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Abstract:An extended mapping method with symbolic computation is developed to obtain
some new periodic wave solutions in terms of Jacobin elliptic function for nonlinear elastic
rod equation arising in physics.As a result,many exact travelling wave solutions are obtained
which include Jacobian elliptic functions solutions,combined Jacobian elliptic functions solu-
tions and triangular function solutions.Solutions in the limiting cases have also been studied.It
is shown that the mapping method provides a very effective and powerful mathematical tool for
solving nonlinear evolution equations in physics.
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1 Introduction

A large variety of physical,chemical,and biological phenomena is governed by nonlinear evolution equa-
tions.The analytical study of nonlinear partial differential equations was of great interest during the last
decade years.The investigations of the travelling wave solution of nonlinear equations play an important
role in the study of nonlinear physical phenomena.The importance of obtaining the exact solutions,if avail-
able,of those nonlinear equations facilitates the verification of numerical solvers and aids in the stability
analysis of solutions.

Exact travelling wave solutions of nonlinear evolution equations is one of the fundamental object of
study in mathematical physics.These exact solutions when they exist can be help one to well understand the
mechanism of the complicated physical phenomena and dynamical processes modelled by these nonlinear
evolution equations.In the past several decades,many significant methods have been established in [1− 20]

In fact the Jacobian elliptic functions [3 − 5] degenerate into hyperbolic functions when the modulus
approaches 1,has attracted a lot of interest in the investigation of exact solutions.The three basic Jacobian el-
liptic functions 𝑠𝑛(𝜉,𝑚),𝑐𝑛(𝜉,𝑚) and 𝑑𝑛(𝜉,𝑚), where 𝑚 is the modulus of the elliptic function,satisfy the
well known type of trigonometric relations such as 𝑠𝑛2(𝜉)+𝑐𝑛2(𝜉) = 1,𝑑𝑛2(𝜉)+𝑚2𝑠𝑛2(𝜉) = 1,(𝑠𝑛(𝜉))

′
=

𝑐𝑛(𝜉)𝑑𝑛(𝜉),(𝑐𝑛(𝜉))
′
= −𝑠𝑛(𝜉)𝑑𝑛(𝜉),(𝑑𝑛(𝜉))′ = −𝑚2𝑠𝑛(𝜉)𝑐𝑛(𝜉).When 𝑚 −→ 0,the Jacobi elliptic func-

tions degenerate to the triangular functions,i.e.,𝑠𝑛(𝜉) −→ 𝑠𝑖𝑛(𝜉),𝑐𝑛(𝜉) −→ 𝑐𝑜𝑠(𝜉),𝑑𝑛(𝜉) −→ 1 and
when 𝑚 −→ 1, the Jacobian elliptic functions degenerate to the hyperbolic functions i.e.,𝑠𝑛(𝜉) −→
𝑡𝑎𝑛ℎ(𝜉),𝑐𝑛(𝜉) −→ 𝑠𝑒𝑐ℎ(𝜉),𝑑𝑛(𝜉) −→ 𝑠𝑒𝑐ℎ(𝜉).A mapping method and its extensions have been suc-
cessfully applied to derive a variety of Jacobian elliptic function solutions for nonlinear evolution equations
arising in mathemtical physics.

Solitary and periodic waves solutions of nonlinear evolution equations have been studied intensively.The
exact solutions,if these nonlinear equations facilitates the verification of numerical solvers and aids in the
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stability analysis of solutions.The goal of the present work is to document the changes of the traveling
wave solutions in the parameter space,from the view point of dynamical systems,for an elastic rod equa-
tion.Zhuang et.al.[20] derived the nonlinear wave equation of longitudinal oscillation of a nonlinear elastic
rod with lateral inertia [21] as

∂2𝑢

∂𝑡2
− 𝑐20[1 + 𝑛𝑎𝑛(

∂𝑢

∂𝑥
)𝑛−1]

