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Abstract In classical logic, the proposition expressed by a sentence is construed as
a set of possible worlds, capturing the informative content of the sentence. However,
sentences in natural language are not only used to provide information, but also to
request information. Thus, natural language semantics requires a logical framework
whose notion of meaning does not only embody informative content, but also inquisi-
tive content. This paper develops the algebraic foundations for such a framework. We
argue that propositions, in order to embody both informative and inquisitive content
in a satisfactory way, should be defined as non-empty, downward closed sets of possi-
bilities, where each possibility in turn is a set of possible worlds. We define a natural
entailment order over such propositions, capturing when one proposition is at least as
informative and inquisitive as another, and we show that this entailment order gives
rise to a complete Heyting algebra, with meet, join, and relative pseudo-complement
operators. Just as in classical logic, these semantic operators are then associated with
the logical constants in a first-order language. We explore the logical properties of
the resulting system and discuss its significance for natural language semantics. We
show that the system essentially coincides with the simplest and most well-understood
existing implementation of inquisitive semantics, and that its treatment of disjunction
and existentials also concurs with recent work in alternative semantics. Thus, our alge-
braic considerations do not lead to a wholly new treatment of the logical constants,
but rather provide more solid foundations for some of the existing proposals.
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1 Introduction

In classical logic, the proposition expressed by a sentence is construed as a set of
possible worlds, embodying the informative content of the sentence. However, sen-
tences in natural language are not only used to provide information, but also to request
information. Thus, natural language semantics requires a logical framework whose
notion of meaning embodies both informative and inquisitive content.

A natural starting point–rooted in the seminal work of Hamblin (1973) and
Karttunen (1977) on the semantics of questions, and further pursued in recent work
on inquisitive semantics (Groenendijk and Roelofsen 2009; Ciardelli 2009; Ciardelli
and Roelofsen 2011, among others)–is to construe the proposition expressed by a sen-
tence ϕ, [ϕ], as a set of possibilities, where each possibility in turn is a set of possible
worlds. In uttering ϕ, a speaker can then be taken to provide the information that the
actual world is located in at least one of the possibilities in [ϕ], i.e., in

⋃[ϕ], and
at the same time she can be taken to request information from other conversational
participants in order to locate the actual world inside a specific possibility in [ϕ].

For instance, if [ϕ] = {{w1, w2}, {w1, w3}}, as depicted in Fig. 1, then in uttering
ϕ, a speaker can be taken to provide the information that the actual world lies in⋃[ϕ] = {w1, w2, w3}, and at the same time she can be taken to request enough
information to establish that the actual world lies in {w1, w2} or to establish that it lies
in {w1, w3}. Thus, propositions defined as sets of possibilities are able to capture both
informative and inquisitive content.

As soon as we move from the classical notion of propositions as sets of possible
worlds to the richer notion of propositions as sets of possibilities, two crucial questions
arise. The first question is whether propositions should really be defined as arbitrary
sets of possibilities, or whether we should adopt certain constraints on which sets
of possibilities form suitable propositions and which don’t. The above discussion
indicates that sets of possibilities are sufficient for the purpose at hand, which is to
capture informative and inquisitive content. But we do not only want a notion of
propositions that is sufficient for the given purpose, we want a notion that is just right.
In particular, it should be the case that any two non-identical propositions really differ in
informative and/or inquisitive content. Otherwise, we would have two representations
for exactly the same content, which means that our notion of propositions would be too
fine-grained. We will show that, in order to meet this criterion, propositions should not
be defined as arbitrary sets of possibilities, but, instead, as sets of possibilities that are
non-empty and downward closed (i.e., ifα ∈ [ϕ] andβ ⊆α, thenβ ∈ [ϕ] as well). This

Fig. 1 Capturing informative
and inquisitive content using
sets of possibilities
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result is relevant for any Hamblin/Karttunen-style semantic account of questions, no
matter whether such an account is cast within the framework of inquisitive semantics
or not.

The second question that arises is how the propositions expressed by complex
sentences should be defined in a compositional way. In particular, if we limit ourselves
to a first-order language, what is the role of connectives and quantifiers in this richer
setting? How do we define [¬ϕ], [ϕ ∧ψ], [ϕ ∨ψ], etcetera, in terms of [ϕ] and [ψ]?

This issue has been addressed quite extensively in recent work on inquisitive seman-
tics. It has also been addressed in a different setting, namely in work on so-called
alternative semantics for disjunction and existentials (Kratzer and Shimoyama 2002;
Simons 2005a,b; Alonso-Ovalle 2006, 2008, 2009; Aloni 2007a,b; Menéndez-Benito
2005, 2010, among others). In this framework, sets of possibilities–also known as alter-
natives–are not primarily used to capture inquisitive content, but rather to characterize
the semantic contribution of disjunction and existentials in the process of meaning
composition. Even though inquisitive and alternative semantics were motivated by
rather different concerns, they essentially coincide in their treatment of disjunction
and existentials.

It has been shown that the treatment of the logical constants in inquisitive and
alternative semantics makes suitable predictions about the semantic behavior of the
corresponding connectives and quantifiers in a variety of typologically unrelated nat-
ural languages. However, even though we have thus obtained a much more accurate
characterization of the meaning of the relevant connectives and quantifiers in nat-
ural language, inquisitive and alternative semantics do not yet provide an explanation
for why these constructions have the particular meanings that they have, and why
constructions with these particular meanings are so wide-spread across languages.

After all, to justify their treatment of the logical constants, both frameworks directly
rely on observations concerning the semantic behavior of the corresponding connec-
tives and quantifiers in natural langauge. For instance, the treatment of ∨ is justified by
observations concerning the word or in English and similar words in other languages.
The vantage point of this approach is that it provides a very direct link between the
formal treatment of the logical constants on the one hand, and intuitions about the
natural language expressions that these logical constants are usually associated with
on the other hand. Thereby, it immediately brings out the linguistic significance of the
two frameworks. However, in order to gain explanatory power, the given treatment of
the logical constants should be justified by considerations independent of the linguistic
data themselves.

To this end, the present paper develops an inquisitive semantics whose treatment
of the logical constants is motivated exclusively by algebraic considerations. Just like
classical propositions can be shown to form a complete Boolean algebra, and classical
logic can be obtained by associating the basic operations in this algebra with the logical
constants, we will show that inquisitive propositions form a complete Heyting algebra,
and we will obtain an inquisitive semantics for the language of first-order logic by
associating the basic operations in this algebra with the logical constants. Crucially, the
justification for the resulting system does not rely in any way on intuitions concerning
specific linguistic constructions.
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Still, the results of our algebraic enterprise will be highly relevant for natural lan-
guage semantics, since it is to be expected that natural languages generally have
constructions that are used to perform the basic algebraic operations on propositions.
For instance, it is natural to expect that languages generally have a word that is used
(possibly among other things) to construct the join of two propositions, and another
word to construct the meet of two propositions. In English, the words or and and are
usually taken to fulfill this purpose. If this general expectation is borne out, then our
algebraic semantics does not only provide a precise characterization of the meaning
of these words; it also provides an explanation for the ubiquity of words with these
particular meanings across languages. 1

Our algebraic semantics will essentially coincide with the simplest and most well-
understood existing implementation of inquisitive semantics, and it will also concur
with the treatment of disjunction and existentials in alternative semantics. Thus, our
algebraic considerations will indeed converge with the linguistic intuitions that previ-
ously played a central role in justifying the treatment of the logical constants, and the
main result of our work will not be a wholly new semantics, but rather a more solid
foundation for some of the existing proposals.

