the software
component stays resident on a server at a fixed
location and is invoked via RPC as needed in
distributed applications. The remote server paradigm
ensures the revision consistency and availability of the
software components. However, this very centralized
approach provides a rather rigid infrastructure that is

essentially out of the user’s control. The execution
paradigm afforded by fat-binaries places the control of
software revisions firmly in control of the user.

VisPortal [11] and the GridLab Information Services
[4] provide a looser remote service model where
distributed information services (GRIS/GIIS) or local
“contact lists” act as central indices for software
components that are pre-installed on various machines
in their heterogeneous environment. When a job is
launched on a particular host, the system queries the
information service (eg GIIS) or the contact list to
provide the correct location of the executable to the
job launcher (eg edit the RSL for a GRAM job
launch). However, unlike NetSolve’s remote
computing model, software components that are
indexed in this manner typically only loosely
integrated with the information providers used by the
MDS, so there is only a weak guarantee that the
installed code-revision matches the data presented by
the information service. The process of pushing out
new code revisions to a large collection of
heterogeneous hosts in order to ensure revision control
consistency can be tedious and is clearly not scalable.

There are examples of scalable systems using an
application-level scheduling paradigm (AppLeS) [8],
such as the Application Manager component of the
GrADS framework [7] and Nimrod/G [9], where the
binaries are moved to computing resources on a
demand-driven basis. However, a fat-binary based
system provides the same scaling efficiency and code
revision consistency without the added complexity of
an application-level scheduler or indexing the codes
via distributed information services.

Another method for moving native code in a
heterogeneous environment is to incorporate
sophisticated automation for rebuilding the application
from source code as part of its launch procedure.
Such systems provide stronger guarantees of code
revision consistency. The Cactus Worm [3]
exemplifies the kind of application. The Worm is an
adaptive Grid application that dynamically discovers
additional resources on the Grid at runtime and will
migrate itself to “better” resources automatically in
response to “contract violation” or other soft resource
failures. The Worm’s nomadic capabilities depend on
Cactus’ architecture independent checkpointing
mechanism and Cactus’ robust ability to automatically
rebuild itself from source code on a wide variety of
computing platforms. However, when the cost of
rebuilding the application from source-code is
factored into the performance model employed by the
Resource Selector component of the application, it can
create a significant barrier to migration. Similar
examples can be constructed from the various
adaptive application scenarios supported by the
GrADS software infrastructure [7]. Migrating the

Worm’s executable image in fat-binary form would
significantly simplify code management, reduce the
costs of remediation for “contract violation” events,
and therefore reduce the barriers to migration.

Condor [1] offers the most sophisticated example of a
software infrastructure designed from the start to
support binary execution in a heterogeneous
environment at a system level. The Condor
Matchmaker provides a robust architecture for
resource selection using boolean comparisons of code
requirements to resource attributes that are specified
in Classads. After the job is scheduled on a specific
resource, the Condor job submit file provides a
scripted mechanism for selecting the proper binary
from a list of machine executables using file-naming
conventions. The main thrust of the fat-binary
paradigm described here is to separate the mechanics
of this multi-platform binary selection mechanism out
into a lightweight standalone tool. These fat-binaries
offer considerable benefits for Condor environments
by creating a single compact package for the
executables that also contains all of the Classads
attributes required for the Matchmaker as well as the
ability to automatically extract the appropriate
executable once the job has been scheduled on a
particular machine. But more importantly, the same
multi-platform mechanism for managing native
executables can can be used across many different job
scheduler and brokering system implementations!

GridRun Architecture

The GridRun architecture consists of a file format for
storing the multi-architecture binary images and tools
for managing the contents of the fat-binary files. By
convention, the fat-binary files use a ‘.run’ extension.
The fat-binary file format stores compressed binary
executable images as well as attributes that describe
the execution environment requirements for each
image. These attributes include information about the
operating system, cpu architecture, and optionally
library dependencies.

