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Abstract: This study is dedicated to the examination of a problem of postquantum encryption algorithms which are 
connected with a potential crisis in modern cryptography that is caused by appearance of quantum computers. 
General problem formulation is given as well as an example of danger from the quantum algorithms against classical 
cryptosystems. Existing postquantum systems are analyzed and the complication of their realization and 
cryptosecurity are estimated. Among the others algorithms on the basis of neural networks are chosen as a starting 
point. The study demonstrates neuro cryptographic protocol based on a three-level neural network of the direct 
propagation. There was evaluated it’s cryptosecurity and analyzed three types of this algorithm attack to show the 
reality of the hypothesis that neuro cryptography is currently one of the most promising post quantum cryptographic 
systems. 
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INTRODUCTION 

 
Modern algorithms of cryptography are based on 

the theory of numbers. Almost all methods for the 

creation of the keys of the sufficient length for secure 

encryption turn either to the generation of pseudo-

random sequences or to the prime numbers expansion. 

In particular, prime numbers of big orders are used by 

the most popular method of the enciphering by the open 

key RSA. Nowadays this algorithm is cryptosecure, 

does not undergo cracking despite the increase in the 

speed of calculation equipment and the appearance of 

the new classes of the attacks which use the hardware 

peculiarities of the computers which generate the keys 

(Pellegrini et al., 2010). 

However the main danger for the modern 
cryptography does not proceed from the sphere of new 
methods of cryptographic attacks, but from the other 
sphere which now is of experimental character which 
soon may become the reason for the new scientific and 
technical revolution. These are quantum calculations. 
Of course we are not talking about quantum computer 
but the messages on the creation of the first 
programmed computers of the such type are in 
Colorado (Colin, 2009) and in IBM Research, (2012). 

Such developments as they are may question all the 
achievements in cryptography during the recent years. 
For example there is a quantum algorithm which 
sharply (in some cases exponentially) accelerates the 
determination of the prime factors for many-digit 
number, this is a so-called Shor's algorithm (Shor, 
1994). The possibility of its realization on quantum 
computer even on the simplest one means the increase 

in the efficiency of the attacks onto the systems based 
on RSA. 

Of course not all of the cryptographic systems are 
assailable for such attacks. There exist other 
cryptographic algorithms called post quantum because 
the theoretical calculations show there resistance to 
Shor’s algorithm and to “frontal” attacks by the 
complete sorting. To this class belongs McEliece 
system (Bernstein et al., 2008), but it’s "post quantum" 
characteristic imposes some restrictions that make it 
usless for most users. For example, the length of the 
key in the McEliece system is very high - 2

19
 bits. Also, 

because of the key length the encrypted message will 
always be larger than the original, which requires a very 
accurate protocol of sending (as the identity of the 
received message to send one is important for 
asymmetric codes). This makes the McEliece system 
practically unacceptable for the user’s workstations. 

Post quantum cryptographic algorithms are also the 
systems based on the theory of groups (the so-called 
lattice codes) (Micciancio and Regev, 2009). Lattice-
based cryptography. They are based on the assumption 
that quantum algorithms for the lattice codes attack do 
not exist. At least the quantum algorithm, which would 
show better results than the classic one wasn’t found 
yet. However, this complexity turns into the argument 
against masses. 

One of the few post quantum approaches in 
cryptography with the prospect of becoming 
widespread is the use of neural networks. Earlier they 
were used to create new types of attacks on existing 
codes, based on the idea that any function can be 
represented as a neural network that can explore the 
solution space. This allows to solve many problems 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357328969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

Res. J. Appl. Sci. Eng. Technol., 7(4): 740-744, 2014 

 

741 

related to cryptography-in particular, hashing and 
generating pseudo-random arrays. 
Proposed in 1995 by Sebastien Dourlens neural 
cryptography is based on the applicability of neural 
networks to solve such problems. This French 
mathematician used neural networks for rearrangements 
in DES-algorithm, thus demonstrating the applicability 
of the fundamental neural network in the encryption 
area (Sébastien Dourlens Neuro-applied Cryptography, 
1995-1996). Since then, more researches have been 
carried out, including the cryptography protocol with 
the public key, developed by Khalil (2012). This study 
attempted to cross the usual system of creating public 
and private keys with neural network algorithms. 
Generating of the private key by this approach was 
made by the usual methods and the public key 
presented a neural network that gains the ability to 
decrypt the message learning by back-propagation. 
However, this method has a disadvantage-for large 
amounts of data the time of neural network training is 
sharply increasing. 