The paper is structured as follows. Section 2 briefly reviews the algebraic founda-
tions of classical logic; Sect. 3 develops an algebraically motivated inquisitive seman-
tics, discussing its logical properties and significance for natural language semantics;
and Sect. 4 concludes.

2 Algebraic foundations of classical logic

To illustrate our approach, let us briefly review the algebraic foundations of classical
logic. 2 Throughout the paper we will assume a set W of possible worlds as our logical
space. In classical logic, the proposition expressed by a sentence ϕ is a set of possible
worlds, embodying the informative content of the sentence. We will denote this set
of worlds as [ϕ]c, where the subscript c stands for classical. In asserting ϕ, a speaker
is taken to provide the information that the actual world is located in [ϕ]c. Given this
way of thinking about propositions, there is a natural entailment order between them:
A |�c B iff A is at least as informative as B, i.e., iff A ⊆ B.

This entailment order in turn gives rise to certain algebraic operations on proposi-
tions. For instance, for any set of propositions �, there is a unique proposition that
(i) entails all the propositions in �, and (ii) is entailed by all other propositions that
entail all propositions in �. This proposition is called the greatest lower bound of

1 It may be useful to draw an analogy with arithmetic operations here. Given that addition and subtraction are
such basic operations on quantities, we expect that natural languages which have words in their vocabulary
to talk about quantities will generally also have words that behave semantically as addition and subtraction
operators (in English, these words are plus and minus). Similarly, given that join and meet are such basic
operations on propositions, we expect that natural languages will generally have words whose semantic
role is to effectuate these operations.
2 Our presentation will be self-contained but perhaps somewhat dense for readers with a limited background
in algebraic semantics. Partee et al. (1990) provide a more comprehensive discussion of all the relevant
algebraic notions, especially geared at a linguistically oriented readership.
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� w.r.t. |�c, or in algebraic jargon, its meet. It amounts to
⋂
� (given the stipulation

that
⋂ ∅ = W ). Similarly, every set of propositions � also has a unique least upper

bound w.r.t. |�c, which is called its join, and amounts to
⋃
�. The existence of meets

and joins for arbitrary sets of classical propositions implies that the set of all classical
propositions, �c, together with the entailment order |�c, forms a complete lattice.

This lattice is bounded. That is, it has a bottom element, ⊥ := ∅, and a top element,
	 := W , such that for every proposition A, we have that ⊥ |�c A and A |�c 	.
Moreover, for every two propositions A and B, there is a unique weakest proposition
C such that A ∩ C |�c B. This proposition is called the pseudo-complement of A
relative to B. It is denoted as A ⇒ B and amounts to (W − A) ∪ B. Intuitively, the
pseudo-complement of A relative to B is the weakest proposition such that if we ‘add’
it to A, we get a proposition that is at least as strong as B. The existence of relative
pseudo-complements implies that 〈�c, |�c〉 forms a Heyting algebra.

If A is an element of a Heyting algebra, it is customary to refer to A∗ := (A ⇒ ⊥)
simply as the pseudo-complement of A (rather than the pseudo-complement of A
relative to ⊥). In the case of 〈�c, |�c〉, A∗ amounts to W − A. By definition of ⇒ ,
we always have that A ∩ A∗ = ⊥. In the specific case of 〈�c, |�c〉, we also always
have that A ∪ A∗ = 	. This means that A∗ is in fact the Boolean complement of A,
and that 〈�c, |�c〉 forms a Boolean algebra, a special kind of Heyting algebra.

Now, classical propositional logic is obtained by associating the basic algebraic
operators, meet, join, and (relative) pseudo-complementation with the logical con-
stants:

1. [¬ϕ] := [ϕ]∗
2. [ϕ ∧ ψ] := [ϕ] ∩ [ψ]
3. [ϕ ∨ ψ] := [ϕ] ∪ [ψ]
4. [ϕ → ψ] := [ϕ] ⇒ [ψ]

Notice that everything starts with a certain notion of propositions and a natural entail-
ment order on these propositions. This entailment order, then, gives rise to certain
basic operations on propositions–meet, join, and relative pseudo-complementation–
and classical propositional logic is obtained by associating these basic semantic oper-
ations with the logical constants.

3 Algebraic foundations for inquisitive semantics

Exactly the same strategy can be applied in the inquisitive setting. Only now we will
have a richer notion of propositions, and a different entailment order on them, sensitive
to both informative and inquisitive content.

3.1 Propositions and entailment

Let us first determine how propositions and entailment should be defined precisely.
We will start with the following notion of propositions; this will be refined below, but
it forms a natural point of departure.
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Definition 1 (Possibilities and propositions).

– A set of possible worlds α⊆ W is called a possibility.
– A proposition is a non-empty set of possibilities. (to be refined)

Propositions of this kind can be taken to embody informative and inquisitive content
in the following way. First, in uttering a sentence that expresses a proposition A, a
speaker can be taken to provide the information that the actual world lies in at least
one of the possibilities in A, i.e. in

⋃
A. In view of this, we will refer to

⋃
A as the

informative content of A, and denote it as info(A).

Definition 2 (Informative content). info(A) := ⋃
A

Second, someone who utters a sentence that expresses a proposition A can also be
taken to request certain information from other conversational participants. Namely,
she can be taken to request enough information to locate the actual world in a specific
possibility in A, rather than just in the union of all the possibilities that A consists of.

We will say that a piece of information β, modeled as a set of possible worlds,
settles a proposition A just in case it is contained in one of the possibilities α that A
consists of, which means that it locates the actual world inside that possibility α.

Definition 3 (Settling a proposition). A piece of information β settles a proposition
A if and only if β ⊆α for some α ∈ A.

Notice that propositions are defined as non-empty sets of possibilities. This reflects
the assumption that for any proposition, there is at least one piece of information that
settles that proposition (although there is one proposition, namely {∅}, which can only
be settled by providing inconsistent information).

Propositions can be ordered in terms of the information that they provide, but
also in terms of the information that they request. We say that one proposition A is
at least as informative as another proposition B, A |�info B, just in case info(A) ⊆
info(B), as in the classical setting. On the other hand, we say that one proposition is at
least as inquisitive as another proposition B, A |�inq B, iff A requests at least as much
information as B, i.e., iff every piece of information that settles A also settles B. This
means that every possibility in A must be contained in some possibility in B. Thus,
A |�inq B if and only if ∀α ∈ A. ∃β ∈ B. α ⊆ β. These two orders can be combined
into one overall entailment order: A |� B iff both A |�info B and A |�inq B.

Definition 4 (Entailment).

– A |�info B iff info(A) ⊆ info(B)
– A |�inq B iff ∀α ∈ A. ∃β ∈ B. α ⊆ β

– A |� B iff A |�info B and A |�inq B

Notice that A |�inq B actually implies that A |�info B. After all, if every possibility in
A is contained in some possibility in B, then

⋃
A must also be contained in

⋃
B.

Thus, the overall entailment order can be simplified as follows.

