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Abstract

In a recent paper, topological spaces (X, τ) that are fragmented by a metric that generates the discrete
topology were investigated. In the present paper we shall continue this investigation. In particular, we
will show, among other things, that such spaces are σ-scattered, that is, a countable union of scattered
spaces, and characterise the continuous images of separable metrisable spaces by their fragmentability
properties.
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In [7], topological spaces (X, τ) that are fragmented by a metric that generates the
discrete topology were investigated. In this paper we show, among other things, that
such spaces are σ-scattered. The reason behind the interest in fragmentability lies
in the fact that fragmentability (σ-fragmentability) has had numerous applications to
many parts of analysis; see [3–6, 8, 17, 23–28, 30, 33, 35–39], to mention but a small
selection of them.

Let (X, τ) be a topological space and let ρ be a metric defined on X. Following [12],
we shall say that (X, τ) is fragmented by ρ if whenever ε > 0 and A is a nonempty
subset of X there is a τ-open set U such that U ∩ A , ∅ and ρ − diam(U ∩ A) < ε.

A significant generalisation of fragmentability is the following: a topological space
(X, τ), endowed with a metric ρ, is σ-fragmented by ρ if, for each ε > 0, there
exists a cover {Xε

n : n ∈ N} of X (that is,
⋃

n∈N Xε
n = X) such that for every n ∈ N and

every nonempty subset A of Xε
n there exists a τ-open set U such that U ∩ A , ∅ and

ρ − diam(U ∩ A) < ε; see [9–11].

Theorem 1. Let (X, τ) be a Hausdorff regular space. Then the following are equivalent:

(i) (X, τ) is fragmented by a metric that generates the discrete topology;
(ii) (X, τ) is σ-fragmented by the discrete metric;
(iii) (X, τ) is σ-scattered, that is, a countable union of scattered spaces.

Proof. The proof that (i) ⇒ (ii) follows from [21, Proposition 3.1]. To see
that (ii) ⇒ (iii), we simply apply the definition of σ-fragmentability with
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ε := 1/2 < 1. The fact that (iii)⇒ (ii) is obvious. Finally, (ii)⇒ (i) follows from
[21, Proposition 3.2]. �

Thus, the study of fragmentability by a metric that generates the discrete topology
reduces to the (well studied) study of scattered spaces.

In the presence of Lindelöfness, fragmentability by a metric that generates the
discrete topology imposes a severe constraint on the size of the underlying set.

Corollary 2. Let (X, τ) be a hereditarily Lindelöf Hausdorff regular space. Then (X, τ)
is countable provided that (X, τ) is fragmented by a metric that generates the discrete
topology. In particular, every subset of a separable metric space that is fragmented by
a metric that generates the discrete topology is countable.

Proof. By Theorem 1, we know that X is a countable union of scattered spaces. Hence,
it is sufficient to show that a hereditarily Lindelöf scattered space is countable. Let

U := {U ∈ τ : U is countable} and let U∗ :=
⋃
U∈U

U.

Since X is hereditarily Lindelöf, it follows that U∗ ∈ U. We claim that X = U∗. Indeed,
if this were not the case, then X\U∗ , ∅ and so there would exist an open set W
such that (X \ U∗) ∩W is a singleton. Clearly, then, U∗ ∪W ∈ U. However, this
is impossible since U∗ ∪W * U∗. �

At the price of having to introduce several new definitions and several basic results,
we can extend Corollary 2 as follows.

Let (X, τ) be a topological space. Then we call P ⊆ 2X \ {∅} a partial exhaustive
partition of X if:

(i)
⋃

P∈P P ∈ τ;
(ii) the members of P are pairwise disjoint;
(iii) for every nonempty subset A of

⋃
P∈P P, there exists a P ∈ P such that A ∩ P is a

nonempty relatively open subset of A.

If
⋃

P∈P P = X, then we simply call P an exhaustive partition of X.
Given partitions P and Q of a set X, we shall say that P is a refinement of Q if for

each P ∈ P there is a Q ∈ Q such that P ⊆ Q. Now, if P and Q are partitions of X, then

P ∨ Q := {Y ∈ 2X \ {∅} : Y = P ∩ Q for some P ∈ P and Q ∈ Q}

is also a partition of X that is a refinement of both P and Q. Furthermore, if P and Q
are exhaustive partitions of a topological space (X, τ), then P ∨ Q is also an exhaustive
partition of X.

