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ABSTRACT

This paper describes the modular, object-oriented redesign of a large-scale Monte Carlo neutron
transport program. This effort represents a complete “white sheet of paper” rewrite of the code. In
this paper, the motivation driving this project, the design objectives for the new version of the pro-
gram, and the design choices and their consequences will be discussed. The design itself will also
be described, including the important subsystems as well as the key classes within those sub-
systems.

In addition, an important aspect of the project, the strategy followed to allow the new version of
the program to be integrated smoothly into a large existing external system structure, will also be
discussed. This part of the project was critical to allowing the new version of the program to serve
as an eventual replacement for the older version.

This paper concludes with a brief discussion of our implementation strategy and the programming
decisions made along the way. While the new design is complete, the project is still in progress, in
terms of the full implementation and testing of the production code. However, most of the pro-
gram features have been implemented and tested and we have been encouraged by the results thus
far, both in terms of correctness and performance, and in the prospects for reaching our major
design objectives.

1. INTRODUCTION

Faced with the large and complex RCP legacy code4 (first full production version circa 1978),
which performs essential Monte Carlo neutron transport calculations efficiently and accurately,
but which also requires an ongoing large amount of manpower for maintenance (porting to new
platforms, improving performance to take advantage of scalar cache-based parallel systems, add-
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ing new capabilities), we decided that in the long run, a complete “white sheet of paper” redesign
and rewrite of the program would be worth the investment and the risk involved.

As described in Section 2, our motivation for redesigning and rewriting the program from scratch
was to reduce the ongoing maintenance costs associated with the program, improve its portability,
and to make it possible in the future to expand the capabilities of the program more quickly and
efficiently than could be done with the existing program. Our design objectives were chosen based
on these concerns, and we decided to pursue a modular, object-oriented design. Our full list of
design objectives is discussed in Section 3.

Section 4, a large section of this paper, concerns our design decisions, how and why the program
was divided into its modular subsystems, what the responsibilities of each subsystem were, and

. how the subsystems were further subdivided into object classes which map directly into the
classes used in the implementation of the program.

Another important aspect of the new design was our strategy for integrating the new version of the
program into a large existing system structure consisting of several support programs providing
input data such as geometry models and cross section libraries and several post-processing pro-
grams providing the ability to combine results from multiple jobs and select particular combina-
tions of results for further processing. This is particularly important given the large amount of
existing input data for RCP and level of proficiency in terms of preparing RCP input and analyz-
ing RCP output which its users have developed over many years. This is discussed in Section 5.

The full project is still in progress, since a fully tested production version has not yet been com-
pleted. However, the design is complete and most of the features in the design have been imple-
mented and tested. Section 6 briefly describes the implementation which we have chosen for the
new version of the program and some of our programming decisions. In particular, the majority of
the program has been implemented in Fortran 90 using what other authors have described as an
“object-based” approach, since Fortran does not allow true inheritance.l 7273The reasons for
choosing not to implement the program in a fully object-oriented manner, using C++ for example,
which would have matched the object-oriented design more closely, are discussed briefly in
Section 6.

Finally, this paper concludes with a discussion of observations based on experiences
on this project.

in working

2. MOTIVATION FOR PERFORMING A MAJOR REDESIGN

RCP was designed in the early 1970’s when computer systems and software techniques were very
different from today. Core memory size was limited and great efforts were made to limit the
amount of memory used by programs in order to fit large problems onto the computer. Overlays
were used so that various sections of the code could occupy the same memory space but be explic-
itly paged in and out of memory for various portions of a calculation.
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The language of choice, Fortran 66 and later Fortran 77, restricted variable names to six charac-
ters and had no explicit support for dynamic allocation of memory. As a result, meaningful vari-
able names were often unavailable. Elaborate schemes were used to manually achieve the
equivalent of dynamic memory allocation. A typical strategy was (and still is today in many pro-
grams) the following: create a single large array containing as much memory as possible (often by
placing it in blank common), explicitly break this array up into subsections of dynamically set
(i.e. runtime) sizes, and equivalence these subsections with the array names on which actual cal-
culations are performed. This technique allowed detailed control of memory usage by the pro-
grammer, but also required great care to ensure that no arrays overlapped. In addition, this
technique was sometimes taken further, and sections of the large array were equivalence to
arrays of different native data types. This non-portable technique produced reals, integers, and
sometimes even characters and logicals which shared the same memory locations. In many cases
program correctness depended on particular exact sizes in memory for these various data types.