The ‘gridrun’ program acts as a file loader for
executing the fat-binaries. It encodes a set of
attributes that define the characteristics of the runtime
environment. Gridrun selects the appropriate binary
from the fat-binary file, expands its compressed
image, and executes it. The selection of the correct
binary image is accomplished using a simple boolean
matchmaking mechanism that compares the target
machine’s attributes to those of each available binary
image stored in the fat-binary file. The machine’s
attributes are built in to the ‘gridrun’ program at
compile-time, but can be overridden at the
commandline. The attribute matching system is
flexible enough that the user can specify a subset of
attributes to use for the matching process or even

define custom, application-specific job selection
attributes for both the execution environment and the
images stored in the fat-binary.

The invocation for GridRun is very similar in practice
to using a java virtual machine. You simply type
‘gridrun file.run argl arg2 arg3’ and the correct
binary image will be selected from the fat-binary file
(file.run), and executed with the specified
commandline arguments (argl,arg2, and arg3).

Fat-Binary File Format

The fat-binary images are stored in an HDF5-based
file format [12]. HDF5 provides a very flexible,
grammatical structure for storing binary data and
information about that data (metadata/attributes) in
platform-independent binary files. Furthermore, the
HDF development team has a consistent track record
of high-quality development and support of their
software infrastructure on a wide-variety of platforms
that spans a decade. We adopted HDFS in order to
leverage their robust platform-independent software
infrastructure and thereby minimize the complexity of
porting this package to many computing platforms.

Dataset O Dataset 1 Dataset 2
Compressed Compressed Compressed
binary image binary image binary image
of of of
PowerPC/Mac x86/Linux MIPS/Irix
Executable Executable Executable

(_uname="Darwin”) (_uname="Linux") uname="TRIX64")
gnuname="powerpc-apple-darwin} ~i686-pe-li m) “mips-sgi-irix” |

Figure 1: Schematic of the GridRun fat-binary file
format.

The HDFS file format is completely self-describing,
meaning the file can be interrogated as to its internal
structure without any a-priori knowledge of its
contents You can think of the internal structure of the
HDFS5 file as a file system with a nested directory
structure. As shown in Figure 1, the root directory
level of our fat-binary data schema (*“/”) is a collection
of files (datasets) each of which contains the binary
image of a platform-specific executable. Each dataset
in the file has a list of attributes associated with it that
describe the architecture, software, and operating
system characteristics of each executable contained
therein. When selecting the appropriate executable
from the HDFS file, one would open the fat-binary
file, find the dataset with attributes that match the
selection criteria (an efficient random-access
operation in HDFS5), and then unpack and execute the
dataset containing the selected program image.

HDFS5 provides an integrated compression system
based on the gnu ‘gzip’ library. Each dataset
containing the binary executable image can be packed

using a variable degree of compression. The datasets
are compressed individually rather than compressing
the entire file in order to maximize the performance of
attribute reads required for matchmaking. The dataset
must be chunked into equal-sized allocatable blocks in
order to take advantage of HDF5’s compression
scheme. We selected a chunksize of 8192 bytes
because it most closely matches typical filesystem
blocksizes and because multiplatform tests indicated
that it provided the best balance between compression
performance and space-efficiency. However, the
consequence of this choice is that the compression
provides no benefit for executables that are less than
8k in size. The compression capability of HDFS
ensures that the resulting fat-binaries are small enough
that they do not create a significant burden when
staging files for remote execution, while still
supporting efficient file access for selection,
extraction, and execution of the native-binary images.

Matchmaking

Each of these datasets can have a list of attributes
associated them that act as key-value pairs for various
selection criteria. Both the key and the value must be
valid ASCII strings. The number of attributes
associated with a dataset and their values are
arbitrarily extendible, but two attributes are always
present — the ‘uname’ and the ‘gnuname’. The
gnuname is a three-component description of a
computing platform produced by the widely-used
‘config.guess’ script that comes packaged with the
GNU Autoconf system. The three components of the
gnu name are the cpu architecture, system vendor, and
the operating system respectively contained in an
ASCII string separated by dashes. For instance, a
Apple PowerPC system running MacOS-X is
described by the gnuname string “powerpc-apple-
darwin”. Therefore, the ‘gnuname’ provides a very
specific selection criterion including operating system,
CPU, and even OS version numbers if desired.