Proposition 3. Every exhaustive partition of a hereditarily Lindelöf space is countable.

Proof. Let (X, τ) be a hereditarily Lindelöf topological space and let P be an
exhaustive partition of X. Let A be the family of all Q ⊆ P such that Q is a countable
partial exhaustive partition of X. Then (A ,⊆) is a nonempty partially ordered set.
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Furthermore, from Zorn’s lemma and the fact that (X, τ) is hereditarily Lindelöf, it
follows that (A ,⊆) has a maximal element Qmax.

We claim that
⋃

Q∈Qmax
Q = X (which implies thatQmax = P). Indeed, if

⋃
Q∈Qmax

Q ,
X, then X \ (

⋃
Q∈Qmax

Q) , ∅. Since P is exhaustive, there exists a P ∈ P such that ∅ ,
P ∩ (X \ (

⋃
Q∈Qmax

Q)) is relatively open in X \ (
⋃

Q∈Qmax
Q). If we let Q∗ := Qmax ∪ {P},

then Q∗ ∈ A , Qmax ⊆ Q
∗ and Qmax , Q

∗. However, this contradicts the maximality of
Qmax. Therefore,

⋃
Q∈Qmax

Q = X and so P = Qmax ∈A . �

Theorem 4. Let (X, τ) be a completely regular topological space. Then X is the
continuous image of a separable metric space if, and only if, (X, τ) is hereditarily
Lindelöf and fragmented by a metric whose topology is at least as strong as τ.

Proof. Suppose that X is the continuous image of a separable metric space. Then,
clearly, (X, τ) is hereditarily Lindelöf and, by [23, Proposition 2.1], (X, τ) is fragmented
by a metric whose topology is at least as strong as τ. Conversely, suppose that (X, τ) is
hereditarily Lindelöf and fragmented by a metric d whose topology on X is at least as
strong as τ. For each n ∈ N, let Pn be a maximal partial exhaustive partition of X such
that d − diam(P) < 1/n for each P ∈ P. Since (X, τ) is fragmented by d, each Pn is in
fact an exhaustive partition of X. By passing to a refinement, we may assume that for
each n ∈ N, Pn+1 is a refinement of Pn. Furthermore, by Proposition 3, we can write,
for each n ∈ N, Pn := {Pk

n : k ∈ Ωn}, where ∅ , Ωn ⊆ N. Let

Σ :=
{
σ ∈

∏
n∈N

Ωn :
⋂
n∈N

Pσ(n)
n , ∅

}
.

Endow Σ with the Baire metric d, that is, if σ , σ′, then d(σ, σ′) := 1/n, where n :=
min{k ∈ N : σ(k) , σ′(k)}. Next define f : (Σ, d)→ (X, τ) by f (σ) ∈

⋂
n∈N Pσ(n)

n . Note
that f is well defined, since |

⋂
n∈N Pσ(n)

n | = 1 for all σ ∈ Σ. Clearly, f is a bijection from
Σ onto X and, since f (B(σ,1/n)) ⊆ Pσ(n)

n (where B(σ,1/n) := {σ′ ∈ Σ : d(σ,σ′) < 1/n))
and d − diam(Pσ(n)

n ) < 1/n, we see that f is continuous on Σ. �

It is known that fragmentability of a topological space is characterised by the
existence of a winning strategy for one of the players (usually called B) in a certain
topological game [20, 21]. It is also known that the lack of a winning strategy for
the other player (usually called A) in the same game characterises a property that is
close to the Namioka property [18, 19]. To be more precise about this, we need the
following definition.