RCP made full use of all of these techniques. This was done with good reason in the 1970’s when
the program was first designed and written, based on the available technology at the time. The fact
that the program is still heavily and productively used today is a testament to the high quality of
that original design and implementation. Nonetheless, as porting of the program to anew platform
has become a nearly annual process, and as user requests for new features stream in, we found it
increasingly difficult and costly, in terms of time and manpower, to maintain this large and com-
plicated program at a pace which could continue to satisfy the needs of the users. In particular,
ensuring that changes affecting any of the arrays which were “dynamically allocated” sections of
a larger array did not produce overwrites of other array sections became an increasingly tedious
and difficult process. Problems were difficult to track down since changes causing an overwrite
could produce side-effects which did not show up until much later in very different parts of the
program. Another growing problem was the long and steep learning curve required for anyone
new to assist with program maintenance and development.

Development of new features for the program suffered as a result, and efforts to take advantage of
clear opportunities for parallelization of RCP on new scalar cache-based systems were stalled by
frequent difficulties associated with the data structure described above. Given this situation, we
considered the option of rewriting only the RCP data structures while retaining large parts of the
original program. However, it appeared that this “conservative” approach would be just as difficult
as starting completely from scratch and would also not produce as large a long-term benefit.
Therefore, we decided to undertake the project of redesigning and rewriting the RCP program.

A critical element in being able to start from scratch was starting from a clear understanding of
the FUNCTIONAL capabilities of the program, independent of how they were actually imple-
mented. This depended on frequent discussions and assistance from experts and original program-
mers of the program. This invaluable assistance allowed us to understand the functional purpose
of many of the original routines without always requiring us to explicitly examine the source code
at every step (although occasionally such detailed inspection of the source code was unavoidable).
Fortunately, many of the basic algorithms used by the program were well understood by our
developers and we did not always need to get into the details of how they were implemented. The
lesson here is that in planning such an effort, it helps tremendously to do so while the program-
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mers of the original program are available to answer questions and provide guidance. Such assis-
tance can be absolutely critical to the success of the effort.

3. DESIGN OBJECTIVES

Given the motivation discussed in the preceding section, the following design objectives were
chosen, in order of importance, to guide the redesign of RCP. The developers strived to follow
these objectives throughout the design and implementation phases of the project. A great deal of
thought was put into the selection of these objectives and they were “enforced” at the developers’
weekly source code review meetings in which we would challenge each other’s decisions and sug-
gest changes as needed. Following each objective is a brief description and discussion. (Note:
Some of these objectives extend beyond design and include implementation issues as well).

3.1 MODULAR, OBJECT-ORIENTED STRUCTURE AND DECOMPOSITION

● The program should be organized into a set of top-level subsystems each responsible for a par-
ticular well-defined aspect of the program as a whole. Each subsystem defines a set of object
classes each of which is responsible for a specific aspect of the subsystem. Classes should rep-
resent either clearly defined abstract data types or else serve as containers for closely related
sets of services. Class names should be nouns.

Based on the size and scope of this project, and the large amount of data involved, we decided that
this kind of modular, object-oriented decomposition provided the best way to manage the data and
processing in a clear and easy to maintain manner. Numerous experts in the fields of computer sci-
ence and software engineering, and experienced rogrammers have highly recommended such
techniques and we decided to heed their advice. Y5>6>In addition, we were encouraged by the expe-
riences of others in writing an object-oriented Monte Carlo neutron transport program.9

3.2 UNDERSTANDABILITY AND READABILITY

● The program should be written in such a way that it would be relatively easy for someone with
a reasonable base of knowledge about nuclear physics, Monte Carlo methods, and object-ori-
ented programming techniques (including the developers themselves) to pickup a section of
source code and understand what the program is doing. Names of classes, methods, and vari-
ables should be chosen so that someone reading the names and guessing what they repre-
sented would be as likely as possible to guess correctly. Source code should also follow a
consistent style, including accurate comments where needed.

