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This paper describes a logatome discrimination test for the assessment of speech 
perception in cochlear implant users (CI users), based on a multilingual speech 
database, the Oldenburg Logatome Corpus, which was originally recorded for the 
comparison of human and automated speech recognition. The logatome discrimination 
task is based on the presentation of 100 logatome pairs (i.e., nonsense syllables) with 
balanced representations of alternating “vowel-replacement” and “consonant-
replacement” paradigms in order to assess phoneme confusions. Thirteen adult normal 
hearing listeners and eight adult CI users, including both good and poor performers, 
were included in the study and completed the test after their speech intelligibility abilities 
were evaluated with an established sentence test in noise. Furthermore, the 
discrimination abilities were measured electrophysiologically by recording the mismatch 
negativity (MMN) as a component of auditory event-related potentials. The results show a 
clear MMN response only for normal hearing listeners and CI users with good 
performance, correlating with their logatome discrimination abilities. Higher 
discrimination scores for vowel-replacement paradigms than for the consonant-
replacement paradigms were found. We conclude that the logatome discrimination test is 
well suited to monitor the speech perception skills of CI users. Due to the large number 
of available spoken logatome items, the Oldenburg Logatome Corpus appears to provide 
a useful and powerful basis for further development of speech perception tests for CI 
users. 

KEYWORDS: mismatch negativity (MMN), cochlear implant (CI), logatome discrimination, 
speech tests  

 

INTRODUCTION 

For several decades, adults and children who suffer from severe-to-profound sensorineural hearing loss 

have been able to benefit from a cochlear implant (CI). Electrical stimulation of the auditory nerve partly 
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restores hearing ability. However, speech perception skills postimplant can have high variability across 

individuals[1,2,3]. 

Postimplant, speech intelligibility measures have predominantly relied on behavioral tests. These tests 

were developed in isolation of the respective language areas, mostly referring to genuine words and 

sentences. Representative examples are the Freiburger monosyllabic word test (FMW) for German-

speaking subjects[4] and the Hearing in Noise Test (HINT) for English-speaking subjects[5]. 

Such speech intelligibility tests are very limited for the assessment of CI users with prelingual 

deafness or prolonged periods of deafness, as they generally do not have good perception abilities for 

naturally spoken language. In addition, children CI users, particularly the very young, in many cases are 

not able to perform behavioral speech intelligibility tests because of their cognitive developmental status. 

Thus, objective measures are needed that do not demand the subjects’ attention and cooperation, or a 

certain level of speech and language skills. 

Electrophysiological methods have been proposed as an alternative and supplementary objective 

measure to behavioral data. Observations to date show evidence of correlations between speech 

intelligibility ability and objective measures for auditory-evoked event-related potentials, N1, P2, P3[6], 

the acoustic change complex[7,8], and the mismatch negativity (MMN) component[9,10]. Since other 

studies could not show such correlation, the current study was conducted to provide a compelling reason 

for using electrophysiological measures[11]. 

The MMN component of event-related brain potentials (ERPs), which provides a noninvasive 

electrophysiological measure of cortical auditory processing, reflects the outcome of a change detection 

process that is based on the memory of sound regularities (often called the “standard”) in ongoing 

auditory input[12,13]. Incoming sounds that deviate from the neural representation of the standard sound 

in simple auditory features, such as frequency, intensity, tone duration, or spatial location, as well as 

changes in more complex features such as syllables, elicit a MMN[9,14,15], for review, see[13,16]. MMN 

is typically observed with a peak latency of 150 msec from the time that the deviation is detected. Thus, 

MMN represents an early process of deviance detection based on a memory of the previous sound 

stimulation. Its elicitation does not require participants to detect the deviant sounds actively[17,18,19,20]. 

The MMN thus seems to be an appropriate tool to investigate preattentive discrimination in uncooperative 

patients, e.g., young children or CI listeners who are unable to describe what they are hearing[9,21,22]. 