Fact 1 (Entailment simplified). A |� B iff ∀α ∈ A. ∃β ∈ B. α ⊆ β
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(a) (b)

Fig. 2 Two non-identical propositions that are equivalent w.r.t. |�

Having established this notion of entailment, we are ready to examine whether our
notion of propositions is really appropriate for the purpose at hand. As mentioned in
the introduction, we would like to have that any two non-identical propositions really
differ in informative and/or inquisitive content. Or, phrased the other way around, any
two propositions A and B that are just as informative and just as inquisitive, should be
identical. In more technical terms, we want our entailment order to be anti-symmetric.
That is, whenever A |� B and B |� A, it should be the case that A = B. We will show
that this is not the case.

Consider the two propositions in Fig. 2. The proposition on the left, A, consists
of two possibilities, α and β, while the proposition on the right, B, consists of three
possibilities, α, β, and γ . Thus, these two propositions are not identical. However,
they are just as informative and just as inquisitive: A |� B and B |� A.

To see this, first notice that info(A) and info(B), i.e., the union of the possibilities
in A and the union of the possibilities in B, clearly coincide. Thus, A and B are just
as informative. To see that A and B also request just as much information, consider a
piece of information that settles A. Such a piece of information must either provide the
information that the actual world lies in α or it must provide the information that the
actual world lies in β. But that means that it also settles B. And vice versa, any piece
of information that settles B also settles A. Thus, A and B are also just as inquisitive.

This shows that, as long as we are interested in capturing only informative and
inquisitive content, our notion of propositions as arbitrary sets of possibilities is not
quite appropriate. Rather, we would like to have a more restricted notion, such that any
two non-identical propositions really differ in informative and/or inquisitive content.3

To this end, we will define propositions as non-empty, downward closed sets of
possibilities.

3 As alluded to in the introduction, there is a large body of work on the semantics of questions, starting
with Hamblin (1973) and Karttunen (1977), which assumes precisely the type of meanings that we have
considered here, i.e., meanings as arbitrary sets of possibilities. All this work suffers from the anti-symmetry
problem that we just pointed out. There is also a large body of work, starting with Groenendijk and Stokhof
(1984), in which question-meanings are not taken to be arbitrary sets of possibilities, but rather sets of
possibilities that partition the logical space. In this case the anti-symmetry problem does not arise. For
arguments to move from a partition semantics to an inquisitive semantics of the kind developed here, we
refer to Mascarenhas (2009) and Ciardelli et al. (2013a).
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Definition 5 (Propositions as downward closed sets of possibilities).

– A set of possibilities A is downward closed if and only if for every α ∈ A and
every β ⊆α, we also have that β ∈ A.

– Propositions are non-empty, downward closed sets of possibilities.

We will use � to denote the set of all propositions. To see that downward closedness
is a natural constraint on propositions in the present setting, consider the following.
We are conceiving of propositions as sets of possibilities, and these possibilities deter-
mine what it takes to settle a given proposition. Thus far, we have been assuming
the following relationship between the pieces of information that settle a proposition
A and the possibilities that A consists of: a piece of information β settles A iff it is
contained in some possibility α ∈ A. But we could just as well assume a more direct
relationship between the possibilities in A and the pieces of information that settle A.
Namely, we could simply think of the possibilities in A as corresponding precisely
to the pieces of information that settle A. But if we conceive of the possibilities in a
proposition in this way, we are immediately forced to define propositions as downward
closed sets of possibilities. After all, if α ∈ A, then, given the assumed conception of
possibilities, α is a piece of information that settles A; but then any stronger piece of
information β ⊂ α also settles A, and this means, again given the assumed conception
of possibilities, that any β ⊂ α must also be in A.

Given this more restricted notion of propositions as non-empty, downward closed
sets of possibilities, the characterization of |� can be further simplified. We said above
that A |� B iff every piece of information that settles A also settles B. Given our new
conception of propositions, this simply amounts to inclusion: A ⊆ B.

Fact 2 (Entailment further simplified). A |� B iff A ⊆ B

From this characterization it immediately follows that |� forms a partial order over
�. This implies in particular that |� is anti-symmetric, which means that every two
non-identical propositions really differ in informative and/or inquisitive content, as
desired.

3.2 Algebraic operations

The next step is to see what kind of algebraic operations |� gives rise to. It turns out
that, just as in the classical setting, any set of propositions � has a unique greatest
lower bound (meet) and a unique least upper bound (join) w.r.t. |�.

Fact 3 (Meet). For any set of propositions�,
⋂
� is the meet of� w.r.t. |� (assuming

that
⋂ ∅ = ℘(W )).

Proof First, let us show that
⋂
� is a proposition. If � = ∅ then

⋂
� = ℘(W ),

which is indeed a proposition. If � �= ∅ then
⋂
� must contain ∅, since all elements

of � are non-empty and downward closed, which means that they must contain ∅. So⋂
� is non-empty. To see that it is also downward closed, suppose that α ∈ ⋂

�.
Then α must be in every proposition in�. But then every β ⊆α must also be included
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in every proposition in �, and therefore in
⋂
�. So

⋂
� is indeed downward closed.

Next, note that
⋂
� |� A for any A ∈ �, which means that

⋂
� is a lower bound

of �. What remains to be shown is that
⋂
� is the greatest lower bound of �. That

is, for every B that is a lower bound of �, we must show that B |� ⋂
�. To see this

let B be a lower bound of �, and let β be a possibility in B. Then, since B |� A for
any A ∈ �, β must be included in any A ∈ �. But then β must also be in

⋂
�. Thus,

B |� ⋂
�, which is exactly what we set out to show. So

⋂
� is indeed the greatest

lower bound of �. ��
Fact 4 (Join). For any set of propositions �,

⋃
� is the join of � w.r.t. |� (assuming

that
⋃ ∅ = {∅}).

Proof We omit the proof that
⋃
� is a proposition. For any A ∈ �, A |� ⋃

�, which
means that

⋃
� is an upper bound of �. What remains to be shown is that

⋃
� is

the least upper bound of�. That is, for every B that is an upper bound of�, we must
show that

⋃
� |� B. To see this let B be an upper bound of �, and α a possibility

in
⋃
�. Then α must be in some proposition A ∈ �. But then, since A |� B, α must

also be in B. And this establishes that
⋃
� |� B, which is what we set out to show.

Thus,
⋃
� is indeed the least upper bound of �. ��

The existence of meets and joins for arbitrary sets of propositions implies that 〈�, |�〉
forms a complete lattice. And again, this lattice is bounded, i.e., there is a bottom
element, ⊥ := {∅}, and a top element, 	 := ℘(W ). Finally, as in the classical setting,
for every two propositions A and B, there is a unique weakest proposition C such that
A ∩ C |� B. Recall that this proposition, which is called the pseudo-complement of
A relative to B, can be characterized intuitively as the weakest proposition such that
if we add it to A, we get a proposition that is at least as strong as B. The only thing
that has changed with respect to the classical setting is that strength is now measured
both in terms of informative content and in terms of inquisitive content.

Definition 6 For any two propositions A and B:

A ⇒ B := {α | for every β ⊆α, if β ∈ A then β ∈ B}

Fact 5 (Relative pseudo-complement). For any two propositions A and B, A ⇒ B is
the pseudo-complement of A relative to B.

Proof We omit the proof that A ⇒ B is a proposition. To see that A ∩ (A ⇒ B) |� B,
let α be a possibility in A ∩ (A ⇒ B). Then α is both in A and in A ⇒ B. Since
α ∈ A ⇒ B, it must be the case that if α ∈ A then also α ∈ B. But we know that
α ∈ A. So α must also be in B. This establishes that A ∩ (A ⇒ B) |� B.