It is important to note that we placed this objective high on the list, even ahead of correctness. We
felt that given the rapid rate of change (adding new features) expected for this code once the initial
redesign was completed, it was essential that the design as well as the source code itself be easy to
understand in order to reduce the chance that mistakes would be made when new features were
added, even if the original version were entirely correct.
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3.3 CORRECTNESS AND COMPLETENESS

● Theprogrm should conectly satisfy allofits requirements. Allofthe necessa~ features
from the original version of RCP should be correctly implemented in the new version such
that the results from the two versions are either statistically equivalent, or else in the case of
differences, these differences are understood and explained by intentional changes which have
been made.

Clearly this is a desired objective. It is a property of both the design and the implementation of the
design. The reason that it follows the preceding objectives has already been discussed above.

3.4 ALGORITHMIC PERFORMANCE ON SCALAR, CACHE-BASED, MULTIPLE-PRO-
CESSOR SYSTEMS

“ The program should be designed and written to run efficiently on scalar cache-based systems.
It should also be written so that it is able to take advantage of multiple processors. This means
that the overall solution algorithm should parallelize well and that lower-level solution algo-
rithms should be efficient ones for scalar systems. In addition, results should not change
depending on the number of processors.

This design goal is concerned with algorithmic issues affecting overall performance on certain
types of systems. The selection of a particular type of system is an acknowledgement that perfor-
mance does matter for this sort of program. We cannot simply develop an easy to read, correct
code which runs too slowly to be useful in practice. The focus on scalar, cache-based, multiple
processor systems represents our observation that these types of systems now dominate the high-
performance scientific computing arena, and our expectation that this trend will persist.

3.5 PORTABILITY

● The program should be designed and written to be highly portable. The programming lan-
guage and parallelization library chosen should follow widely accepted standards. System-
specific portions of the program should be isolated in wrapper classes and preprocessing
directives should be used so that a single source code is valid on all systems. Use of ‘tricky’
techniques which may not work on all systems are to be avoided unless well justified and well
documented.

Despite the performance targets of the preceding objective for particular types of systems, we rec-
ognize that systems can change rapidly today and the costs of porting a code to new platforms can
be high. This objective represents an effort to minimize future porting costs.

3.6 FLEXIBILITY AND EXTENSIBILITY

● The program is expected to have a long lifetime involving many modifications and extensions.
Therefore program features which will make it easier to modify the program in the future
should be favored over features which tend to lock the program in and make future changes
more difficult.
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This objective is relatively self-explanatory. It represents another effort to reduce future mainte-
nance costs, and improve the “time to market” of future enhancements where possible. This
objective is towards the bottom of the list simply because it can be difficult at times to evaluate
which design alternative will produce a program that will be easier to modify in the future. To a
certain extent the first objective, a modular object-oriented design, is related to this goal but at a
higher, more abstract level.

3.7 LOW LEVEL PERFORMANCE TUNING

● It is important that the program run efficiently. Therefore, when it is possible to make low
level changes to improve performance, these should be taken advantage of, but not at the cost
of the preceding design objectives.

The reason that this objective is last is a belief that low level tuning often has the effect of obfus-
cating the design, and that improvements in compiler technology or changes in computer hard-
ware often render such changes as irrelevant at best and harmful at worst over the course of time.
We felt that low-level tuning was best left as a last resort when needed and avoided otherwise. A
distinction was made however between “low-level tuning” and algorithmic decisions made for
performance reasons, which we do consider to be important, and which were therefore included
as the fourth objective listed above.

4. TOP LEVEL DESIGN

In terms of its design as well as its implementation, at the highest level, the redesigned RCP pro-
gram is divided up into a set of relatively independent modular subsystems. The benefits of such a
decomposition have been well documented by others.5 Each subsystem is further divided up into
a set of object classes which constitute the lowest logical unit in terms of the design. The key sub-
systems are the following:

1. Main

2. Job Control

3. Nuclear Model

4. Space Model

5. Composition Definitions

6. Neutrons

7. Scoring

In addition, several smaller subsystems provide general purpose facilities. These include the fol-
lowing: Basic Modules (file handling, error handling, precision settings), System Utilities (com-

6



.

mand line access, memory leakage detection, message passing), Math Utilities (search and sort,
constants, normalization), Random Numbers (generation, transformations), and Timing.