∂2𝑢

∂𝑥2
− 𝜈2𝐽𝑝

𝑠

∂4𝑢

∂𝑡2∂𝑥2
= 0, (1)

where 𝑠,𝐽𝑝 and 𝑐20 = 𝐸
𝜌 ,𝜈,𝐸, and 𝜌 are the cross-section area of the rod,the polar moment of inertia,the

square of the linear elastic longitudinal wave velocity,Poisson ratio,the Young’s modulus and the density of
the rod, respectively.𝑎𝑛 is the material constant,𝑛 is an integer.For the soft nonlinear materials 𝑎𝑛 < 0,for
example,majority of the metals.For the hard nonlinear materials such as rubbers and polymers,𝑎𝑛 > 0.
When 𝑛 = 2,3 [20].

2 Modified Mapping Method

The extended mapping method can be introduced briefly as follows.For a given nonlinear evolution equa-
tion,say,in two independent variables,

𝐹 (𝑢, 𝑢𝑡, 𝑢𝑥, ...) = 0, (2)

and its travelling wave solution
𝑢(𝑥, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑘𝑥− 𝑐𝑡, (3)

where 𝑘,and 𝑐 are constants to be determined later.
Inserting Eq.(3) into Eq.(2) yields an ordinary differential equation of 𝑢(𝜉).Then 𝑢(𝜉) can be expressed

as follows

𝑢(𝜉) =

𝑀∑
𝑖=0

𝑔𝑖𝑓
𝑖(𝜉) +

𝑀∑
𝑖=1

ℎ𝑖𝑓
−𝑖(𝜉), (4)

where 𝑔𝑖 and ℎ𝑖(𝑖 = 1, ....𝑁) are constants to be determined later,𝑀 is fixed by balancing the linear term of
the highest order derivative with nonlinear term,while 𝑓(𝜉) satisfy the equation

𝑓 ′(𝜉) =
√
𝑏𝑓2(𝜉) +

𝑎

2
𝑓4(𝜉) + 𝑐,

𝑓
′′
= 𝑏𝑓(𝜉) + 𝑎𝑓3(𝜉),

(5)

where the prime denotes derivative with respect to 𝜉,and 𝑏,𝑎,𝑐 are constants to be determined.
Substitute anzatz (4) into (3),make use of Eq.(5) with computerized symbolic computation,equating to

zero the coefficients of all powers of 𝑓±𝑖(𝜉)(𝑖 = −4, ....., 4) yields a set of algebraic equations for 𝑔𝑖 and
ℎ𝑖.Solving this system by use of the symbolic computation system MAPLE,we can find the travelling wave
solutions of Eq.(1).

3 Exact solutions of nonlinear elastic rod equation

To look for the travelling wave solution of Eq.(1),we use the gauge ransformation

𝑢(𝑥, 𝑡) = 𝜓(𝑥− 𝑐𝑡) = 𝜓(𝜉), 𝜉 = 𝑥− 𝑐𝑡, (6)

where 𝑐 is the wave speed.Then Eq.(1) reduces to

[𝑐2 − 𝑐20]𝜓
′′ − 𝑛𝑐20𝑎𝑛(𝜓

′
)𝑛−1𝜓

′′ − 𝜈2𝑐2𝐽𝑝
𝑠

𝜓
′′′′

= 0, (7)

where ′ is the derivative with respect to 𝜉.Taking 𝜙(𝜉) = 𝜓(𝜉)
′

and integrating obtained equation once,we
have
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[𝑐2 − 𝑐20]𝜙− 𝑐20𝑎𝑛𝜙
𝑛 − 𝜈2𝑐2𝐽𝑝

𝑠
𝜙

′′
+ 𝑑 = 0 (8)

where 𝑑 is an integration constant.Denote that 𝛼 =
𝑠(𝑐2−𝑐20)
𝑐2𝜈2𝐽𝑝

,𝛽 =
𝑠𝑎𝑛𝑐20
𝑐2𝜈2𝐽𝑝

for 𝑐2𝜈2𝐽𝑝 ∕= 0.Then,for 𝑛 = 2 we
obtain

𝜙
′′ − 𝛼𝜙+ 𝛽𝜙2 = 0 (9)