By contrast, the ‘uname’ offers a much looser
selection criterion. The ‘uname’ string is typically
generated by the ‘uname’ command on Unix and
Cygwin-based systems. For the MacOS-X system
previously described, the uname string is simply
“Darwin.” These attributes can be manually generated
for platforms that do not have the ‘gnuname’ and
‘uname’ commands available without loss of
functionality. Together, these attributes offer a
reasonably robust starting point for matching stored
executable images to their respective computing
platform.

The attributes associated with an executable in the file
can be extended to include a variety of other criteria
that are not directly related to the machine
architecture. For instance, you can select executables

that target the same platform, but use a different MPI
implementation. The names of the attributes that
define additional selection criteria are entirely up to
the user of the fat-binary packaging system. The tools
that create and execute this fat-binary file format make
it very simple to define an arbitrary number of custom
attributes for each binary image.

Implementation

The GridRun system depends on a set of command
line tools for managing the fat-binary files. These
include tools that execute fat binaries (gridrun,grun) as
well as tools for adding (gpack), extracting (gextract),
removing (gremove), and listing information (ginfo)
about the executables contained in the fat binary file.
In fact, all of these tools are soft-links to a single
executable that differentiates its functionality based on
its invocation name.

The fat binary files are constructed incrementally
using the gpack command as described in Figure 2.
By default, the file will contain the ‘gnuname’ and
‘uname’ attributes, which are built into the ‘gridrun’
tools at compile time. However, you can define
custom additional attributes for the binary at
packaging time. For instance, if the executable is built
with MPICH G2 and uses software-based OpenGL, it
can be specified at packing time using the the -k’
option

gridpack —k mpi=mpich_g2:opengl=mesa -i
exename exename.run

In the above example, the arguments after the ‘—k’
option specify additional attributes and their values.
These will be associated with the input executable
image specified by the ‘-i” option as it is packed into
the ‘exename.run’ fat-binary file.

Add binaries incrementally to the testprog.run file
4
g On Linux: gpack -i hello hello.run
[aW) On Mac: gpack -i hello hello.run
On Linux for Irix exe: gpack -k uname=IRIX64,gnuname="mips-sgi-irix6.5" -i hello.irix hello.run
Single fat-binary file
“hello.run”
On Linux On Mac On SGI
Q
=
8 $ gridrun -i hello.run a1 a2| | $ gridrun -i hello.run a1 a2| | $ gridrun -i hello a1 a2
Q
> “Hello World!” “Hello World!” “Hello World!”
M argv[1]-al argv[1]=al argv[1]=al
argv[2]=al argv[R]=al argv[R]-al

Figure 2: This diagrams the process for
incrementally creating and executing a grid fat
binary using the GridRun tools. A single fat-binary
(hello.run) is constructed from 3 native binary
images. The resulting fat-binary can be executed
natively on all of the platforms.

Likewise, you can encode attributes that have exactly
the same names as Condor Classads architecture
descriptions in order to simplify interoperation with
that environment. The ‘gnuname’ and ‘uname’ are
always present as attributes, but they can be
overridden. For instance, when packing binaries for
multiple platforms resident on the same machine, the
‘gnuname’ and ‘uname’ can be specified explicitly for
each of those binaries as they are packed.

The ‘ginfo’ command lists the contents of a fat binary
file as a plain-text summary. The listing includes both
the number of stored binaries and the attributes
associated with each binary. Currently, the listing
appears as a simple indented list of items, but
eventually will be able to output that attributes in
Classads syntax for closer integration with Condor or
as an XML markup to support integration with web
services.