In the design, these subsystems served as logical groupings of the data and processing required in
the program. In the implementation, the subsystem boundaries were clearly defined by creating a
subdirectory under the main source code directory for each subsystem. All of the source code files
associated with each subsystem were then placed in the corresponding subdirectory. While this
may seem to be a minor point, it served to emphasize that the implementation was following the
modular design and it forced the developers to explicitly assign each source code file to a specific
subsystem. (Note: As will be described later, each source code file corresponded to a single object
class definition.)

A description of each of the major subsystems follows.

4.1 MAIN SUBSYSTEM

The Main subsystem consists exclusively of the main program itself. This subsystem acts as the
top level manager over all the others, controlling the flow of execution when the program runs.
The overall flow of execution in this program is iterative at the highest level, following neutron
generation iterations to completion. The program is parallelized by distributing neutrons to paral-
lel processes at the next level. At the third level, within each parallel process, the program is neu-
tron event-based, similar to the approach described by Brown and Martin. 10

At the third, event-based, level, an event loop for each parallel process selects the next event (e.g.
collision, tracking step) to be computed based on the number of neutrons waiting for each event.
The selected event is then completed for all of the neutrons waiting. This loop repeats until all of
the neutrons have either been absorbed, killed (by Russian Roulette), or have leaked out of the
problem domain. At the second, parallel process, level, an iteration. ends only when all of the par-
allel processes have exited their event loops. Finally, at the top level, a job completes after a
selected number of iterations have been completed. All of this runtime control logic is handled
within the Main subsystem.

4.2 JOB CONTROL SUBSYSTEM

The Job Control subsystem is responsible for managing the data used for controlling a job. This
includes user input options such as the number of iterations to run, whether a job is a fixed source
or an eigenvalue job, the neutron batch sizes to use, and the kinds and amount of output data a par-
ticular job should produce. It also includes runtime data used by the main program such as the
current iteration counter, and an event counter. Placing this data in a subsystem separate from the
main program allows the overall program flow logic to be separated from the mundane details of
managing the control data, which is performed within this subsystem.

This subsystem does hot include the data defining the spatial model, the nuclear model, or the
compositions present, since these categories of data are managed by the space model, nuclear
model, and composition definition subsystems themselves respectively.
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4.3 NUCLEAR MODEL SUBSYSTEM

The Nuclear Model subsystem is responsible for the data and processing involved in handling
reactions between neutrons and nuclides. This includes, for example, the energy mesh on which
microscopic cross sections are tabulated, the microscopic cross section data itself, linear interpo-
lation calculations for the cross sections at a particular energy, exit energy and angle calculations
for elastic and inelastic scattering, and also basic nuclide data such as name and atomic mass.

This is a large subsystem which includes several classes, which interact in a variety of ways.
There is the EnergyModel class, with a single object representing the energy model in use for a
particular job, the Nuclide class, with one object for each nuclide defined for a job, and the Fiss-
ForNuc and MicroForNuc classes which each define objects which are contained as components
of Nuclide objects. The FissForNuc class is concerned with the fission data for a nuclide such as
its nu-values and its fission spectrum. The MicroForNuc maintains all of the microscopic cross
section data for a nuclide and performs single nuclide cross section calculations as well. There is
also an EnergyPt class which defines objects representing particular energies within the energy
model, and a MicroTotAtE class which defines transient objects containing total microscopic
cross sections for all nuclides for particular EnergyPt’s. There are also classes to support different
kinds of scattering such as the ElasticScattAng class.

The main value of this approach is that each of these classes is responsible for a small, specific
piece of the entire nuclear model. Therefore, it is relatively easy to construct and maintain each
class. Objects in different classes can only interact in a limited and controlled manner - by calling
methods (functions or subroutines) associated with each of the classes. Building up the pieces into
an entire functioning system can be complicated, but maintaining and managing the collection is
simplified by the limitations on how the pieces connect. In terms of the design of the Nuclear
Model subsystem, this extensive use of classes allowed design decisions to be made at a higher
level than could have been done if all the data resided in one location. The selection of the classes
was made to facilitate higher-level reasoning about the nuclear model as a whole. In addition, we
found that encapsulation of the data relevant to each class within the objects of that class provided
large maintenance benefits since we could be confident that if some data became corrupt, it must
have been caused locally within the class rather than via a side effect of an operation in another
class acting on shared global data, since the program contains virtually no shared global data.