As found in Ponton and Don[23] and Kraus et al.[14], the measurement of MMN responses also holds 

promise as a useful objective measure for the evaluation of CI function for the broader group of CI users 

and for further research of neurophysiological central processes underlying speech perception. Research 

by Groenen et al.[6,24] shows evidence of correlation between speech perception abilities and the MMN 

responses. Investigating late and cognitive-evoked potentials in children CI users, a correlation between 

the amplitudes and the sentence recognition scores was also observed[25,26]. To apply the MMN as a 

tool to investigate the discrimination abilities of prelingual deafened patients, it is important to state that 

ERPs are obtained in prelingual CI users as well[27]. In CI users, a growing MMN amplitude was 

observed during the course of CI use[28]. Beside this training effect, the latency shift of the MMN with 

increasing age has to be considered[10]. To date, the sensitivity and specificity of the MMN for the ability 

to discriminate speech sounds has not been verified[29]. Nevertheless, the MMN component may 

function as a complementary clinical tool to assess auditory sensitivity objectively, although further 

research is required[8,30,31,32].  

On the other hand, there is also a need for behavioral tests designed to measure more basic speech 

perception skills, such as discrimination of speech pattern contrast[33], speakers, or logatomes. In 

general, logatomes are nonsense syllables, e.g., used for analyzing the confusion of phonemes by hearing-

impaired listeners[34]. 

In this paper, we describe a new logatome discrimination test. Thereby, we benefit from use of the 

Oldenburg Logatome (OLLO) Corpus, which was described recently by Wesker et al.[35], and was 

originally recorded for the comparison of human and automated speech recognition. The logatomes of the 

OLLO Corpus consist of either consonant–vowel–consonant (CVC) or vowel–consonant–vowel (VCV) 

paradigms. All logatomes were pronounced with the speaker-independent variables of speaking rate (fast, 
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normal, slow), speaker effort (low, normal, high), and speaker style (statement, question), resulting in a 

total of 2,700 logatome items per speaker. All recordings were normalized to 99% amplitude. Thus, the 

different speaker effort varies, mainly the frequency spectrum of the logatomes. The German element of 

the Corpus covers four different regional dialects (no dialect, Bavarian, East Frisian, and Eastphalian), 

with 10 speakers (five male, five female) per dialect. Speech data were recorded in sound-isolated rooms 

at three different sites in Germany (Oldenburg, Magdeburg, and Munich). For a more detailed description, 

see[35]. 

Our concept of testing low-level speech perception abilities is based on the usage of subsets of the 

OLLO Corpus. This includes three improvements over traditional speech intelligibility tests. First, the test 

material consists of speech material that is natural, i.e., recorded from nonprofessional speakers of 

different dialect regions; hence, approaching real hearing situations more closely than test materials 

recorded by only one professional speaker. Second, the stimuli are logatomes that are considered 

appropriate for speech audiometry measures: based on the established significant correlation between 

logatome perception and pure-tone audiometric thresholds at 1, 2, 3, and 4 kHz[34]. In view of recent 

work, using the logatomes of the OLLO Corpus to develop a statistically powerful, speaker 

discrimination test for CI users[36], the items were considered suitable for development of a logatome 

discrimination task also. The third improvement is related to the advantage of measuring speech 

discrimination ability instead of speech intelligibility, which does not require a certain level of speech and 

language skills to perform the task. As such, this is considered a very valuable addition to the clinical 

speech audiometric test battery to assess the development of hearing skills even in the case of prelingual 

deafened CI users and thus provide indispensable information for the ongoing clinical management. 

Using this new logatome discrimination test, we measured the discrimination ability of a group of 

normal hearing adult subjects and a group of adult CI users, and compare their outcomes with their results 

on the commonly used Oldenburg Sentence Test (OLSA), measuring speech intelligibility in competing 

background noise. The OLSA was designed and evaluated for the German-speaking language 

area[37,38]. Electrophysiological examination of MMN responses elicited by logatome speech stimuli 

was also performed. Subsequently, MMN responses and the results for the newly developed logatome 

discrimination test were compared and examined for correlation. 

METHODS 

A prospective comparative study was performed in two subgroups of subjects in order to assess and 

compare performance on conventional behavioral speech tests, with a newly developed speech 

discrimination task and objective measures to assess auditory hearing skills.  

Evaluation measures included the OLSA, electrophysiological measurement of MMN responses, and 

logatome discrimination test.  

Subjects 

Thirteen adults (seven females, six males; 19–35 years of age) with normal hearing participated in the 

study. Subjects were enrolled following audiometric hearing threshold screening to confirm hearing 

thresholds for pure tones <10 dB HL (hearing level) for the octave frequencies 125–8,000 Hz inclusively. 