This are not the only examples of neural networks 
application in cryptography: there are a lot of works, 
including the original-for example, the work of 
Taiwanese scientists (Tai-Wen and Suchen, 2001) 
suggested the use of Hopfield neural network for image 
encryption. Unfortunately, however, they are largely 
theoretical and yet are of limited practical use.  

 
EXPERIMENTAL 

 
Cryptographic protocol based on neural networks: 
To give an idea of how useful neural networks are, let’s 
consider the example described by Oscar and Karl-
Heinz, 2010). They describe an interesting change of 
Diffie-Hellman algorithm, which is used for the 
exchange of two keys. Reyes-Zimmermann model 
consists two Tree Parity Machines (TPM), which are 
synchronized independently and thus they get a key. 
Synchronization mechanism is constructed similar to 
the synchronization of two chaotic oscillators (it’s 
mathematical description is very complex and beyond 
to the scope of this study). 

So, suppose that there is some TPM that contains 
three levels, as shown in Fig. 1. 

As is seen in the diagram it is neural network of 
direct distribution and it contains

 
three layers-levels. 

The input level is composed of � ∙ �
 
binary neurons, 

which are described by the formula: 
 
��� ∈ {−1, 1}                                            (1) 

 
Between the output neuron and an array of input 

neurons there is the so-called "hidden" level, which 
isn’t binary and has the following weight: 
 

�� = {−�,… ,0, … , +�}                             (2) 

 
The value of each of the hidden neurons is 

calculated as the sum of the input values and weights. 
Note that the sign is calculated separately since zero is 
equated to negative.  
 

�� = ����(∑ ������
��� )                                       (3) 

 

����(�) = �−1, � =< 01, � > 0
!                             (4) 

 
An output neuron also has an integer format and is 

the multiplication of all the hidden neurons. It is binary: 
 

" = ∏ ��$
���                                                           (5) 

 
Now imagine that each of two parties A and B has 

a TPM. To synchronize them, use a bidirectional 
learning: 
 

• Initialize random weight values 

• Generate a random input vector 

• Compute the values of the hidden neurons 

• Compute the value of the hidden neuron 

• Compare the outputs of TPM: if outputs are 
different, repeat the iteration 

 
From step 2. If they are the same, we save the 

calculated weight 
Let us compose a block diagram of such training 

(considering that the maximum weight is equal to L): 
(Fig. 2). 

 

 
 
Fig. 1: Neural network TPM 
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Fig. 2: Block diagram of learning 

 
If there is achieved a full synchronization, that is 

the weights of hidden neurons in both TPM are 
identical than both parts can use these weights as the 
key. To update the weights in the process or periodic 
key change, you can use one of three options: 
 
а) Hebbian learning rule: 
 

�% = � + ����&(��")&("'"()               (6) 
 
б) Anti-Hebbian learning rule:  
 

�% = � − ����&(��")&("'"()               (7) 
 
в) Random walk: 
 

�% = � + ��&(��")&("'"()                             (8) 
 

Thus, we have a relatively simple neural 
cryptographic protocol. 

 

Attacks on neurocryptographic protocol: It is natural 

that neurocryptographic system, as well as any code 

protocol, is liable to attacks. Let’s consider some of 

them supposing that a certain cryptanalyst has an access 

to messages between interlocutors, but can’t change 

them. Let’s also suppose that a cryptanalyst is informed 

of the fact that he deals with a neurocryptographic 

protocol and even has TPM at his disposal. 

 

«Frontal attack»: All possible key combinations 

should be checked for the similar attack. The number of 

keys for K hidden neurons, K*N input neurons and 

maximum weight L is: 

 

) = (2 ∙ � + 1)$∙�                                            (9) 

 

Let’s calculate this rate for a neurocryptographic 

system on the Fig. 1. Let’s suggest that K=3, L=3, 

N=10: 

 
) = (2 ∙ 3 + 1),∙�- = 7,- =
22539340290692258087863249 

 

As we see the quantity of searching is vast even for 

the smallest neurocryptographic systems. But if the 

neural network consists of at least 100 input elements, 

the frontal attack on the neurocryptogramme will 

require enormous computer timing. 