The ‘gridrun’ (or ‘grun’) command selects an
appropriate executable using the matchmaking
mechanism specified earlier in this paper and executes
the extracted binary. The default mode of operation is
to select based on the ‘gnuname’ of the system, but
this can be overridden using any set of matching
criteria using commandline switches. For instance;

gridrun —k uname file.run

Will cause gridrun to use the ‘uname’ attribute for
matching instead of the ‘gnuname’. When a value for
the attribute isn’t explicitly provided, it will default to
the internally stored value of the attributes that are
built into the ‘gridrun’ command. In order to select a
specific binary implementation, the ‘uname’ can be
specified explicitly.

gridrun —k uname=Linux file.run

You can even define a list of matching criteria
explicitly. For example;

gridrun —k uname, mpi=mpich_g2 file.run

machine gnuname uname
Linux on x86 1686-pc-linux-gnu Linux
Linux 1A64 ia64-unknown-linux-gnu | Linux
NEC SX-6 sx6-nec-superux Super-ux
SGI Onyx mips-sgi-irix IRIX64
IBM SpP2 powerpc-ibm-aix AIX
Apple G5 powerpc-apple-darwin Darwin
HP Workstation | hppa2.0-hp-hpux HP-UX
Sun Workstation | sparc-sun-solaris SunOS

Table 1: GridRun has been tested on the following
systems. Support for Windows is coming soon, but was
not ready in time for this paper.

first matches against the ‘uname’ attribute of the
binary executables and then matches the ‘mpi’
attribute to ensure that an mpich g2 implementation is
chosen. Currently, if those attributes are not specified
in the description of the binary file’s characteristics,
they will not be factored in to the selection. However,
they become a requirement if those attributes are
present in the description of the stored binary image.

Normally Gridrun will create a temporary copy of the
binary and then remove that temporary image when
execution is completed. However, there are situations
where the binary image needs to remain resident. In
that situation, the ‘gextract command will unpack the
executable using the same matching machinery as
‘gridrun,” but will not execute the binary or remove it
once the command is completed. The command,
‘gremove’, deletes a binary image from the fat binary
file.

Thanks to the elegance of the HDFS5 file format, the
entire package is extremely easy to port to a wide
variety of computer systems. Table 1 lists the
currently supported systems. Windows support is
coming soon, but was not ready at the time of this
writing.

Considerations for MPI

Gridrun has also been modified to support a variety of
parallel job launchers. OpenMP and other threaded
implementations are supported trivially, but the
implementation details of various MPI job loaders
require special consideration. For instance, if you
invoke a grid fat binary with mpich, the ‘Gridrun”
command will be executed simultaneously by each
processor.

mpirun —np 8 gridrun myexe.run myargs

On a shared filesystem, the job launch results in 8
concurrent extraction requests — 7 of which are
redundant. While these redundant extractions do not
generally cause the job-launch to fail, their primary
impact is to slow the job launching process
significantly with a flood of I/O activity. The ‘-1’
option causes gridrun to only extract the binary if one
is not already present. A fine-grained file locking
mechanism is required guarantee that redundant
extractions do not occur, but such mechanisms are
extremely non-portable. So, while it is not possible to
entirely eliminate redundant extractions, the MPI
processes are typically started with sufficient time-
skew that redundant extractions rarely occur in
practice despite the lack of synchronization.

Similarly, when executing a parallel job in a
heterogeneous environment that has a shared

filesystem, it may be necessary to have the names of
the temporary executables be differentiated in order to
prevent collisions. The ‘-h’ option (for
heterogeneous) provides this functionality by
appending the ‘gnuname’ of each executable to the
name of the executable. More flexible naming options
will be supported in the future.

Eventually the detection of MPI job launchers will be
automated, thereby eliminating the need for these
platform specific flags. However, we are still in the
process of validating the current set of methods in
order to ensure they cover the vast majority of job-
launcher implementations. Therefore, many of these
context-dependent flags will disappear as GridRun
matures

A Simple Condor Use-Case

A Condor multi-architecture submit file will typically
provide a ‘Requirements’ specification that specifies
multiple machines using an ‘||’ (or) clause. For
instance

Requirements = ((OpSys == "LINUX") Il
(OpSys == "WINNT"))

The “Executable” is then specified with an extension
that corresponds to the computing platform it can run
on.