Eight adults (six females, two males; 48–71 years of age) using a unilateral Nucleus® CI (models 

CI22M, CI24M, or CI24RE); fitted with a SPRINT, 3G, SPECTRA, or Freedom sound processor; with at 

least 1-year experience with their current processor were enrolled in the study. Subject demographics are 

shown in Table 1. All subjects provided written informed consent for their participation in the study. The 

study was approved by the Ethics Committee of the University of Magdeburg and performed in 

accordance with the 2004 Declaration of Helsinki for the conduct of medical research on patients. 
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TABLE 1 
CI User Demographics 

Subject 

No.

Sex Ear 

implanted

Age at implant 

(years)

Device Speech 

processor

Strategy Deafness 

onset

Duration of 

CI use 

(years)

1 F R 70 CI24RE Freedom ACE postlingual 1.5

2 F R 56 CI24RE Freedom ACE postlingual 1.5

3 F R 50 CI22M 3G ACE postlingual 15

4 M R 33 CI22M Spectra SPEAK perilingual 14

5 F R 53 CI22M Spectra SPEAK postlingual 14

6 M R 63 CI24RE Freedom ACE postlingual 0.5

7 F R 47 CI24M Sprint SPEAK perilingual 11

8 F R 53 CI24RE Freedom ACE postlingual 1.5  

Materials  

OLSA 

The subjects were seated in a sound-attenuated room. Stimuli were presented in free field, originating 

from a PC with a studio-quality sound card (RME-HDSP-9632), a studio-quality power amplifier (MAM-

PA200), and a single loudspeaker (Tannoy Reveal), positioned 1.5 m in front of the subject. A constant 

noise level of 65 dB SPL (sound pressure level) was used with an adaptive level for the speech stimuli 

commencing with 75 dB SPL and altered depending on the individual’s response. 

One test list, consisting of 30 sentences, was randomly selected via the software for presentation. All 

sentences consisting of a subject–verb–numeral–adjective–object five-word structure are automatically 

created from a 50-word inventory. As such, sentences cannot be memorized or anticipated by the subject 

due to contextual factors. Sentences were superimposed by speech-simulating noise and presented 

successively as a closed-set test, i.e., the subject’s task was to select the correct sentence (every word 

correct) out of 10 possible responses for every word. The response was given by clicking on the choices 

displayed on a touch-screen display. Using an adaptive speech level algorithm, the speech reception 

threshold for a 50% correct word score was determined to identify speech intelligibility for each 

individual, and reported as the corresponding signal-to-noise ratio (dB SNR). 

Electrophysiological Experiment 

Three logatomes (/gag/, /bab/, and /geg/) of the OLLO Corpus were used for electrophysiological 

measurements. They were spoken by one German speaker with no dialect, normal speaking effort, 

speaking rate, and statement speaking style. 

The stimuli were presented in two oddball conditions. In the vowel-replacement condition, the series 

of “standard” stimuli (/gag/) was randomly replaced by “deviant” stimuli (/geg/). In the consonant-

replacement condition, the logatome /bab/ was used as “deviant” to the “standard” /gag/. 

Totally, in each condition, 220 deviants were presented with a probability of 15%, whereas the 

“deviant” stimuli were separated by at least four “standard” stimuli. Additionally, two control conditions 

containing 450 of the /bab/ or /geg/ stimuli, respectively, were run to test if the MMN is absent in 

response to that same stimulus when presented alone[39]. The stimulus onset asynchrony was 1 sec; the 

total stimulation time of 45 min was separated in six blocks with intermediate breaks. 

The experiment was performed on a PC using the PRESENTATION software (Neurobehavioral 

Systems, Albany, NY) and insert earphones (E-A-RTONE 3A) for normal hearing subjects or free-field 
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presentation for CI users for the best possible adjustment of the SPL. The stimuli were calibrated using a 

programmable attenuator (gPAH, g.tech medical Engineering, Graz, Austria) at 75 dB SPL and presented 

in the free field in a sound-attenuated booth, originating from a PC with a sound card and loudspeaker 

(Hi-TEX), positioned 1.5 m in front of the subject. 

EEG was continuously recorded with a Neuroscan Synamps AC-coupled amplifier (0.05–200 Hz 

bandwidth; sampling rate: 1 kHz) using electrodes placed at Fz according to the International 10–20 

System, plus the left and right mastoids, and referred to the nose. Impedances were kept below 5 kOhms.  