4.4 SPACE MODEL SUBSYSTEM

The Space Model subsystem defines the three dimensional space in which compositions (defined
in the Composition Definitions subsystem) appear and through which neutrons travel, interacting
with the nuclides in the compositions. The RCP spatial model capabilities will not be discussed in
full here, since they are outside the scope of this paper, but a brief description follows in terms of
the important classes:

A set of SpatialElement objects are the basic building blocks for an RCP spatial model. Each of
these refers to a BaseGrid object paired with a CoordS ystem object.
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A BaseGrid object defines a region of three dimensional space which is divided up into cells by an
overlaid mesh. The model allows for standard geometrical shapes for these base grids, such as
rectangular blocks, cylinders, and spheres. These are handled in the object-oriented model as
“subclasses” of the BaseGrid “superclass.”

A CoordSystem object positions a BaseGrid within three dimensional space, allowing arbitrary
rotation, reflection, and translation.

There are additional classes to represent locations in the space model (SpaceLoc), define global
boundary surfaces such as reflecting boundaries (GlobBndrySurf), and allow cells to be further
subdivided into subcells (CellDivision). There are also two “calculator” classes which do not con-
tain any data, but which perform necessary calculations which did not logically fall within any of
the other classes. These are the OverlapCalc class, which performs calculations to determine
whether various geometric figures overlap, and the DistanceCalc class, which computes distances
between different surfaces and also distances along rays to their intersections with surfaces.

4.5 COMPOSITION DEFINITIONS SUBSYSTEM

The Composition Definitions subsystem defines the material compositions which can appear
within the Spatial Model subsystem and through which neutrons travel and interact. This is a rel-
atively simple system. At the most basic level, a composition is nothing more than a list of
nuclides and their densities. The Composition class is defined such that each composition object
contains this data for a single composition.

There are two additional levels of complexity which have been added to the basic system
described above. The first, composition templates, was added in order to reduce memory usage of
the program. The second, materials, was added as a convenience feature.

It was recognized that in some cases many compositions share the same list of nuclides but con-
tain different densities for these nuclides. Composition templates represent a way of taking advan-
tage of this situation. A composition template object simply contains a list of nuclides. A
composition can then refer to a particular composition template for its list of nuclides and provide
only the associated densities, rather than providing an entire list of both nuclides and densities.
For jobs with a large number of similar compositions, this can represent a large savings in terms
of memory use at the cost of a relatively small increase in complexity. The current version of RCP
contains a similar memory saving feature, but this is buried under many layers of indexing and
data, which makes it difficult to maintain.

Materials, represented by the Material class, provide the ability to combine multiple compositions
together. This is a convenience feature allowing groups of compositions to act as units. The Mate-
rial class and the Composition class include many methods (subroutines and functions) with the
same names, a form of polymorphism, so that objects in these classes can be used interchangeably
at various points in the program. (Note: This is a simple example of a design pattern known as the
“composite” pattern which is described in the book Desire Patterns*.)
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4,6 NEUTRONS SUBSYSTEM

The Neutrons subsystem is responsible for managing the data and behavior ofneutrons inajob.
There is just a single large class defined in this system, which is the Neutron class. Each object in
this class represents a single neutron history which Iivesfrom birth in fission to either leakage
from the problem domain or death by absorption or Russian Roulette. In a job involving multiple
parallel processes, each process manages its own set of neutron objects during an iteration from
birth to death. (Note: In the implementation, these are handled as an array of neutrons for each
process).

Each neutron contains the following component data: a unique ID value, a current position in the
spatial model (represented by a SpaceLoc object), a current energy (represented by an EnergyPt
object), a random number stream (represented by a RandomNumStream object), and several other
components.

Organizing the neutron data in the way described above, as an array of neutron objects, repre-
sented an important design decision in our redesign effort. In the older version of RCP, the data
associated with a particular neutron often appeared in the form of a value at a particular array
index within an array of energies, x coordinates, y coordinates, z coordinates, and so forth. This
was done because on vector computers, which represented the main high-end scientific computing
platform for many years, such an arrangement of the data facilitated performing calculations on
long vectors which could significantly improve performance on these systems. This layout will be
referred to as the “vectorized layout” below.