Executable=hello.$$(OpSys)

When the Condor matchmaker selects and schedules
the job on a specific host, the definition of the
“Executable” name in the submit file constructs the
correct executable name. For instance, if scheduled
on a OpSys=LINUX machine, it will select
hello.LINUX and if scheduled on a machine with
OpSys=NT, it will select hello. WINNT. A
considerable amount of name mangling must be
applied to the executable file for more complicated
selection scenarios.

When used with GridRun, the ‘Executable’ specified
in the Condor job submit file will always be the full
path to the ‘gridrun’ program where it is installed on
the remote host regardless of the its architecture. The
first argument specified for the ‘gridrun’ executable
will be the name of the fat-binary file (‘hello.run’ for
this example) that has been pre-packed with
executables for each machine type allowed by the
‘Requirements’ specification in job submit file. The
job submit file must use the ‘transfer input files’
directive to ensure that ‘hello.run’ fat-binary file is
transferred to the remote host instead of ‘gridrun’ (the
default is to transfer the program specified as the
‘Executable’). When the job is scheduled on a remote
host, ‘gridrun’ will unpack and execute the correct
binary program contained ‘hello.run’ executable for

the selected computer system. No mangling is
required for the name of the executable and the user
only needs to keep track of a single executable file
‘hello.run’.

A Simple Globus Use-Case

In order to use GridRun with Globus, the ‘gridrun’
tools need to be installed in a well-defined path on all
hosts. The most appropriate location is in the same
path as the Globus commands in order to ensure
consistent operation.

Normally, an RSL is used to specify paths to the
executable and to stage data files for the job when
launching a remote job with ‘globusrun’. If the
executable is pre-staged to the remote hosts, the user
must know a-priori the proper path to those
executables before executing ‘globusrun’. Otherwise,
if the file must be staged by ‘globusrun,’ the user must
know a-priori the architecture of the remote host,
select the correct executable, and specified either as
part of the ‘execution’ URL or using the
‘file_stage in’ parameter to transfer the file via the
GASS server. Either approach can be quite difficult in
when using ‘globusrun’ with to launch jobs on
heterogeneous collections of computers.

When using ‘globusrun’ to execute a ‘gridrun’ fat-
binary, the RSL will always specify the full path to
‘gridrun’ as the executable. In addition, the
‘file_stage in’ directive is used to copy the user’s
local fat-binary executable over to the remote host for
execution. The fat-binary must be pre-packed with
the executable images for any of the remote computer
architectures the job might be submitted to. The
GASS server can then be used to stage the fat-binary
to the remote host as part of the submission, and the
fat-binary file is specified as the first argument to the
‘gridrun” command executed on the remote host. The
‘gridrun’ will unpack the correct executable from the
fat-binary and execute it. Gridrun allows a user to
employ a single generic RSL to make job submissions
to a heterogeneous collection of computers.

Performance

Multi-platform “fat” binaries will greatly simplify the
distribution and management of code in heterogeneous
grid environments, but these benefits will be rendered
moot if the system adds too much overhead to the
process of distributed job launching. Here we
quantify the sizes of the fat-binary files and infer their
effect on distributed job-launching performance?

Figure 3 shows the file sizes of a large binary
executable built for 2 different platforms: i686-pc-
linux-gnu and powerpc-apple-darwin. The combined
size of all the two images stored in the fat-binary is
actually slightly smaller than either of the original

Fat-Binary File Size

W x86 binary

800 —— TPPC binary

Cactus PPC binary Cactus x86 binary Fat-binary (PPC+x86) Fat-binary (PPC+x86)
default compression max compression

Extraction Performance

—e— Extraction Performance
0.7 (wallclock seconds)

o
o

o
o

1
IS

Wallclock Seconds

o
w

. —
-

10k 100k ™M 10M
Executable Size

Figure 3: A GridRun fat-binary file containing
binary images for two different executables (one for
MacOS-X PowerPC and the other for a Linux x86
workstation) is smaller than either of the original
executables. In this case, the binary image is of the
Cactus code, a complex simulation code that evolves
Einstein’s equations in 3D.

executables. More aggressive compression can be
specified during the packing process, but it rarely
offers significant benefits. Therefore, we conclude
that the fat-binary file format will not significantly
increase the file-staging overhead when storing a
moderate number of executable images.