The EEG at Fz and the mastoid channels were digitally filtered (1–15 Hz bandpass, 24 dB/oct. roll-

off) and then epoched relative to reference marker positions according to the stimulus type (standard, 

deviant, and controls). Epochs were 400 msec, starting from 100 msec before and ending 300 msec after 

the onset of the stimulus. An artifact rejection criterion was set at ±50 µV and applied after the epochs 

were baseline corrected on a prestimulus range of 100 msec. The “deviant” and “control” ERPs were 

calculated as average of the relative epochs. Difference waveforms were obtained by subtracting the 

ERPs elicited by the “deviant” stimuli from the ERPs elicited by the “control” stimuli. For every subject 

and both deviant types, the MMN response was identified as minimum amplitude in the latency range of 

100–250 msec of the difference waveforms. The amplitudes of the “deviant” and “control” averages were 

also determined at this latency time point. A paired t-test was performed to determine the significance of 

the difference between “deviant” and “control” responses. 

Logatome Discrimination Test 

For auditory stimulation, a subset of the OLLO Corpus was used. Recording conditions, speaker 

instructions, and postprocessing of the recorded material are described in detail in Wesker et al.[35]. The 

entire OLLO Corpus is approximately 4.6 GB and available publicly, including a detailed description, 

word lists, labeling files, technical specifications, and calibration data. It can be downloaded for free from 

http://sirius.physik.uni-oldenburg.de. 

For the logatome discrimination test described here, we selected the 70 logatomes (L071–L150) of 

CVC structure, recorded by one male speaker (S03M) with a normal articulation characteristic (V2). The 

stimuli were calibrated using a programmable attenuator (gPAH, g.tech medical Engineering, Graz, 

Austria) at 75 dB SPL and presented in the free field in a sound-attenuated booth, originating from a PC 

with a sound card and loudspeaker (Hi-TEX), positioned 1.5 m in front of the subject. Through the use of 

a software program written in DELPHI, 100 logatome pairs (50 same, 50 different) were randomly 

selected and presented in same-different combinations. After the presentation of every logatome pair, the 

subject’s perception was recorded by selection of a two-alternative forced-choice (2AFC), pressing button 

#1 for a “same” impression and button #2 for a “different” impression. Logatome pairs were presented 

without feedback regarding correct or incorrect responses. The stimuli and the subjects’ responses were 

stored in a text file, and evaluated by calculating the “hits”, “misses”, “false alarms”, and “correct 

rejections” to determine the sensitivity index d’ for every subject. 

RESULTS 

OLSA 

Fig. 1 shows the results of the OLSA. All participants with normal hearing could perform the OLSA, 

identifying 50% of the test material when the noise was louder than the target speech (M = –6.00 dB SNR, 

SD = 0.51 dB SNR). However, only four of the eight CI users were able to perform the OLSA in noise 

(M = 4.53 dB SNR, SD = 0.39 dB SNR). Compared to the normal hearing subjects, the required speech 

SNR to achieve their speech reception threshold (M = 4.53 dB SNR, SD = 0.39 dB SNR) was significantly  

http://sirius.physik.uni-oldenburg.de/
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FIGURE 1. Threshold SNR as outcome of the OLSA, 

displayed as a boxplot for the normal hearing subjects and 
the good CI performers. The SNR is significantly poorer for 

the good CI performers (*p < 0.01). The poor CI performers 

were not able to perform the test. 

higher (t (13) = 10.45, p < 0.01). This group was labeled as “good CI performers”. For the remaining four 

CI users, labeled as “poor CI performers”, the tests were interrupted due to a lack of specificity 

approaching floor effects. There was no correlation observed between the age of the participants or their 

onset of deafness and the speech intelligibility results. 

Electrophysiological Experiment 

Fig. 2a shows the group average ERPs elicited by the “deviant” and the “control” stimuli for the normal 

hearing subjects, and the good and poor CI performers. For normal hearing subjects and good CI 

performers, a clear P1-N1 waveform is elicited in response to the consonant-replacement logatome 

paradigm as well as in response to the vowel-replacement logatome paradigm. No clear P1-N1 waveform 

is seen for the poor CI performers. With the exception of the poor CI performers, a statistically significant 

difference is observed between the “deviant” and “control” responses (t-tests, p < 0.05), standing for a 

MMN response.  