Let X be a set with two (not necessarily distinct) topologies τ1 and τ2. On X we
will consider the G (X, τ1, τ2)-game played between two players A and B. Player A
goes first (every time—life is not always fair) and chooses a nonempty subset A1 of X.
Player B must then respond by choosing a nonempty relatively τ1-open subset B1 of
A1. Following this, player A must select another nonempty set A2 ⊆ B1 ⊆ A1 and in
turn player B must again respond by selecting a nonempty relatively τ1-open subset
B2 ⊆ A2 ⊆ B1 ⊆ A1. Continuing this process indefinitely, the players A and B produce
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a sequence ((An, Bn) : n ∈ N) of pairs of nonempty subsets (with Bn relatively τ1-open
in An) called a play of the G (X, τ1, τ2)-game. We shall declare that the player B wins a
play ((An,Bn) : n ∈ N) if either (i)

⋂
n∈N An = ∅ or else (ii)

⋂
n∈N An = {x} for some x ∈ X

and for every τ2-open neighbourhood U of x there exists an n ∈ N such that An ⊆ U.
Otherwise, the player A is said to have won. By a strategy σ for the player B we
mean a ‘rule’ that specifies each move of the player B in every possible situation that
can occur. Since in general the moves of the player B may depend upon the previous
moves of the player A, we shall denote by σ(A1,A2, . . . ,An) the nth move of the player
B under the strategy σ. We shall call a strategy σ, for the player B, a winning strategy
if he/she wins every play of the G (X, τ1, τ2)-game, in which they play according to the
strategy σ. For a more precise definition of a strategy, see [2].

The main result connecting the G (X, τ1, τ2)-game to fragmentability is the following
theorem.

Theorem 5 [21, Theorem 1.2]. Let τ1, τ2 be two (not necessarily distinct) topologies
on a set X. The space (X, τ1) is fragmentable by a metric whose topology is at least as
strong as τ2 if, and only if, the player B has a winning strategy in the G (X, τ1, τ2)-game
played on X.

Throughout the remainder of this paper we will be interested in the case when τ2 is
the discrete topology—which we will denote by τd. We have seen in Theorem 1 that
fragmentability by a metric that generates the discrete topology (or, equivalently, the
existence of a winning strategy for the player B in the G (X, τ1, τd)-game) reduces to
the study of σ-scattered spaces. However, it might be interesting to see whether the
lack of a winning strategy for the player A in the G (X, τ1, τd)-game leads to anything
more interesting.

Our next result requires two more auxiliary notions. The first is the notion of quasi-
continuity. Suppose that f : (X, τ)→ (Y, τ′) is a function acting between topological
spaces (X, τ) and (Y, τ′). Then we say that f is quasi-continuous if for each open set
W in Y , f −1(W) ⊆ int( f −1(W)) [16]. The second notion that is needed is that of an
α-favourable space, whose precise definition can be found in [19].

Theorem 6 [19, Theorem 1]. Let (X, τ) be a Hausdorff regular space. Then the
following are equivalent:

(i) the G(X, τ, τd)-game is A-unfavourable;
(ii) for every quasi-continuous mapping f : Z→ (X, τ) from a complete metric space

Z there is a nonempty open subset U such that f is constant on U;
(iii) for every quasi-continuous mapping f : Z → (X, τ) from an α-favourable space

Z there is a nonempty open subset U such that f is constant on U;
(iv) for every continuous mapping f : Z→ (X, τ) from an α-favourable space Z there

is a nonempty open subset U such that f is constant on U.

If the topology τ is metrisable, then we have the following theorem.
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Theorem 7. Let (X, τ) be a metrisable space. Then the following are equivalent:

(i) the G(X, τ, τd)-game is A-unfavourable;
(ii) for every continuous mapping f : Z → (X, τ) from a complete metric space Z

there is a nonempty open subset U such that f is constant on U;
(iii) for every quasi-continuous mapping f : Z→ (X, τ) from a complete metric space

Z there is a nonempty open subset U such that f is constant on U;
(iv) for every quasi-continuous mapping f : Z → (X, τ) from an α-favourable space

Z there is a nonempty open subset U such that f is constant on U;
(v) for every continuous mapping f : Z→ (X, τ) from an α-favourable space Z there

is a nonempty open subset U such that f is constant on U.