Then,Eq.(9) can be rewritten as

𝐴𝜙
′′
+𝐵𝜙+ 𝐶𝜙2 + 𝑑 = 0, 𝐴 = 1, 𝐵 = −𝛼,𝐶 = 𝛽 (10)

Considering the homogeneous balance between 𝜙
′′
(𝜉) and 𝜙2(𝜉) in Eq.(9),we have𝑀 = 2.Therefore,we

assume that 𝜙(𝜉) can be expressed as

𝜙(𝜉) = 𝑔0 + 𝑔1𝑓(𝜉) + ℎ1𝑓
−1(𝜉) + 𝑔2𝑓

2(𝜉) + ℎ2𝑓
−2(𝜉), (11)

where 𝑔0,𝑔1,𝑔2,ℎ1 and ℎ2 are constants to be determined,and 𝑓(𝜉) satisfy equation (5).We substitute anzatz
(11) into (10),make use of Eq.(5) with computerized symbolic computation,equating to zero the coefficients
of all powers of 𝑓(𝜉) yields a set of algebraic equations for 𝑔0,𝑔1,𝑔2,ℎ1 and ℎ2.Solving the system of alge-
braic equations with the aid of Maple,we have three different cases as

Case[i]

𝑔1 = 0, ℎ1 = 0, 𝑔0 = −𝐵 + 4𝐴𝑏

2𝐶
, ℎ2 = −6𝐴𝑐

𝐶
, 𝑔2 =

−3𝐴𝑎

𝐶
, 𝑑 = −𝐵

2 + 96𝐴2𝑎𝑐𝑎+ 16𝐴2𝑏2

4𝐶
(12)

Case[ii]

𝑔1 = 0, ℎ1 = 0, 𝑔0 = −𝐵 + 4𝐴𝑏

2𝐶
, ℎ2 = 0, 𝑔2 =

−3𝐴𝑎

𝐶
, 𝑑 =

𝐵2 + 24𝐴2𝑐𝑎− 16𝐴2𝑑2

4𝐶
(13)

Case[iii]

𝑔1 = 0, ℎ1 = 0, 𝑔0 = −𝐵 + 4𝐴𝑏

2𝐶
, ℎ2 =

−6𝐴𝑐

𝐶
, 𝑔2 = 0, 𝑑 =

𝐵2 + 24𝐴2𝑐𝑎− 16𝐴2𝑑2

4𝐶
(14)

Taking example case[i],we obtain the following exact solution of Eq.(1) as

𝜙(𝜉) = −𝐵 + 4𝐴𝑏

2𝐶
− 3𝐴𝑎

𝐶
𝐹 2(𝜉)− 6𝐴𝑐

𝐶
𝐹−2(𝑥𝑖) (15)

Some of new exact Jacobin elliptic function solutions can be obtained according to the different choice
of the function 𝑓(𝜉) and (𝑎,𝑏 and 𝑐) (See Appendices 𝐴,𝐵 and 𝐶).For simplicity cases (ii) and (iii) should
be omitted here.

4 New periodic wave solutions

Case (1).When 𝑎 = 2𝑚2,𝑏 = −1−𝑚2,𝑐 = 1,𝑓(𝜉) = 𝑠𝑛(𝜉).Thus the Jacobian elliptic function solution of
Eq.(1) is

𝜙1,1(𝜉) = −𝐵 + 4𝐴(−1−𝑚2)

2𝐶
− 6𝐴𝑚2𝑠𝑛2(𝜉)

𝐶
− 6𝐴

𝐶𝑠𝑛2(𝜉)
(16)

For 𝑚 −→ 1,Eq.(16) admits to new solitary wave solution

𝜙1,2(𝜉) = −𝐵 − 8𝐴

2𝐶
− 6𝐴𝑡𝑎𝑛ℎ2(𝜉)