It remains to be shown that A⇒B is the weakest proposition C such that A∩C |� B.
In other words, we must show that for any proposition C such that A ∩ C |� B,
it holds that C |� (A ⇒ B). To see this, let C be a proposition such that A ∩ C |� B
and let α be a possibility in C . Towards a contradiction, suppose that α �∈ (A ⇒ B).
Then there must be some β ⊆α such that β ∈ A and β �∈ B. Since C is downward
closed, β ∈ C . But that means that β is in A ∩ C , while β �∈ B. Thus A ∩ C �|� B,
contrary to what we assumed. So A ⇒ B is indeed the pseudo-complement of A
relative to B. ��

123



88 Synthese (2013) 190:79–102

The existence of relative pseudo-complements implies that 〈�, |�〉 forms a Heyt-
ing algebra. Recall that in a Heyting algebra, A∗ := (A ⇒ ⊥) is referred to as the
pseudo-complement of A. In the specific case of 〈�, |�〉, pseudo-complements can be
characterized as follows.

Fact 6 (Pseudo-complement). For any proposition A:

A∗ = {β | β ∩
⋃

A = ∅}

Thus, A∗ consists of all the possibilities that are disjoint from
⋃

A. This means that
a piece of information settles A∗ just in case it locates the actual world outside

⋃
A.

So far, then, everything works out just as in the classical setting. However, unlike in
the classical setting, the pseudo-complement of a proposition is not always its Boolean
complement. In fact, most propositions in 〈�, |�〉 do not have a Boolean complement
at all. To see this, suppose that A and B are Boolean complements. This means that (i)
A∩ B = ⊥ and (ii) A∪ B = 	. Condition (ii) can only be fulfilled if W is contained in
either A or B. Suppose W ∈ A. Then, since A is downward closed, A = ℘(W ) = 	.
But then, in order to satisfy condition (i), we must have that B = {∅} = ⊥. So the
only two elements of our algebra that have a Boolean complement are 	 and ⊥. This
implies that 〈�, |�〉 does not form a Boolean algebra.

Thus, starting with a new notion of propositions and an entailment order on these
propositions that takes both informative and inquisitive content into account, we have
established an algebraic structure with three basic operations, meet, join, and relative
pseudo-complementation. The only difference with the algebraic structure obtained
in the classical setting is that, apart from the extremal elements of the algebra, propo-
sitions do not have Boolean complements. However, as in the classical setting, every
proposition does have a pseudo-complement.

3.3 Connectives

Now suppose that we have a language L , whose sentences express the kind of propo-
sitions considered here. Then it is natural to assume that this language has certain
sentential connectives which semantically behave like meet, join, and (relative)
pseudo-complement operators. Below we define a semantics for the language of
propositional logic, L P , that has exactly these characteristics: conjunction behaves
semantically as a meet operator, disjunction behaves as a join operator, negation as a
pseudo-complement operator, and implication as a relative pseudo-complement oper-
ator. The semantics assumes a valuation function which assigns a truth-value to every
atomic sentence in every world. For any atomic sentence p, the set of worlds where
p is true is denoted by |p|.
Definition 7 (An algebraic inquisitive semantics for L P ).

1. [p] := ℘( |p| )
2. [¬ϕ] := [ϕ]∗
3. [ϕ ∧ ψ] := [ϕ] ∩ [ψ]
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4. [ϕ ∨ ψ] := [ϕ] ∪ [ψ]
5. [ϕ → ψ] := [ϕ] ⇒ [ψ]

The clauses for the logical constants are completely determined by our algebraic
considerations. Notice, however, that these considerations do not dictate a particular
treatment of atomic sentences. We assume that in uttering an atomic sentence p,
a speaker provides the information that p is true, and does not request any further
information from other participants. This assumption is directly reflected by the clause
for atomic sentences given above, which defines [p] as the set of all possibilities
containing only worlds where p is true.

3.4 Quantifiers

The approach taken here can straightforwardly be extended to obtain an inquisitive
semantics for the language of first-order logic, L F O . The proposition expressed by
a universally quantified formula ∀x .ϕ, relative to an assignment g, can be defined as
the meet of all the propositions that ϕ expresses relative to assignment functions that
differ from g at most in the value that they assign to x . And similarly, the proposition
expressed by an existentially quantified formula ∃x .ϕ, relative to g, can be defined as
the join of all the propositions that ϕ expresses relative to assignment functions that
differ from g at most in the value that they assign to x .

As usual, the semantics for L F O assumes a domain of individuals D and a world-
dependent interpretation function Iw that maps every individual constant c to some
individual in D and every n-place predicate symbol R to a set of n-tuples of individuals
in D. Formulas are interpreted relative to an assignment function g, which maps every
variable x to some individual in D. For every individual constant c, [c]w,g = Iw(c) and
for every variable x , [x]w,g = g(x). An atomic sentence Rt1 . . . tn is true in a world
w relative to an assignment g iff 〈[t1]w,g, . . . , [tn]w,g〉 ∈ Iw(R). Given an assignment
g, the set of worlds w such that Rt1 . . . tn is true in w relative to g is denoted by
|Rt1 . . . tn|g .

Definition 8 (An algebraic inquisitive semantics for L F O ).

1. [Rt1 . . . tn]g := ℘( |Rt1 . . . tn|g )
2. [¬ϕ]g := [ϕ]∗g
3. [ϕ ∧ ψ]g := [ϕ]g ∩ [ψ]g

4. [ϕ ∨ ψ]g := [ϕ]g ∪ [ψ]g

5. [ϕ → ψ]g := [ϕ]g ⇒ [ψ]g

6. [∀x .ϕ]g := ⋂
d∈D [ϕ]g[x/d]

7. [∃x .ϕ]g := ⋃
d∈D [ϕ]g[x/d]

Given its algebraic characterization, the status of this system among logical frame-
works for the semantic treatment of informative and inquisitive content, is precisely the
same as that of classical first-order logic among logical frameworks for the semantic
treatment of purely informative content. In this sense, the system may be regarded as
the most basic inquisitive semantics. Just like classical logic in the purely informative
setting, the system provides a suitable framework for the formulation and comparison
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of different theories of inquisitive constructions in natural language, and a common
starting point for the development of even richer logical frameworks dealing with
aspects of meaning that go beyond purely informative and inquisitive content (e.g.
presuppositional aspects of meaning). We will therefore refer to the system as InqB,
where B stands for basic.

In the remainder of the paper we will relate InqB to earlier work on inquisitive
semantics, identify its basic logical properties, and discuss its significance for natural
language semantics.

3.5 Propositions and support

In previous work on inquisitive semantics, a number of different systems have been
considered. We will focus here on the simplest and most well-understood system,
where the proposition expressed by a sentence is defined in terms of the notion of sup-
port (just as in the classical setting, the proposition expressed by a sentence is usually
defined in terms of truth). Support is a relation between sentences and information
states (relativized to an assignment function in the first-order setting). Information
states are modeled as sets of possible worlds (valuation functions in the propositional
setting; first-order models in the first-order setting). Support for L F O is defined recur-
sively as follows. 4

Definition 9 (First-order support).