The selection, extraction, and execution of a binary
image from the fat-binary file adds some overhead to
the job-launching procedure. However, for most
executables, it will likely amount to a fraction of a
second latency in startup time for a job. You can see
in Figure 4 that while the extraction performance rises
rapidly as the size of the executable file increases, it
still only accounts for less than a second of the job
launching time for executable images exceeding 10
megabytes in size. The Cactus code, for instance, is a
very large and complex code, but its executable image
is typically less than 5 megabytes in size. Likewise,
studies of the performance of the matchmaking
mechanism found that the time spent selecting an
executable among 20 stored images was less than 0.01
seconds — a testament to the efficiency of the HDFS5
file format.

Future Directions

The current implementation has focused on ensuring
the GridRun binary selection and execution
mechanisms work properly in a heterogeneous
environment. Continuing development will focus on
improving the integration of this package with
existing Grid services including the Globus GRAM as
well as resource brokers for heterogeneous Grid
environments like Condor, the GrADS
Application Manager [7], and the GridLab GRMS[4].
For instance, the current ‘ginfo’ command can be

Figure 4: The extraction of the correct binary image
from the fat-binary file was found to dominate the
gridrun execution time. In order to test the
extraction performance, artificial binary files of
various sizes were constructed using a randomly
generated data. The test platform in this case was a
Mac G4 notebook computer (the slowest platform,).

modified to output information in Condor Classads
format or automatically generate a job description file
suitable for Condor or GRMS. The fat-binary could
also store performance models or historical
performance data with each executable in order to
support some of the application scheduling logic of
the GrADS framework. The fat-binary file contents
could also be expressed in XML form in order to
simplify integration with web services. Even the
gridrun command itself could be a proxy to Condor,
GrADS, or GRMS services. Merely invoking a
gridrun command on a multiplatform binary could
initiate a search for appropriate grid resources on
which to actually execute the command. Like all
middleware, gridrun will be most useful when
integration with existing services renders it nearly
invisible.

There is also considerable interest in packaging
multiplatform dynamically loadable objects. This
capability will be important for frameworks based on
the Common Component Architecture (CCA) [10]
that assemble applications from modular components
packaged as dynamically loadable objects. We can
extend the component loading technology in existing
CCA frameworks to use gridrun technology to inspect
a multiplatform binary component package and
dynamically load the appropriate component image.

Finally, we would like to find ways to automatically
create multiplatform binaries at comple-time. Recent
developments in the gnu cross-compiler environment
enable multiple cross compilers to coexist in the same
space. One could theoretically create a compiler
environment that orchestrates multiple cross-
compilers to generate multiplatform executables in a
single step compilation process. While gcc is no

longer well regarded for producing efficient
executables, such a system would offer a functionally
complete multiplatform native code generation
environment. This kind of single-pass multi-platform
compiler technology can offer more uniformity in the
build environment than is currently possible using
multiplatform makefiles, and would certainly speed
the creation of gridrun fat binaries.

Conclusion

Gridrun provides a conceptually simple framework for
executing native programs in heterogeneous
computing environments. GridRun successfully
moves code selection mechanisms that are typically
deeply embedded in distributed resource management
frameworks and recasts that capability in the form of a
lightweight standalone package providing a simple
and uniform automation for managing native binary
executables in heterogeneous collections of computer
systems. The resulting architecture makes execution
of native binaries no more difficult than using a virtual
machine like Java. The code base has been ported to a
wide variety of computing platforms. Thanks to a
compact and robust file format, Gridrun executes
efficiently in a distributed environment and will not
significantly degrade job-launching performance. The
result is a uniform job description and execution
mechanism that can be used broadly in many different
distributed job management and resource brokering
applications.