𝐶
− 6𝐴

𝐶𝑡𝑎𝑛ℎ2(𝜉)

when 𝑚 tends to 0,Eq.(16) admits to a new triangular function solution
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𝜙1,3(𝜉) = −𝐵 − 4𝐴

2𝐶
− 6𝐴

𝐶𝑠𝑖𝑛2(𝜉)

Case (2).When 𝑎 = 2,𝑏 = −(1 + 𝑚2),𝑐 = 𝑚2,𝑓(𝜉) = 𝑛𝑠(𝜉),we have a new Jacobian elliptic function
solution of Eq.(1)

𝜙2,1(𝜉) = −𝐵 + 4𝐴(−1−𝑚2)

2𝐶
− 6𝐴𝑛𝑠2(𝜉)

𝐶
− 6𝐴𝑚2

𝐶𝑛𝑠2(𝜉)
(17)

as long as 𝑚 −→ 1,Eq.(17) gives the solitary wave solution as follows

𝜙2,2(𝜉) = −𝐵 − 8𝐴

2𝐶
− 6𝐴𝑐𝑜𝑡ℎ2(𝜉)

𝐶
− 6𝐴

𝐶𝑐𝑜𝑡ℎ2(𝜉)

when 𝑚 −→ 0 in Eq.(17),we have a new triangular function solution

𝜙2,3(𝜉) = −𝐵 − 4𝐴

2𝐶
− 6𝐴𝑐𝑠𝑐2(𝜉)

𝐶

Case (3).When 𝑎 = 2,𝑏 = 2−𝑚2,𝑐 = 1−𝑚2,𝑓(𝜉) = 𝑐𝑠(𝜉),we have the Jacobian elliptic function solution
of Eq.(1) is

𝜙3,1(𝜉) = −𝐵 + 4𝐴(2−𝑚2)

2𝐶
− 6𝐴𝑐𝑠2(𝜉)

𝐶
− 6𝐴(1−𝑚2)

𝐶𝑐𝑠2(𝜉)
(18)

For 𝑚 −→ 1,Eq.(18) admits to solitary wave solution

𝜙3,2(𝜉) = −𝐵 + 4𝐴

2𝐶
− 6𝐴𝑐𝑠𝑐ℎ2(𝜉)

𝐶

when 𝑚 −→ 0,Eq.(18) reduces to triangular function solution

𝜙3,3(𝜉) = −𝐵 + 8𝐴

2𝐶
− 6𝐴𝑐𝑜𝑡2(𝜉)

𝐶
− 6𝐴

𝐶𝑐𝑜𝑡2(𝜉)

Case (4).For 𝑎 = 2,𝑏 = 2𝑚2 − 1,𝑐 = 𝑚2(𝑚2 − 1).In this case,we have 𝑓(𝜉) = 𝑑𝑠(𝜉),we obtain a new
Jacobian elliptic function solution as

𝜙4,1(𝜉) = −𝐵 + 4𝐴(2𝑚2 − 1)

2𝐶
− 6𝐴𝑑𝑠2(𝜉)

𝐶
− 6𝐴𝑚2(𝑚2 − 1)

𝐶𝑑𝑠2(𝜉)
(19)

In the limiting case 𝑚 −→ 1,Eq.(19) admits to solitary wave solution

𝜙4,2(𝜉) = −𝐵 + 4𝐴

2𝐶
− 6𝐴𝑐𝑠𝑐ℎ2(𝜉)

𝐶

when 𝑚 −→ 0,Eq.(19) becomes

𝜙4,3(𝜉) = −𝐵 − 4𝐴

2𝐶
− 6𝐴𝑐𝑠𝑐2(𝜉)

𝐶

Case (5).If 𝑎 = 2(1−𝑚2),𝑏 = 2−𝑚2,𝑐 = 1.In this case,we have 𝑓(𝜉) = 𝑠𝑐(𝜉) and thus the corresponding
a new Jacobian elliptic function solution as