1. s |�g Rt1 . . . tn iff s ⊆ |Rt1 . . . tn|g
2. s |�g ¬ϕ iff ∀t ⊆ s : if t �= ∅ then t �|�g ϕ

3. s |�g ϕ ∧ ψ iff s |�g ϕ and s |�g ψ

4. s |�g ϕ ∨ ψ iff s |�g ϕ or s |�g ψ

5. s |�g ϕ → ψ iff ∀t ⊆ s : if t |�g ϕ then t |�g ψ

6. s |�g ∀x .ϕ iff s |� g[x/d]ϕ for every d ∈ D
7. s |�g ∃x .ϕ iff s |� g[x/d]ϕ for some d ∈ D

Now, it turns out that there is a very close connection between the information states
that support a formula ϕ, relative to an assignment g, and the proposition [ϕ]g that ϕ
expresses relative to g in InqB. Namely, the proposition expressed by ϕ relative to g
in InqB is precisely the set of all states that support ϕ relative to g.

Fact 7 (Propositions and support). For any formula ϕ ∈ L F O , state s, and assign-
ment g:

s |�g ϕ ⇐⇒ s ∈ [ϕ]g

4 The definition of support assumed here was first proposed for L P in (Groenendijk 2008; Ciardelli 2008).
It was extended to L F O in (Ciardelli 2009) and further investigated in (Groenendijk and Roelofsen 2009;
Ciardelli and Roelofsen 2011). The definition differs subtly but crucially from the one proposed in (Groe-
nendijk 2009; Mascarenhas 2009). For discussion of the differences and arguments in favor of the current
notion of support, see (Ciardelli and Roelofsen 2011, §8). The system considered here has been extended
in several ways in order to capture aspects of meaning that go beyond informative and inquisitive content
(see, e.g., Ciardelli et al. 2009; Roelofsen and van Gool 2010, and Farkas and Roelofsen 2012). In these
extended systems, the proposition expressed by a sentence is no longer defined via the notion of support,
but rather by means of a direct recursive definition, as in the algebraic semantics presented in this paper.
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This result tells us that InqB essentially coincides with the existing support-based
system. It must be noted that in most presentations of the support-based system, the
proposition expressed by a sentence is defined as the set of maximal states supporting
the sentence, rather than the set of all supporting states. 5 However, central logical
notions like entailment and equivalence are directly defined in terms of support, which
means that the logic that the two systems give rise to is exactly the same. Thus, all
the logical results obtained for the support-based system immediately carry over to
our algebraic system. In particular, we can import the following completeness result
(Ciardelli 2009; Ciardelli and Roelofsen 2009, 2011). 6

Theorem 1 (Completeness theorem). Let 
 be a set of sentences and ψ a sentence,
all in L P . Then 
 entails ψ in InqB if and only if ψ can be derived from 
 using
modus ponens as the only inference rule, and the following axioms:

– All axioms for intuitionistic logic.
– Kreisel-Putnam: (¬ϕ → ψ ∨ χ) −→ (¬ϕ → ψ) ∨ (¬ϕ → χ)

– Atomic double negation: ¬¬p → p (only for atomic p)

Note that InqB is stronger than in intuitionistic logic. Namely, besides the axioms of
intuitionistic logic, which are valid on any Heyting algebra (Troelstra and van Dalen
1988), it also validates the Kreisel-Putnam axiom and the law of double negation
for atomic sentences. The latter is evidently connected to the treatment of atomic
sentences in InqB. Recall that our algebraic considerations did not dictate a particular
treatment of atomic sentences. We defined the proposition expressed by an atomic
sentence p as the set of all possibilities consisting of worlds where p is true, reflecting
the assumption that in uttering p, a speaker provides the information that p is true,
and does not request any further information from other participants. This particular
treatment of atomic sentences results in the validity of ¬¬p → p.

The validity of the Kreisel-Putnam axiom is connected to the fact that the space of
propositions in InqB actually forms a specific kind of Heyting algebra. This additional
structure is not directly relevant for the purposes of this paper, but clearly plays a
crucial role in comparing the logic of InqB with intuitionistic logic. Ciardelli (2009)
and Ciardelli and Roelofsen (2009, 2011) pursue such a comparison in more detail.

In the next two subsections we will introduce some additional notions, and highlight
some specific features of InqB. In doing so, we will mostly restrict our attention to
the propositional setting. Everything we will say also applies to the first order system,
but formulating things in the first-order setting is a bit more cumbersome, because
everything needs to be relativized to assignment functions.

5 Groenendijk (2008) actually makes a distinction between the meaning of a sentence (the set of all sup-
porting states) and the proposition expressed by a sentence (the set of maximal supporting states). Ciardelli
(2008) makes a similar distinction. In other work on the support-based system, the meaning/proposition
associated with a sentence is defined as the set of maximal supporting states.
6 The completeness problem for the first-order case is still open. See Ciardelli (2009) for discussion.
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3.6 Informativeness and inquisitiveness

Recall that we defined the informative content of a proposition A, info(A), as the union
of all the possibilities in A. Derivatively, we will say that the informative content of
a sentence ϕ, info(ϕ), is the informative content of the proposition that it expresses,
i.e.,

⋃[ϕ].
It can be shown that the informative content of a sentence ϕ in InqB always coin-

cides with the proposition [ϕ]c expressed by that sentence in classical logic (see, e.g.,
Ciardelli and Roelofsen 2011, p. 62). This means that InqB forms a conservative exten-
sion of classical logic, in the sense that it leaves the treatment of informative content
untouched.

Fact 8 (The treatment of informative content in InqB is classical). For any sentence
ϕ: info(ϕ) = [ϕ]c.

We will say that a sentence is informative just in case its informative content does
not cover the entire logical space, i.e., iff info(ϕ) �= W . On the other hand we will
say that ϕ is inquisitive just in case accepting info(ϕ) is not sufficient to settle [ϕ],
i.e., iff info(ϕ) �∈ [ϕ]. In uttering an inquisitive sentence, a speaker does not just ask
other participants to accept the information that she herself provides in uttering that
sentence, but also to supply additional information.

Definition 10 (Informative and inquisitive sentences).

– ϕ is informative iff info(ϕ) �= W
– ϕ is inquisitive iff info(ϕ) �∈ [ϕ]

In terms of these notions of informativeness and inquisitiveness, we define questions,
assertions, hybrids, and tautologies as follows.

Definition 11 (Questions, assertions, hybrids, and tautologies).

– ϕ is a question iff it is non-informative
– ϕ is an assertion iff it is non-inquisitive
– ϕ is hybrid iff it is both informative and inquisitive
– ϕ is a tautology iff it is neither informative nor inquisitive

Recall that in the classical setting, a sentence is a tautology just in case it is non-
informative. In InqB, sentences can be meaningful by being informative, but also by
being inquisitive. Thus, it is natural that in order to count as a tautology in InqB, a
sentence has to be neither informative nor inquisitive.

Notice that a question is tautological just in case it is non-inquisitive, and an asser-
tion is tautological just in case it is non-informative. Thus, sentences that are neither
informative nor inquisitive count both as tautological assertions and as tautological
questions.

It can be shown that a sentence is tautological just in case it expresses the proposition
℘(W ), which is the top element of our algebra.

Fact 9 (Tautologies express the top element of the algebra).