Bibliography

[1TR. Raman, M. Livny, and M. Solomon.
“Matchmaking: Distributed resource
management for high throughput computing.”
In Proceedings of the Seventh IEEE International
Symposium on High Performance Distributed
Computing, July 1998.

[2] Ian Taylor, Matthew Shields and Ian Wang.
“Resource Management of Triana P2P
Services” Grid Resource Management, edited by
Jan Weglarz, Jarek Nabrzyski, Jennifer Schopf and
Maciej Stroinski. (To be published by Kluwer,)
June 2003.
(http://www.gridlab.org/Project/Publications.html)

[3] G. Allen, D. Angulo, I. Foster, G. Lanfermann, C.
Liu, T. Radke, E. Seidel, and J. Shalf. “The
Cactus Worm: Experiments with Dynamic
Resource Discovery and Allocation in a Grid
Environment.” International Journal of High
Performance Applications and Supercomputing
15(4), Winter, 2001.

[4] Gabrielle Allen, Kelly Davis, Konstantinos N.
Dolkas, Nikolaos D. Doulamis, Tom Goodale,

Thilo Kielmannl, André Merzky, Jarek Nabrzyski,
Juliusz Pukacki, Thomas Radke, Michael Russell,
Ed Seidel, John Shalf and Ian Taylor. “Enabling
Applications on the Grid: A GridLab
Overview.” International Journal of High
Performance Computing Applications: Special
issue on Grid Computing: Infrastructure and
Applications, to be published in August 2003.

[5]R. Buyya, D. Abramson, and J. Giddy,
“Nimrod/G: An architecture for Resource
Management and Scheduling System in a
Global Computational Grid,” The 4"
International Conference on High Performance
Computing in Asia-Pacific Region (HPC Asia
2000).

[6] Agrawal, S., Dongarra, J., Seymour, K., Vadhiyar,
S. "NetSolve: Past, Present, and Future - A
Look at a Grid Enabled Server, Making the
Global Infrastructure a Reality,” Berman, F.,
Fox, G., Hey, A. eds. Wiley Publishing, 2003.

[7]1 D. Angulo, R. Aydt, F. Berman, A. Chien, K.
Cooper, H. Dail, J. Dongarra, I. Foster, D. gannon,
L. Johnsson, K. Kennedy, C, Kesselman, M.
Mazina, J. Mellor-Crummey, D. Reed, O. Sievert,
L. Torczon, S. Vadhiyar, and R. Wolski. “Toward
a Framework for Preparing and Executing
Adaptive Grid Programs.” IPDPS, 2002.

[8] F. Berman, R. Wolski, S. Figueira, J. Schopf, G.
Shao, “Application-Level Scheduling on
Distributed Heterogeneous Networks,”
Proceedings of Supercomputing *96, 1996.

[9] G. Allen, T. Dramlitsch, I. Foster, N. Karonis, M.
Ripeanu, E. Seidel, and B. Toonen. “Supporting
Efficient Execution in Heterogeneous
Distributed Computing Environments with
Cactus and Globus.” Proceedings of
Supercomputing 2001.

[10] Rob Armstrong, Dennis Gannon, Al Geist,
Katarzyna Keahey, Scott Kohn, Lois McInnes,
Steve Parker, and Brent Smolinski. “Toward a
common component architecture for high
performance scientific computing.” In
Proceedings of the 8th High Performance
Distributed Computing (HPDC'99), 1999.

[11] C. Siegerist, P. Shetty, W. Bethel, T.J. Jankun-
Kelly, O. Kreylos, K.L. Ma, J. Shalf. "VisPortal:
Deploying grid-enabled visualization tools
through a web-portal interface." Wide Area

Collaborative Environments Workshop, Seattle,
WA., June 2003.

[12] http.//hdf.ncsa.uiuc.edu

[13] http.://vis.lbl.gov/Research/GridRun