𝜙5,1(𝜉) = −𝐵 + 4𝐴(2−𝑚2)

2𝐶
− 6𝐴(1−𝑚2)𝑠𝑐2(𝜉)

𝐶
− 6𝐴

𝐶𝑠𝑐2(𝜉)
(20)

when 𝑚 −→ 1,Eq.(20) admits to solitary wave solution as

𝜙5,2(𝜉) = −𝐵 + 4𝐴

2𝐶
− 6𝐴

𝐶𝑠𝑖𝑛ℎ2(𝜉)
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For 𝑚 −→ 0,Eq.(20) admits to a new triangular function solution as follows

𝜙5,3(𝜉) = −𝐵 + 8𝐴

2𝐶
− 6𝐴𝑡𝑎𝑛2(𝜉)

𝐶
− 6𝐴

𝐶𝑡𝑎𝑛2(𝜉)

Case (6).If we select 𝑎 = −1/2,𝑏 = (1 + 𝑚2)/2,𝑐 = − (1−𝑚2)2

4 .We have 𝑓(𝜉) = 𝑚𝑐𝑛(𝜉) ± 𝑑𝑛(𝜉), we
obtain the following new Jacobian elliptic function solution

𝜙6,1(𝜉) = −𝐵 + 2𝐴(1 +𝑚2)

2𝐶
+

3
2𝐴[𝑚𝑐𝑛(𝜉) + 𝑑𝑛(𝜉)]2

2𝐶
+

3
2𝐴(1−𝑚2)62

𝐶[𝑚𝑐𝑛(𝜉)± 𝑑𝑛(𝜉)]2
(21)

For 𝑚 −→ 1,Eq.(21) admits to

𝜙6,2(𝜉) = −𝐵 + 4𝐴

2𝐶
+

6𝐴𝑠𝑒𝑐ℎ2(𝜉)

𝐶

When 𝑚 −→ 0 in Eq.(21),we have

𝜙6,3(𝜉) = −𝐵 + 2𝐴

2𝐶
− 3𝐴

𝐶

Case (7).For 𝑎 = 1/2,𝑏 = 1−2𝑚2

2 ,𝑐 = 1/4,𝑓(𝜉) = 𝑛𝑠(𝜉)± 𝑐𝑠(𝜉),we obtain a new Jacobian elliptic function
solution as

𝜙7,1(𝜉) = −𝐵 + 4𝐴(1/2−𝑚2)

2𝐶
− 3𝐴[𝑛𝑠(𝜉)± 𝑐𝑠(𝜉)]2

2𝐶
− 3𝐴

2𝐶[𝑛𝑠(𝜉)± 𝑐𝑠(𝜉)]2
(22)

As long as 𝑚 −→ 1 and 0 in Eq.(22),we have new exact solitary and triangular solutions

𝜙7,2(𝜉) = −𝐵 − 2𝐴

2𝐶
− 3𝐴[𝑐𝑜𝑡ℎ(𝜉)± 𝑐𝑠𝑐ℎ(𝜉)]2

2𝐶
− 3𝐴

2𝐶[𝑐𝑜𝑡ℎ(𝜉)± 𝑐𝑠𝑐ℎ(𝜉)]2

𝜙7,3(𝜉) = −𝐵 + 2𝐴

2𝐶
− 3𝐴[𝑐𝑠𝑐(𝜉)± 𝑐𝑜𝑡(𝜉)]2

2𝐶
− 3𝐴

2𝐶[𝑐𝑠𝑐(𝜉)± 𝑐𝑜𝑡(𝜉)]2

Case (8).For 𝑎 = 2,𝑏 = 2𝑚2 − 1,𝑐 = 𝑚2(𝑚2 − 1),𝑓(𝜉) = 𝑑𝑠(𝜉),we obtain a new Jacobian elliptic function
solution

𝜙8,1(𝜉) = −𝐵 + 4𝐴(2𝑚2 − 1)

2𝐶
− 3𝐴𝑑𝑠2(𝜉)