As we redesigned RCP, we decided to take the approach of associating all the data for a neutron
with a neutron object for several reasons. First, this fit into our overall object-oriented design in
the most straightforward way. We expected that such an approach would produce a more readable
and easier to maintain code than the vectorized layout. As discussed in Section 3, we made a deci-
sion to emphasize an object-oriented design, and readability and maintainability over perfor-
mance concerns.

Nonetheless, we knew that we could not completely sacrifice performance in designing RCP and
produce a program which any of our users would want to use. In testing early prototype imple-
mentations, however, we found that with a good optimizing and inlining compiler, the perfor-
mance observed while taking our preferred approach was quite acceptable. We also found that on
scalar cache-based systems in particular, this arrangement of the data could have positive benefits
in terms of reduced cache misses since the data for a particular neutron generally appears closer
together in memory than it would in the vectorized layout over a set of large arrays of component
values. Hence, we decided to take the approach of defining the Neutron class as described above.

Note: In an earlier design iteration, we defined a NeutronSet class instead of a Neutron class. An
object in this class contained data for a set of neutrons which was arranged as a set of arrays, sim-
ilar to the vectorized layout described above. However, we found that the coding became awk-
ward and was dominated by a large number of gather/scatter operations with many opportunities
for coding errors. When we switched to the design using the single Neutron class, we found that
the coding became simpler, more readable and easier to maintain, and we were satisfied with the
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performance as well, which, on scalar cache-based systems, was often superior to the earlier
design.

A large number of neutron methods (subroutines and functions) are supported, some of which act
on single neutrons and others which act on arrays of neutrons. At the highest level, the next_event
method is the main method called by the main program. This method takes an array of neutrons,
selects the event with the most neutrons waiting and performs that event on all the waiting neu-
trons. Most of the other methods are called by this method and therefore can be made “private” to
the neutron subsystem, meaning that they are invisible to the rest of the program. This provides
additional modularity in the design.

Methods called by the next_event method include the following methods whose purpose should
be clear from their names: step_travel, delta_travel, collide, ext_cross, and remove_dead. These
methods in turn call more specialized methods in the Neutron class and also frequently call meth-
ods in the Nuclear Model and Space Model subsystems to perform the actual calculations
required in order to move the neutrons through space and handle their interactions with nuclides
and boundaries.

4.7 SCORING SUBSYSTEM

The Scoring subsystem handles the data and calculations associated with tallying and computing
reaction rate results for neutrons based on the neutrons’ interactions with nuclides in composi-
tions which appear in the spatial model. This is a complicated system because it requires interac-
tion with most of the other systems.

Reaction rate scores are stored using ScoreTable objects. Each of these objects contains a large
array of scores for all nuclides, compositions, and energy ranges of interest. One ScoreTable is
used for each kind of reaction rate (e.g. capture, scattering). In addition, there are two kinds of
score tables, represented by two subclasses of the ScoreTable class. There are score tables which
include statistical accumulations such as the squared sum of previous samples, so that uncertain-
ties can be computed in addition to mean values. These are called StatTables. There are also score
tables which only include current accumulations, so that only mean values can be computed, but
less memory is used. These are called MeanTables.

At a higher level, all the score tables in a job are combined within a single object of the ScoreStor-
age class. This is where the overall management of the scoring data is handled and reaction rate
calculations are performed.

An important design consideration was the handling of scoring data for multiple process jobs.
Two approaches were taken, both of which had their strengths. These are described next.

The first approach was to maintain an independent ScoreStorage object used by each process dur-
ing an iteration. At the end of each iteration, the results from all of the ScoreStorage objects were
then summed over all processes and stored in a single master copy. This is a memory intensive ‘
solution because for N processes, N copies of the scores, which can be very large, must be stored.
However, this has the advantage of reducing the amount of interprocess communication to a min-
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imum during an iteration. On a shared-memory system such an approach can be wasteful but on a
distributed memory system it can be essential.