Initialization 

The output 

vectors 

Start Establish K,L,N 

Get the input vector 

End 

Start Construct a 

random vector 

Input vector 

Output vector 

 

Output vector 

Update the neural 

network weights 

Interlocutor A Public channel Interlocutor B   

I>=K*N*In(2L

+1) 

End 

Update the neural 

network weights 

Initialization 

The output 

vectors 

Start 

Get the input vector 

End 

I>=K*N*In(2L

+1) 
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Training of your own TPM: Let’s suppose that a 
cryptanalyst has the same TPM as both interlocutors 
and this cryptanalyst reads their correspondence. By 
using dispatch patterns as initial vectors he can train his 
own TPM with the help of algorithm which is described 
in the previous chapter and continuously comparing his 
TPM’s log off with the interlocutors’ ones. In this case 
three situations appear (let’s define the cryptanalyst 
with a letter E and analyze conclusions): 
 

• A<>B. Nobody renews significance 

• A = B = E. All three renew significance 

• A = B<>E. A and B renew significance whereas E 
can’t do this 
According to the frequency of significance 

renewals (i.e., periodical keys change) it may be 
empirically shown that the cryptanalyst will always 
renew significance more slowly than requestors. 
Therefore, he can identify only the part of the key, but 
not entirely. This attack may be effective only in the 
case of a big quantity of analyzed messages or when 
interlocutors don’t renew significance of their TPM at 
all. 
 
Genetic attack: This  method  was offered by Klimov 
et al. (2002) and is effective only for small neural 
networks (N, K< =  3), because for the big ones (K>6) 
its complication and resource intensity increase 
exponentially. However, this is the only attack method 
which may be applied to quantum calculations and 
become a serious danger for the neurocryptography. 

In fact this is a modify of a previous attack method 
which is based on the training of a TPM by its 
cryptanalyst and combined with genetic algorithms. 
The certain variety (which may be compared with the 
quantity of analyzed messages) of neural networks with 
a TPM structure is being created. After the iteration 
each of them exchanges its significance with its 
neighbors at random. After that those TPM which have 
failed are being canceled out. In such a way, in the 
process of cryptanalysis only those TPM which 
represent requestors’ keys sufficiently will be always 
selected. 

Let’s consider the simplest case described in 
Andreas et al. (2006): 
 

• Initialization phase: There is only one TPM with 
a random initial vector in the variety. A certain 
numeral M which is a “population” limit is also 
being fixed 

• Cryptanalysis phase: It is divided into three 
situations as well as in the previous attack method: 

o Output values A and B are not equal, significance 
renewal doesn’t happen, the population is not 
changing 

o A = B, thereby the quantity of TPM doesn’t exceed 
the numeral M. All TPM are replaced for the new 
ones each of which becomes the significance 

substitution of one of the hidden neurons for the 
opposite rate. After that training takes place 
according to the Hebb’s rule (6) 

o If A = B and the population limit exceeds the 
numeral M then all the TPM which are not equal to 
the received log off for A and B are being canceled 
out from the population 

 
In Tai-Wen and Suchen (2001) it is shown that a 

similar approach has sense only for the small 
neurocryptographic systems and with the meanings 
N>100, K>100, L>10 it becomes nonsense since 
resource intensity will increase exponentially. At the 
same time this defect can be removed on the quantum 
computer (this is just an empiric assumption which has 
no facts yet). 

Except the genetic attack (Klimov et al., 2002) 
mark geometric attack which is based on the principles 
of neural networks and probabilistic attack as tolerable 
ones. However both of them are theoretical insights and 
even have no formal algorithm. 

This, in its turn, proves that currently 
neurocryptographic systems are the only postquantum 
code systems which may be realized and will be quite 
cryptosecure in order to withstand attacks even from the 
quantum computer. 

 

CONCLUSION 
 

This study had a task to find the postquantum 
encryption method which would allow to create a 
steady cryptosystem, at the same time quite simple for 
mass realization. 

Various postquantum cryptographic systems were 
analyzed and their realization at the present time was 
estimated. As it was determined in the process of 
evaluation, neurocryptographic systems have the 
highest perspective among them. 

With the help of existing developments the variant 

of a neurocryptographic protocol was shown which 

ensures sufficient cryptosecurity (as it was analyzed in 

the second chapter) and at the same time doesn’t 

suppose complicated realization. This confirms the 

mentioned above hypothesis that neurocryptographic 

systems are exactly the most perspective among all 

postquantum encryption algorithms. 
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