2𝐶
− 6𝐴𝑚2(𝑚2 − 1)

𝐶𝑑𝑠2(𝜉)
(23)

When 𝑚 −→ 1 and 0,Eq.(24),reduces to new solitary and triangular solutions as follows

𝜙8,2(𝜉) = −𝐵 + 4𝐴

2𝐶
− 6𝐴𝑐𝑠𝑐ℎ2(𝜉)

2𝐶
,

𝜙8,3(𝜉) = −𝐵 − 4𝐴

2𝐶
− 6𝐴𝑐𝑠𝑐2(𝜉)

𝐶

5 Conclusion

Based on the modified mapping method and the use of symbolic computation system Maple,we have con-
structed explicit some new solutions of the nonlinear elastic rod with lateral inertia.

As a result,many new solutions are obtained which include Jacobian elliptic function solutions,triangular
and hyperbolic functions.Solutions in the limiting cases when the modulus 𝑚 of the elliptic function ap-
proach 0 or 1 have also been studied.

It can be easliy seen that the method used in this paper must futher be improved to solve more nonlinear
partial differential equations arising in mathematical physics.This is our task in the future.
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Appendix A

Table 1: Relations between values of (𝑎, 𝑏, 𝑐) and corresponding 𝐹 (𝜉) in 𝐹
′2(𝜉) = (𝑎/2)𝐹 4(𝜉)+𝑏𝐹 2(𝜉)+𝑐

a b c 𝐹 (𝜉)

𝑚2 −(1 +𝑚2) 1 𝐹 (𝜉) = 𝑠𝑛(𝜉),𝑐𝑑(𝜉) = 𝑐𝑛(𝜉)
𝑑𝑛(𝜉)

−𝑚2 2𝑚2 − 1 1−𝑚2 𝐹 (𝜉) = 𝑐𝑛(𝜉)

−1 2−𝑚2 𝑚2 − 1 𝐹 (𝜉) = 𝑑𝑛(𝜉)

1 −(1 +𝑚2) 𝑚2 𝐹 (𝜉) = 𝑛𝑠(𝜉) = (𝑠𝑛(𝜉))−1,𝑑𝑐(𝜉) = 𝑑𝑛(𝜉)
𝑐𝑛(𝜉)

1−𝑚2 2𝑚2 − 1 −𝑚2 𝐹 (𝜉) = 𝑛𝑐(𝜉) = (𝑐𝑛(𝜉))−1

𝑚2 − 1 2−𝑚2 −1 𝐹 (𝜉) = 𝑛𝑑(𝜉) = (𝑑𝑛(𝜉))−1

1−𝑚2 2−𝑚2 1 𝐹 (𝜉) = 𝑠𝑐(𝜉) = 𝑠𝑛(𝜉)
𝑐𝑛(𝜉)

−𝑚2(1−𝑚2) 2𝑚2 − 1 1 𝐹 (𝜉) = 𝑠𝑑(𝜉) = 𝑠𝑛(𝜉)
𝑑𝑛(𝜉)

1 2−𝑚2 1−𝑚2 𝐹 (𝜉) = 𝑐𝑠(𝜉) = 𝑐𝑛(𝜉)
𝑠𝑛(𝜉)

1 2𝑚2 − 1 −𝑚2(1−𝑚2) 𝐹 (𝜉) = 𝑑𝑠(𝜉) = 𝑑𝑛(𝜉)
𝑠𝑛(𝜉)

1
4

1−2𝑚2

2
1
4 𝐹 (𝜉) = 𝑛𝑠(𝜉)± 𝑐𝑠(𝜉)

1−𝑚2

4
1+𝑚2

2
1−𝑚2

2 𝐹 (𝜉) = 𝑛𝑐(𝜉)± 𝑠𝑐(𝜉)
1
4

𝑚2−2
2

𝑚2

4 𝐹 (𝜉) = 𝑛𝑠(𝜉)± 𝑑𝑠(𝜉)
𝑚2

4
𝑚2−2

2
𝑚2

4 𝐹 (𝜉) = 𝑠𝑛(𝜉)± 𝑖𝑐𝑠(𝜉)