The second approach was to maintain a single ScoreStorage object which all of the processes con-
tribute to. In order to prevent clashes in accessing and updating this data, a dedicated process
known as the ScoreServer accepted scoring input from the other processes, acting as ScoreClients,
during an iteration, and at the end of an iteration the ScoreServer would provide any reaction rates
needed by the clients to perform additional calculations. Buffering of scoring input data was used
to reduce the number of interprocess communications, but even so, with this strategy a large
amount of interprocess communication is required throughout each iteration. On the other hand
there can be a significant reduction in overall memory use. This approach is inefficient on most
distributed memory systems because of the communication overhead. However, on a shared mem-
ory system it can be very effective. In fact on systems with optimized message passing libraries
which effectively convert interprocess communications into shared memory accesses we found
little performance difference between this approach and the first, but a large savings in terms of
memory use.

The new version of RCP supports both of the approaches listed above, with a simple user input
choice selecting
tated our ability
option.

the approach-used for a particula; job. The modular design of the p;ogram fac~li-
to support both approaches in the same code and make the choice a runtime user

5. INTEGRATION STRATEGY

In order for the new version of RCP to be a useful replacement for the older version, an integra-
tion strategy was necessary. The older version expects its nuclear library data, spatial model input
data, and control data to be received in a particular format. A large body of existing data is avail-
able in these formats for RCl?, and preprocessor programs related to RCP are available for produc-
ing and manipulating such data. Similarly, RCP produces output files in particular formats which
postprocessor programs are able to read and process. This posed a design problem for the new
version of RCP which is described next, along with our solution.

A design problem for the new version of RCP was that the existing input and output file formats
for the older version of RCP were closely related to the internal data structures of the program.
Since the new version of the program contains completely redesigned internal data structures, it
would have been difficult and awkward to retain the prior formats. However, replacing the file for-
mats would introduce obvious integration problems into the larger systems in which RCP was
used.

In keeping with our plan to completely rewrite RCP, we decided also to completely reorganize the
input and output file formats. We felt that our design goals of modularity, readability and main-
tainability supported this decision. However, this left us with major integration concerns. These
were addressed on the input side by designing and implementing a separate translator program
which had a single task: accept RCP input files in their original formats and produce input files in
the new formats as its output. Placing this functionality in a program separate from RCP served to
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maintain the consistent modular design of RCP while moving the complications associated with
the conversion process into a single isolated program.

A similar approach was taken for output files. We created new output data formats for RCP and
then also created new versions of the RCP postprocessor programs. These new versions could
accept the new RCP results as input and produce output results which are either identical or
extremely similar to the equivalent outputs from the original RCP postprocessor programs. This
should allow the RCP users to work with either the new or old version of RCP without making
major adjustments to their overall process.

A trade-off cost associated with this strategy is that it will require maintaining additional pro-
grams for as long as conversion to and from the older data formats is necessary.

6. IMPLEMENTATION AND PROGRAMMING DECISIONS

It can be difficult at times to separate design from implementation since the two often overlap in
practice. As noted in Section 3, several of the RCP design objectives dealt with implementation as
well as design issues. In this section, we will go beyond the main focus of this paper, which is the
RCP design, and briefly discuss some of the major implementation decisions.

One choice was to make the implementation “look” like the design in the following ways: each
class in the design corresponded directly with a single source file which implemented the class
(see below for additional details), and all of the new RCP source files were placed in subdirecto-
ries corresponding directly with the subsystems defined in the design and described in Section 4.
This forced the developers to explicitly assign each source file to a specific subsystem in the
design. It also forced them to assign each source file either to a specific class in the design or else
to recognize the class as an “implementation” class which did not have a corresponding class in
the design.

A second choice was to follow a strict set of coding style guidelines. Part of the reason for this
was to ensure that all of the source code followed the same “object-based” style, as discussed
next. Another reason was to improve the readability and maintainability of the code, based on the
second design objective (Section 3.2). Weekly review meetings were held so that the developers
could check each other’s work and make sure that style guidelines were being followed. In addi-
tion, design questions were often discussed as well.

A third implementation choice was to rely on widely accepted standards for the implementation.
This was done to improve portability, the fifth design objective (Section 3.5). Thus, parallelization
was handled via the standard Message Passing Interface (MPI), standard C preprocessor (CPP)
directives were used for inserting precompilation directives in the code, and as described below,
the standard Fortran 90 programming language was chosen as the main implementation language.