Fig. 2b shows the difference ERP waveforms for the consonant- and vowel-replacement logatome 

paradigms. After confirming the normal distribution and homogeneity of the ERP amplitudes (Mauchly’s 

test, p > 0.05), a two-way mixed ANOVA (discrimination task: two levels, consonant replacement and 

vowel replacement; speech intelligibility, three levels: normal hearing, good CI performers, and poor CI 

performers) was performed on the amplitude of the MMN peaks. There was a significant main effect of 

the speech intelligibility (F (2, 32) = 14.97, p < 0.001). Posthoc tests revealed significantly larger MMN 

amplitudes for subjects with normal hearing compared to that observed for poor CI performers. In 

comparison, the good CI performers also revealed larger MMN amplitudes than observed for the poor CI 

performers (Bonferroni tests, all p < 0.01). Neither the main effect of discrimination task 

(F (1, 32) = 0.68, ns), nor the discrimination task  speech intelligibility interaction (F (2, 32) = 1.13, ns) 

were significant. 
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FIGURE 2. (a) Group average ERP waveforms for the normal hearing subjects, and the poor and good CI performers, recorded at the electrode 
site Fz. A negative difference between the “deviant” (bold line) and the “control” (thin line) waveform in a latency range between 100 and 

250 msec was identified as MMN. For the normal hearing subjects and the good CI performers, a clear MMN was observed for both the vowel- 

and the consonant-discrimination task of CVC logatomes. No significant difference was found for the poor CI performers (*p < 0.05). (b) The 
group average difference waveforms show the different MMN potentials for the vowel- and consonant-replacement logatome paradigms. 

Logatome Discrimination Test 

All except one CI user finished the logatome discrimination test. For normal hearing subjects, the overall 

hit rate was mostly 100%. For CI users, the hit rate varied from chance level (50%) to 100%. Fig. 3 shows 

the measured sensitivity index d’ of the logatome discrimination test for the normal hearing group as well 

as for the good and poor CI performers’ groups. Clear differences between the groups are discernible. 

A two-way mixed ANOVA (discrimination task: two levels, consonant and vowel replacement; 

speech intelligibility, three levels: normal hearing, good CI performers, and poor CI performers) was 

performed on the sensitivity index d’ of the logatome discrimination test after confirming the normal 

distribution and homogeneity of the sensitivity index (Mauchly’s test, p > 0.05). The results show that the 

d’ of both the two discrimination tasks (F (1, 16) = 46.50, p < 0.01) and the three speech intelligibility 

groups differed significantly (F (2, 16) = 95.51, p < 0.01). A significant interaction of the discrimination 

tasks and speech intelligibility was found (F (2, 16) = 24.64, p < 0.01). 

Posthoc tests revealed that, over all subjects, the discrimination ability was higher for the normal 

hearing subjects compared to that for the good and poor CI performers. The poor CI performers revealed 

the poorest discrimination abilities. The posthoc test of the interaction between the discrimination task 

and speech intelligibility revealed a significantly higher d’ for the vowel replacement compared to the 

consonant replacement only for the good CI performers (Bonferroni test, all p < 0.05).  

Fig. 3 also displays the individual MMN amplitudes compared to the results of the logatome 

discrimination test. While the sensitivity index was different between all subject groups, significantly 

smaller MMN amplitudes were only obtained for the poor CI performers group compared to the good CI 

performers and normal hearing subjects group. 

DISCUSSION 

The results of the experiments presented in this paper demonstrate that the OLLO Corpus can be  

used to design an effective logatome discrimination test for CI users. With its studio-quality recordings of  
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FIGURE 3. Sensitivity index d’ of the logatome discrimination test (left) and individual MMN amplitudes (right), displayed as 

boxplots for the three speech intelligibility groups. Please note the clustering of the d’ between the speech intelligibility groups. 
Differences between vowel- and consonant-replacement logatome paradigms are significant for the psychophysical measure (d’) in the 

good CI performers group (*p < 0.01) only. 

logatomes from 40 German speakers, it is the first corpus that is available for the German-speaking 

region. Recently published work also reports the first speaker discrimination test drawing its stimuli from 

this corpus[36].  