Appendix B

Derivatives of Jacobi elliptic functions

𝑠𝑛
′
(𝜉) = 𝑐𝑛(𝜉)𝑑𝑛(𝜉), 𝑐𝑑

′
(𝜉) = −(1−𝑚2)𝑠𝑑(𝜉)𝑛𝑑(𝜉),

𝑐𝑛
′
(𝜉) = −𝑠𝑛(𝜉)𝑑𝑛(𝜉), 𝑑𝑛′

(𝜉) = −𝑚2𝑠𝑛(𝜉)𝑐𝑛(𝜉),

𝑛𝑠
′
(𝜉) = −𝑐𝑠(𝜉)𝑑𝑠(𝜉), 𝑑𝑐′(𝜉) = (1−𝑚2)𝑛𝑐(𝜉)𝑠𝑐(𝜉),

𝑛𝑐
′
(𝜉) = 𝑠𝑐(𝜉)𝑑𝑐(𝜉), 𝑛𝑑

′
(𝜉) = 𝑚2𝑐𝑑(𝜉)𝑠𝑑(𝜉),

𝑠𝑐
′
(𝜉) = 𝑑𝑐(𝜉)𝑛𝑐(𝜉), 𝑐𝑠

′
(𝜉) = −𝑛𝑠(𝜉)𝑑𝑠(𝜉),

𝑑𝑠
′
(𝜉) = −𝑐𝑠(𝜉)𝑛𝑠(𝜉), 𝑠𝑑′

(𝜉) = 𝑛𝑑(𝜉)𝑐𝑑(𝜉)
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Appendix C

Table 2: Jacobi elliptic functions degenerate as hyperbolic functions when 𝑚 −→ 1
𝑠𝑛(𝜉) 𝑐𝑛(𝜉) 𝑑𝑛(𝜉) 𝑠𝑐(𝜉) 𝑠𝑑(𝜉) 𝑐𝑑(𝜉) 𝑛𝑠(𝜉) 𝑛𝑐(𝜉) 𝑛𝑑(𝜉) 𝑐𝑠(𝜉) 𝑑𝑠(𝜉) 𝑑𝑐(𝜉)

𝑡𝑎𝑛ℎ(𝜉) 𝑠𝑒𝑐ℎ(𝜉) 𝑠𝑒𝑐ℎ(𝜉) 𝑠𝑖𝑛ℎ(𝜉) 𝑠𝑖𝑛ℎ(𝜉) 1 𝑐𝑜𝑡ℎ(𝜉) 𝑐𝑜𝑠ℎ(𝜉) 𝑐𝑜𝑠ℎ(𝜉) 𝑐𝑠𝑐ℎ(𝜉) 𝑐𝑠𝑐ℎ(𝜉) 1

Table 3: Jacobi elliptic functions degenerate as hyperbolic functions when 𝑚 −→ 0
𝑠𝑛(𝜉) 𝑐𝑛(𝜉) 𝑑𝑛(𝜉) 𝑠𝑐(𝜉) 𝑠𝑑(𝜉) 𝑐𝑑(𝜉) 𝑛𝑠(𝜉) 𝑛𝑐(𝜉) 𝑛𝑑(𝜉) 𝑐𝑠(𝜉) 𝑑𝑠(𝜉) 𝑑𝑐(𝜉)

𝑠𝑖𝑛(𝜉) 𝑐𝑜𝑠(𝜉) 1 𝑡𝑎𝑛(𝜉) 𝑠𝑖𝑛(𝜉) 𝑐𝑜𝑠(𝜉) 𝑐𝑠𝑐(𝜉) 𝑠𝑒𝑐(𝜉) 1 𝑐𝑜𝑡(𝜉) 𝑐𝑠𝑐(𝜉) 𝑠𝑒𝑐(𝜉)
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