Another important choice was our decision to follow a phased implementation strategy. Rather
than attempting to implement all the functionality at once in the new version of RCP, we instead
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implemented the program in several phases consisting of subsets of the full functionality. Each
phase was tested before moving forward to the next phase.

Finally, the most significant implementation choice was to program the new version of RCP in
Fortran 90 instead of C++. This was a difficult decision. The design is fully object-oriented, which
lends itself logically to a C++ implementation. However a combination of several factors
described below caused us to choose a Fortran 90 implementation. Fortran 90 does not fully sup-
port object-oriented programming, primarily because there is no mechanism for implementing
true inheritance relationships between classes. However, Fortran does support user-defined types,
scope restrictions on variables through the use of modules, and overloaded function naming. 1i
Several authors have described a form of programming in Fortran 90 known as “object-based”
which makes aggressive use of the new Fortran 90 features to produce programs which are similar
to fully object-oriented C++ programs, but without true inheritance. 1~2~3This is the style we

adopted. As mentioned earlier a key component to making this work was for the developers to fol-
low a strict set of style guidelines.

Our reasons for the decision to use Fortran 90 rather than C++ included the following: a) As men-
tioned earlier, we had a strong desire to use widely accepted standards for the implementation. At
the time development work started, the C++ standard had not yet been approved and thus we had
concerns about the lack of portability between C++ compilers on different systems. b) We feared
that a completely object-oriented implementation in C++ would suffer from major performance
problems, while a Fortran 90 implementation would represent more of a reasonable compromise
between performance and our other key objectives.

Our decision to program using an “object-based” approach with Fortran 90 has worked out well in
terms of the performance we have observed, but it has caused some difficulties in implementing
the design due to missing features of the language such as inheritance, templates, and built-in sup-
port for constructors and destructors. If we had to make the same decision again today, either C++
or Fortran 90 would be a reasonable choice, but we would probably choose C++ because of its
wider set of language features.

7. PRELIMINARY EVALUATION OF OUR SUCCESS

Ultimately the true measure of the success of this redesign project will be how well the new ver-
sion of the program is able to meet the needs of its users, both in terms of features and perfor-
mance, and how much cost is associated with maintaining the program and adding new features.
While we expect that the modular object-oriented design will lower maintenance costs compared
with the old version of RCP and that the turnaround time for adding new features to the program
will be reduced, we will not know whether this proves to be true until time has passed and we are
able to observe how well the design holds Up as it is placed under stress by use, modification, and
extension.

We can make some preliminary evaluations however. First of all, the amount of time and effort
required thus far to complete the design and the implementation have been close to our original
expectations. Second, the correctness of the code has been confirmed by detailed statistical com-
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parison of benchmark results for the new version of the program against the older version. Third,
performance testing of the new version of the program has thus far indicated that its single proces-
sor performance is about 5070 faster than the older version of the program for the largest jobs
tested. In addition, linear, or in some cases super-linear, speedups have been observed in tests of
the new version of the program on up to 20 parallel processors.

CONCLUSIONS

This paper presents a road-map description of the effort to compete a modular object-oriented
redesign of the RCP Monte Carlo neutron transport code. In the discussion, the motivation for this
project was explained, major design objectives were listed, the top level design was described,
integration and implementation decisions were discussed, and finally a preliminary evaluation of
our success was made.

Our adherence to a carefully chosen set of design objectives, as listed in Section 3, has been a key
factor in guiding the project. In addition, frequent assistance from programmers of the older ver-
sion of RCP in explaining the functional characteristics of the program have saved us an enor-
mous amount of effort which would have otherwise been required in detailed examination of the
source code of the program.

In terms of implementation, weekly source code review meetings have been valuable in terms of
ensuring that the design was faithfully implemented and establishing consistent coding styles
among the developers. Our decision to program using an “object-based” approach with Fortran 90
has worked out well, we believe, in terms of the performance we have observed, but it has caused
some difficulties in implementing the design due to missing features of the language such as
inheritance, templates, and built-in constructors and destructors.

Our advice to others who are faced with a legacy code which costs a large amount of manpower
and time to maintain and which still commands a large user base, is to consider a similar project,
especially if the developers of the original program are available to help in explaining the func-
tional properties of the code.
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