– ϕ is a tautology iff [ϕ] = 	 = ℘(W )
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Fig. 3 The proposition
expressed by p ∨ q in classical
logic and in InqB

(a) (b)

3.7 Disjunction, existentials, and inquisitiveness

InqB crucially differs from classical logic in its treatment of disjunction. This is illus-
trated in Fig. (3a) and (3b). These figures assume a propositional language with just
two atomic sentences, p and q; world 11 makes both p and q true, world 10 makes p
true and q false, etcetera. Figure (3a) depicts the classical meaning of p ∨ q: the set
of all worlds that make p or q true. Figure (3b) depicts the proposition expressed by
p ∨ q in InqB. For visual clarity, we have only depicted the maximal possibilities in
[p ∨ q]: the possibility that consists of all worlds where p is true, and the possibil-
ity that consists of all worlds where q is true. Since info(p ∨ q) does not cover the
entire logical space, p ∨ q is informative; and since info(p ∨ q) �∈ [p ∨ q], it is also
inquisitive. So p ∨ q is an example of a hybrid sentence.

This example shows that disjunction is a source of inquisitiveness. It turns two
atomic, non-inquisitive sentences into an inquisitive sentence. In the first-order setting,
existential quantification behaves in a similar way and is also a source of inquisitive-
ness. It can in fact be shown that disjunction and existential quantification are the only
sources of inquisitiveness in L F O (see, e.g., Ciardelli and Roelofsen 2011, p. 62).

Fact 10 (Disjunction, existentials, and inquisitiveness). If a sentence in L F O does not
contain disjunction or existential quantification then it is not inquisitive. 7

As mentioned in the introduction, a treatment of disjunction and existentials as intro-
ducing sets of possibilities has not only been developed in inquisitive semantics but
also in alternative semantics (Kratzer and Shimoyama 2002; Simons 2005a,b; Alonso-
Ovalle 2006, 2008, 2009; Aloni 2007a,b; Menéndez-Benito 2005, 2010, among
others). This treatment has been motivated by a number of empirical phenomena,
including free choice inferences, exclusivity implicatures, and conditionals with dis-
junctive antecedents. The proposed analysis of disjunction and indefinites led to new
accounts of these phenomena which improved considerably on previous accounts.
However, as mentioned in the introduction as well, no motivation has so far been pro-
vided for this alternative treatment of disjunction and existentials independently of the
linguistic phenomena at hand. Moreover, the treatment of disjunction and existentials
in alternative semantics has been presented as a real alternative for the classical treat-
ment of these logical constants as join operators. It seems, then, that anyone adopting

7 Notice that the implication in the other direction does not always go through, i.e., if a sentence contains
a disjunction or an existential quantifier then it is not always inquisitive, as witnessed by sentences like
¬(p ∨ q), (p ∨ q) → r , and p ∨ p.
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the proposed alternative treatment of disjunction and existentials is forced to give up
the classical treatment of these operators. One particular consequence of taking such
a step is that the duality between disjunction and conjunction, and the corresponding
duality between existential and universal quantification, gets lost.

The algebraic inquisitive semantics developed in the present paper sheds new light
on these issues. First, it shows that, once inquisitive content is taken into considera-
tion besides informative content, general algebraic considerations lead essentially to
the treatment of disjunction and existentials that was proposed in alternative seman-
tics, thus providing exactly the independent motivation that has so far been missing.
Moreover, it shows that the proposed ‘alternative’ treatment of disjunction and exis-
tentials is actually a natural generalization of the classical treatment: disjunction and
existentials can still be taken to behave semantically as join operators, only now the
propositions that they apply to are more fine-grained in order to capture both infor-
mative and inquisitive content. And once the algebraic underpinning is regained, the
duality between disjunction and conjunction, and the corresponding duality between
existential and universal quantification, are restored as well. So we can have our cake
and eat it: we can maintain the idea that disjunction and existentials behave as join
operators, and still treat them as introducing sets of alternatives. 8

3.8 Projection operators

It is natural to think of sentences in InqB as inhabiting a two-dimensional space, as
depicted in Fig. 4 (see also Mascarenhas 2009; Ciardelli 2009). One of the axes is
inhabited by questions, which are always non-informative; the other axis is inhabited
by assertions, which are always non-inquisitive; the ‘zero-point’ of the space is inhab-
ited by tautologies, which are neither informative nor inquisitive; and the rest of the
space is inhabited by hybrids, which are both informative and inquisitive.

Given this picture, it is natural to think of projection operators that map any sentence
onto the axes of the space. In particular, we may consider a non-inquisitive projection
operator ! that maps any sentence ϕ to an assertion !ϕ that is non-inquisitive but
otherwise as similar as possible to ϕ, and a non-informative projection operator ?
that maps every ϕ to a question ?ϕ that is non-informative but otherwise as similar as
possible to ϕ.

We will add the operators ! and ? to our logical language. In order to define their
semantic contribution, let us formulate more precisely how we would like them to

8 There is one caveat here: if ψ entails ϕ then the disjunction ϕ∨ψ is equivalent with just ϕ in InqB, since
propositions are downward closed. As a concrete example of this general fact, we have that (p∨q)∨(p∧q)
(read: p or q or both) is equivalent with just p ∨ q. Work on alternative semantics, in particular that of
Alonso-Ovalle (2006, 2008, 2009), has shown that in order to account for certain phenomena, it is important
to assign distinct semantic values to these two sentences. This cannot be achieved as long as propositions
embody only informative and inquisitive content. However, it is achieved very naturally in an extension
of InqB, where besides informative and inquisitive content, propositions also embody attentive content
(Ciardelli et al. 2009; Roelofsen 2011c). In this framework, the two sentences are indeed assigned distinct
semantic values, intuitively because they draw attention to different possibilities. Preliminary investigations
of the algebraic foundations of this framework can be found in (Roelofsen 2011b,c; Westera 2012b).
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Fig. 4 Questions, assertions,
hybrids, and tautologies in a
two-dimensional space

behave. First consider !, the non-inquisitive projection operator. We would like this
operator to behave in such a way that for any ϕ:

1. !ϕ is non-inquisitive;
2. info(!ϕ) = info(ϕ), i.e., !ϕ preserves the informative content of ϕ

The following ‘representation theorem’ shows that these requirements uniquely deter-
mine how ! should be defined. 9

Theorem 2 (Representation theorem for non-inquisitive projection). The non-
inquisitive projection operator ! meets the above requirements if and only if it is
defined as follows:

[!ϕ] := ℘(info(ϕ))

Proof First, we show that !, as defined here, satisfies the requirements. Notice that
info(!ϕ) = ⋃[!ϕ] = info(ϕ). So the second requirement is fulfilled. And since
info(ϕ) ∈ [!ϕ], the first requirement is fulfilled as well.

Now let us show that any operator that meets the given requirements must behave
exactly as ! does. Let ∇ be an operator that meets the given requirements. Then, for
every ϕ, ∇ϕ must be non-inquisitive. That is, [∇ϕ] = ℘(info(∇ϕ)). But we must also
have that info(∇ϕ) = info(ϕ), which means that [∇ϕ] = ℘(info(ϕ)) = [!ϕ]. So ∇
must indeed behave exactly as ! does. ��
Now let us consider ?, the non-informative projection operator. Clearly, we always
want ?ϕ to be non-informative. But what else do we want? We cannot demand that ?ϕ
is always just as inquisitive asϕ itself, i.e. that [?ϕ] and [ϕ] are always settled by exactly
the same pieces of information. After all, if we enforced this requirement, ?ϕ would
simply have to be equivalent to ϕ. There is, however, a natural way to weaken this
requirement. In order to do so, we should not only consider the pieces of information
that settle [ϕ], but rather more generally the pieces of information that decide on [ϕ].