Only the good CI performers were able to perform the OLSA. As this is a speech intelligibility test, 

this demonstrates the clinical need for more basic speech perception tests as demonstrated by the newly 

developed logatome discrimination test, which in contrast, all subjects could perform. To avoid floor 

effects as experienced on behavioral tests such as the OLSA for poor performing subjects, the logatome 

discrimination test provides a valuable clinical evaluation alternative.  

For both the normal hearing control group and the good CI performers, the speech intelligibility 

results of the OLSA were clustered. The resulting SNR distribution for the normal hearing control group 

was rather narrow, while it was not possible to obtain results for the poor CI users. Thus, a categorization 

of the speech discrimination ability of the subjects was revealed by the OLSA.  

The electrophysiological results support the speech intelligibility results revealed by the OLSA. No 

differences between the MMN amplitudes following vowel- and consonant-replacement paradigms were 

obtained. The similarity of the MMN amplitudes for normal hearing subjects and good CI performers, in 

contrast to that observed for the poor CI performers, justifies use of MMN component measures for 

screening for speech intelligibility and discrimination abilities. Beyond this categorization, the MMN so 

far appears not to be applicable to a direct measure of the discrimination abilities. Measurements of the 

MMN for CI users on a individual level are time consuming and difficult to confirm reliably[10]. Thus, 

this paper goes along with the conclusions of Kelly et al.[30], and Welge-Lüßen et al.[34] who describe 

limitations to the usefulness of the MMN to measure speech intelligibility. Nevertheless, the MMN 

appears as a possible complementary clinical tool to assess auditory sensitivity objectively[30,31,32]. 

Especially for patients who are not able to perform a behavioral test, the MMN should also be assessed in 

future tests. 
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As expected, the logatome discrimination test revealed a broad distribution of d’ for the CI users 

group and a narrow distribution for the normal hearing subject group. Thus, for the CI users, the logatome 

discrimination test allows a measure of speech discrimination abilities with a higher resolution than 

permitted by the OLSA or the MMN measure.  

The logatome discrimination scores varied from chance level to almost 100% without evidence of a 

ceiling effect as observed and described for the HINT[40]. Thus, for the CI users, the logatome 

discrimination test seems to be ideally neither too easy nor too difficult. However, for normal hearing 

subjects, a clear ceiling effect was observed. This limits the applicability of the logatome discrimination 

test to the evaluation of limited speech perception abilities. In many cases, prelingually deafened CI users 

developed speech abilities through the use of hearing aids and by undergoing speech therapy. 

Consequently, they are able to perform commonly used clinical speech intelligibility tests[41]. 

Nevertheless, compared to speech identification, speech discrimination is a relatively simple task for 

prelingual subjects. Thus, the logatome discrimination test is applicable for testing auditory skills for 

many more individuals than the currently available speech intelligibility tests and is considered clinically 

appropriate for assessment of CI users at large. The majority of commonly available speech tests use 

syllables, words, or sentences as auditory stimuli[15,30,42]. However, much less is known about the 

applicability of logatomes to date. This paper demonstrates the use of the OLLO Corpus to design a 

powerful, psychoacoustic logatome discrimination test. As no differences between the discrimination of 

vowel- and consonant-replacement logatome paradigms (CVC) were found in our study, future tests will 

aim to assess discrimination ability using a VCV logatome paradigm also. Thereby, the spectrum of 

measurable contrasts should be extended by including different speakers[36]. Beside the speaking rate, 

speaker style, and speaker effort[35], prosody discrimination abilities[43] will also be assessed in future 

tests. From our point of view, the logatome discrimination test, with its wide number of test items, will 

provide a variable test corpus to measure basal speech discrimination skills of pre- and postlingual 

deafened CI users. 

On the other hand, we also state that the MMN component measure is also reported as sensitive to 

logatome and syllable differences, and is therefore applicable to screen speech discrimination skills of 

uncooperative subjects for clinical purposes[9]. Furthermore, recent research suggests a high correlation 

between the MMN response and speech perception skills also beside the clinical focus[22]. Primarily due 

to the long recording times required to perform MMN, we propose the use of the MMN for clinical use in 

special cases only. While the logatome discrimination test is one example, for standard clinical purposes, 

we consider further development of quick and flexible psychoacoustical tests, based on the powerful 

OLLO Corpus. 
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