Proof. Clearly, (iii)⇒ (ii) and so by Theorem 6 it is sufficient to show that (ii)⇒ (iii).
Suppose that Z is a complete metric space and f : Z → (X, τ) is quasi-continuous.
Since (X, τ) is metrisable, we have from [1] that there exists a dense Gδ subset G
of Z such that f is continuous at each point of G. Now, by [15, page 208] or [34,
page 164], there exists a complete metric d on G that generates the relative topology
on G. Next, by our assumption, f |G : G → X has a nonempty open subset U of G
such that f |G(U) =: {x} is a singleton. Let U∗ be any open subset of Z such that
U∗ ∩G = U. Since f is quasi-continuous on Z, it follows (see for example [28]) that
f (U∗) ⊆ f |G(U) = {x} = {x}. Hence, f is constant on U∗, which completes the proof. �

We may now apply this result along with the definition of a perfect set to obtain the
following useful characterisation. Recall that a subset of a topological space (X, τ) is
called perfect if it is closed and does not have any isolated points.

Corollary 8. Let (X, τ) be a metrisable space. Then the G(X, τ, τd)-game is A-
unfavourable if, and only if, X does not contain any perfect compact subsets.

Proof. Suppose that the G(X, τ, τd)-game is A-unfavourable. In order to obtain a
contradiction, let us suppose that X contains a perfect compact set Z. We shall consider
the identity mapping f : Z → Z defined by f (z) := z for all z ∈ Z. Now, since Z is a
perfect set, it does not have any isolated points and so we have a continuous nowhere-
constant function defined on a complete metric space. This contradicts part (ii) of
Theorem 7.

For the converse, let us start by assuming that X does not contain any perfect
compact subsets. From Theorem 7, it is sufficient to show that for any complete metric
space M and any continuous function f : M → X there is a nonempty open subset U
of M such that f is constant on U. Let (M, ρ) be a complete metric space. In order to
obtain a contradiction, let us suppose that f : M→ X is not constant on any nonempty
open subset of M. Let D be the set of all finite sequences of zeros and ones. We shall
inductively (on the length |d| of d ∈ D) define a family {Cd : d ∈ D} of nonempty open
subsets of M such that:
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(i) ρ − diam(Cd) < 1/2|d|;
(ii) ∅ , Cd0 ∩Cd1 ⊆ Cd0 ∪Cd1 ⊆ Cd;
(iii) f (Cd0) ∩ f (Cd1) = ∅.

Base step: let C∅ be a nonempty open subset of M with ρ − diam(C∅) < 1/20, where
the sequence of length zero is denoted by ∅.

Assuming that we have already defined the nonempty open sets Cd satisfying (i),
(ii) and (iii) for all d ∈ D with |d| ≤ n, we proceed to the inductive step.

Inductive step: fix d ∈ D of length n. Therefore, there exist points c0 and c1 in Cd such
that f (c0) , f (c1). From the continuity of f , we can choose open neighbourhoods Cd0

of c0 and Cd1 of c1 such that conditions (i), (ii) and (iii) are satisfied. This completes
the induction.

Now, for each n ∈ N, let Kn :=
⋃
{Cd : d ∈ D and |d| = n} and K :=

⋂
n∈N Kn. Then

K is closed and totally bounded and hence compact. Furthermore, K is perfect and f is
one-to-one on K. Therefore, f (K) is a perfect compact subset of X, which contradicts
our assumption concerning X. Therefore, f must be constant on some nonempty open
subset U of M. �

In order to state our last result, we need to recall the definition of a Bernstein set.
A subset B of R is called a Bernstein set if neither B nor its complement contains a
perfect compact subset [32, page 23]. In [32], the construction of a Bernstein set is
given. It is also easy to check that every Bernstein set is uncountable.

Corollary 9. Let B be a Bernstein subset of R endowed with the relative topology τ
inherited from R with its usual topology. Then neither player (A nor B) has a winning
strategy in the G(B, τ, τd)-game played on B.

Interestingly, uncountable subsets of R that do not contain any perfect compact
subsets played an important role in the construction of (i) a Gâteaux differentiability
space that is not weak Asplund [13, 14, 27, 29, 30], (ii) a dual differentiation space that
does not admit an equivalent locally uniformly rotund norm [22] and (iii) a Namioka
space without an equivalent Kadeč norm [31].
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