9 In general, a representation theorem is a theorem that states that every abstract structure with certain
properties must be isomorphic to some specific concrete structure. Our representation theorem states that in
order to satisfy the above requirements, the non-inquisitive projection operator must be defined in a certain
way.
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Definition 12 (Contradicting and deciding on a proposition). Let β be a piece of
information, and [ϕ] a proposition. Then:

– β contradicts [ϕ] iff β ∩ ⋃[ϕ] = ∅
– β decides on [ϕ] iff it settles [ϕ] or contradicts [ϕ]
– D(ϕ) denotes the set of all pieces of information that decide on [ϕ]

Now we are ready to formulate the requirements for ?. Namely, we want ? to behave
in such a way that for every ϕ:

1. ?ϕ is non-informative
2. D(?ϕ) = D(ϕ)

Again, these requirements uniquely determine how ? should be defined.

Theorem 3 (Representation theorem for non-informative projection). The non-
informative projection operator satisfies the above requirements if and only if it is
defined as follows:

[?ϕ] := D(ϕ)

That is, [?ϕ] consists of all possibilities that decide on [ϕ].
Proof First let us check that, given this definition, ? satisfies the given requirements.
First, we always have that

⋃[?ϕ] = W , which means that ?ϕ is never informative.
Moreover, if β is a piece of information that decides on [ϕ] then it clearly settles, and
therefore decides on [?ϕ]. Vice versa, if β decides on [?ϕ] then, since there are no
possibilities that are disjoint from

⋃[?ϕ], β must actually settle [?ϕ] and therefore be
included in [?ϕ]. And this means, given how [?ϕ] is defined, that β must decide on
[ϕ]. So ? indeed meets the given requirements.

Now let us show that any operator that satisfies the given requirements must behave
exactly as ? does. Let� be an operator that satisfies the requirements. Then, for every
ϕ,�ϕmust be non-informative, which means that info(�ϕ) = W . Moreover, we must
have that D(�ϕ) = D(ϕ). Given that info(�ϕ) = W , there cannot be any possibilities
that are disjoint from

⋃[�ϕ]. Thus, D(�ϕ) amounts to [�ϕ]. But then [�ϕ] must be
identical to D(ϕ), which is [?ϕ]. So � must indeed behave exactly as ? does. ��
Now, if [!ϕ] is defined as ℘(info(ϕ)), and [?ϕ] as D(ϕ), then the semantic behavior of
these operators can actually be characterized in terms of our basic algebraic operations.

Fact 11 (Projection in terms of basic algebraic operations).

– [!ϕ] = ([ϕ]∗)∗
– [?ϕ] = [ϕ] ∪ [ϕ]∗

This also means that the projection operators can actually be expressed in terms of the
basic connectives in our logical language. 10

10 We use ≡ here to denote equivalence, i.e., ϕ ≡ ψ iff [ϕ] = [ψ].
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Fact 12 (Projection operators in terms of basic connectives).

– !ϕ ≡ ¬¬ϕ
– ?ϕ ≡ ϕ ∨ ¬ϕ

Thus, rather than adding ! and ? as primitive logical constants to our language, we can
simply introduce !ϕ as an abbreviation of ¬¬ϕ and ?ϕ as an abbreviation of ϕ ∨ ¬ϕ.
The logic that the system gives rise to is then fully determined by the behavior of our
basic connectives, and in proving things about the system, we never need to consider
! and ? explicitly.

This is in fact exactly how !ϕ and ?ϕ were defined in (Groenendijk and Roelofsen
2009; Ciardelli 2009; Ciardelli and Roelofsen 2011), i.e., as abbreviations of ¬¬ϕ
and ϕ ∨ ¬ϕ. So again, our considerations in this section have not really led to a new
treatment of projection operators, but rather to a more solid foundation for the existing
treatment. 11

Having established the connection between our characterization of the projection
operators and the way they were defined in earlier work, we can immediately import a
number of results. We mention here only the two most significant ones. First, there is
a close correspondence between the projection operators and the semantic categories
of questions and assertions.

Fact 13 (Projection operators and semantic categories).

– ϕ is an assertion iff ϕ ≡ !ϕ
– ϕ is a question iff ϕ ≡ ?ϕ

Second, a sentence ϕ is always equivalent to the conjunction of its two projections,
?ϕ and !ϕ.

Fact 14 (Division). ϕ ≡ ?ϕ ∧ !ϕ
The results obtained in this section are summarized visually in Fig. 5. Every hybrid
sentence ϕ has a projection onto the horizontal axis, !ϕ, and a projection onto the
vertical axis, ?ϕ. The former is always an assertion, the latter is always a question, and
the conjunction of the two is always equivalent with ϕ itself.

In our view, these results are significant for the semantic analysis of declarative
and interrogative complementizers in natural language. Just as it is to be expected that
natural languages generally have connectives that behave semantically as join, meet,
and pseudo-complement operators, it is also to be expected that natural languages
generally have complementizers that behave semantically as non-informative or non-
inquisitive projection operators, or combinations thereof. 12

11 Our considerations here can also be seen as providing motivation for the existential closure operator in
alternative semantics (see the references given above), which behaves essentially in the same way as our
non-inquisitive projection operator.
12 In English, we can think of the words that and whether as realizing declarative and interrogative comple-
mentizers, respectively, in embedded clauses (e.g., John knows that/whether Mary is coming). Even though
these words do not occur in unembedded clauses, it is commonly assumed that the syntactic representa-
tions of unembedded clauses also involve complementizers. This assumption is also commonly made for
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Fig. 5 Projection and division

It is interesting to note in this regard that the non-informative projection operator, ?,
which turns every sentence in our logical language into a question and would therefore
naturally be associated with interrogative complementizers in natural languages, is
closely related to disjunction and existential quantification. Namely, [?ϕ] is the join of
[ϕ] and [ϕ]∗, and the join operation, also associated with disjunction and existential
quantification, is the essential source of inquisitiveness in InqB. This fact may provide
the basis for an explanation of the well-known observation that in many languages,
question markers are homophonous with words for disjunction and/or indefinites (e.g.,
Japanese ka) (see Jayaseelan 2001, 2008; Bhat 2005; Haida 2007; AnderBois 2011,
2012, among others).

3.9 Maximal possibilities and compliance

Before concluding, we would like to briefly come back to the difference between the
notion of a proposition in InqB and the one assumed in most previous work on the
support-based system (see footnote 5).

As mentioned, the proposition expressed by a sentenceϕ in InqB coincides precisely
with the set of all states that support ϕ. However, in the support-based system the
proposition expressed by ϕ is usually defined as the set of maximal states supporting
ϕ, i.e., the set of states that supportϕ and are not contained in any other state supporting
ϕ. We will use [[ϕ]] to denote this set of maximal supporting states.

Now, if we restrict our attention to L P , it can in fact be shown that a sentence ϕ
is supported by a state s if and only if s is contained in a maximal state supporting ϕ
(see Ciardelli and Roelofsen 2011, p. 59).

Footnote 12 continued
wh-interrogatives, which, in English, do not exhibit overt complementizers even if they are embedded. In
many other languages, complementizers are realized more overtly. It seems plausible to treat the declarative
complementizer in English (that) as !, the wh-interrogative complementizer as ?, and the polar interrogative
complementizer (whether) as ?!. A detailed examination of this linguistic analysis is beyond the scope of
this paper. Importantly, however, note that the framework developed here also allows us to formulate alter-
native analyses. The framework does not make any direct predictions about the semantic behavior of any
specific construction in any specific natural language. It mainly offers the logical tools that are necessary
to formulate such analyses, and gives rise to the expectation that, in general, natural languages will have
ways to express the basic algebraic operations and the basic projection operations on propositions.
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Fact 15 (Support and maximal supporting states for L P ). For any sentence ϕ ∈ L P

and any state s:

s |�ϕ ⇐⇒ s ⊆α for some α ∈ [[ϕ]]

This means that, for any ϕ ∈ L P , [ϕ] can be fully recovered from [[ϕ]], simply by
taking its downward closure. Clearly, [[ϕ]] can also always be obtained from [ϕ], by
taking maximal elements. So at first sight there does not seem to be any reason to
prefer one notion over the other.

However, there is a specific reason why [[ϕ]] is usually adopted in the support-based
system, rather than [ϕ]. Namely, one of the main logical pragmatic notions that the
semantics is intended to give rise to, i.e., the notion of compliance (Groenendijk and
Roelofsen 2009), makes crucial reference to maximal supporting states and is therefore
more straightforwardly characterized in terms of [[ϕ]] than in terms of [ϕ]. Compliance
is a strict notion of logical relatedness. For instance, p is a compliant response to ?p,
but p ∧ q is not, because q contributes information that is logically unrelated to ?p.
Maximal supporting states play an important role in characterizing compliance because
they correspond to pieces of information that are just sufficient to settle the given
proposition, i.e., they settle the proposition without providing additional, possibly
redundant and logically unrelated information (see Groenendijk and Roelofsen 2009).

Thus, if we want to characterize such a notion of compliance, there indeed seems
to be a good reason to focus on maximal supporting states, and in the propositional
setting this is unproblematic (although taking the proposition expressed by a sentence
to consist of all supporting states, as in InqB, does of course not prevent us from
characterizing compliance, it just makes it slightly less straightforward).

However, it has been shown in great detail by Ciardelli (2009, 2010) that if we move
to the first-order setting, compliance can no longer be defined in terms of maximal
supporting states; in fact, in the first-order setting compliance cannot be defined in
terms of support at all. Ciardelli’s argument starts with the following example.

Example 1 (The boundedness formula). Consider a first-order language which has
a unary predicate symbol P , a binary function symbol +, and the set N of natural
numbers as its individual constants. Suppose that our logical space consist of first-
order models M = 〈D, I 〉, where D = N, I maps every n ∈ N to the corresponding
n ∈ D, and + is interpreted as addition. So the only difference between the models
in our logical space is the way in which they interpret P . Let x ≤ y abbreviate
∃z(x + z = y), let B(x) abbreviate ∀y(P(y) → y ≤ x), and for every n ∈ N, let
B(n) abbreviate ∀y(P(y) → y ≤ n). Intuitively, B(n) says that n is greater than or
equal to any number in P . In other words, B(n) says that n is an upper bound for P .

A state s supports a formula B(n), for some n ∈ N, iff B(n) is true in every model
in s, that is, iff n is an upper bound for P in every M in s. Now consider the formula
∃x .B(x), which intuitively says that there is an upper bound for P . This formula, which
Ciardelli refers to as the boundedness formula, does not have a maximal supporting
state. To see this, let s be an arbitrary state supporting ∃x .B(x). Then there must be
a number n ∈ N such that s supports B(n), i.e., B(n) must be true in all models
in s. Now let M ′ be the model in which P denotes the singleton set {n + 1}. Then
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M ′ cannot be in s, because it does not make B(n) true. Thus, the state s′ which is
obtained from s by adding M ′ to it is a proper superset of s itself. However, s′ clearly
supports B(n +1), and therefore also still supports ∃x .B(x). This shows that any state
supporting ∃x .B(x) can be extended to a larger state which still supports ∃x .B(x),
and therefore no state supporting ∃x .B(x) can be maximal. ��
This example shows that a general notion of compliance, that applies both in the propo-
sitional setting and in the first-order setting, should not make reference to maximal
supporting states. Such a notion would give undesirable results for the boundedness
formula and other cases where there are no maximal supporting states. Intuitively,
this is because in these cases there are no pieces of information that provide exactly
enough information to settle the given proposition. For every piece of information that
settles the proposition, we can find a weaker piece of information that still settles the
proposition. This means that maximal supporting states do not form a suitable basis
for a general notion of compliance.

Ciardelli goes on to argue that a satisfactory notion of compliance can in fact not be
defined in terms of support at all. This argument is based on the following example.

Example 2 (The positive boundedness formula). Consider the following variant of the
boundedness formula: ∃x(x �= 0 ∧ B(x)). This formula says that there is a positive
upper bound for P . Intuitively, it differs from the ordinary boundedness formula in
that it does not license “Yes, zero is an upper bound for P” as a compliant response.
However, in terms of support, ∃x(x �= 0 ∧ B(x)) and ∃x .B(x) are entirely equivalent.
Thus, support is not fine-grained enough to capture the intuition that these formulas
do not license the same range of compliant responses. ��
This argument is relevant here, because it brings to light an important limitation of
the support-based system, and therefore also of InqB. The system does what it was
meant to do, i.e., it provides a notion of meaning that embodies both informative and
inquisitive content in a satisfactory way (also in the case of the boundedness formulas).
However, this notion of meaning is not fine-grained enough to provide the basis for
an adequate notion of compliance.

There have been several attempts to overcome this limitation (see, e.g., Ciardelli
2009, 2010; Westera 2012a; Ciardelli et al. 2013b). However, none of these attempts
have so far been entirely conclusive. We hope that the algebraic approach developed
here will shed new light on this issue as well. In principle, we could start out with
a notion of meaning that is even richer than the one adopted here. Once we have a
clear intuitive understanding of such a notion of meaning, and a suitable notion of
entailment, we can follow essentially the same line of thought that has been pursued
here to arrive at a system that adequately deals with compliance and possibly other
aspects of meaning that are beyond the reach of InqB. Initial work in this direction has
been pursued in (Roelofsen 2011b) and (Westera 2012b).

4 Conclusion

In this paper we developed and investigated a framework for the semantic treatment
of informative and inquisitive content, driven entirely by algebraic considerations. We
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proposed to define propositions as non-empty, downward closed sets of possibilities,
and we showed that entailment can simply be defined as inclusion in this case, suitably
capturing when one proposition is at least as informative and inquisitive as another.
We showed that this entailment order gives rise to a complete Heyting algebra, with
meet, join, and relative pseudo-complement operators. Just as in classical logic, these
semantic operators were then associated with the logical constants in a first-order
language.

We found that the resulting system essentially coincides with the simplest and most
well-understood existing implemenation of inquisitive semantics, and that its treatment
of disjunction and existentials also concurs with that of alternative semantics. Thus,
our algebraic considerations did not lead to a wholly new semantics, but rather to a more
solid foundation for some of the existing systems. In future work, we hope to extend the
approach to obtain an even more fine-grained framework, where propositions do not
only embody informative and inquisitive content, but also further aspects of meaning.
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