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Mapping of Kinematic and 
Dynamic Parameters for Coupled 
Manipulators 
Industrial manipulators use various types of transmissions, such as gears, belts, 
chains, and parallel mechanisms, to transmit driving power to the links. By ar­
rangement many such transmissions cause coupled joint motions. Manipulators 
having coupled joint motions are referred to as coupled manipulators. Conventional 
methods for constructing Jacobian matrix and compliance matrix are not directly 
applicable to coupled manipulators. The concept of the mapping matrix is used in 
this paper for establishing relationships of torque, speed, Jacobian and compliance 
of these manipulators with those obtained with conventional methods. A method 
of constructing the mapping matrix systematically is discussed. Two examples show 
that the proposed method is easy to implement. 

1 Introduction 
As the demand on more accurate robots increases, study of 

robot compliance and its effect on robot positioning accuracy 
has become of greater interest. Experimental evidence [1] in­
dicates that for most existing manipulators, the compliance of 
the manipulator is primarily a result of compliant joints. The 
major source of the joint compliance occurs in transmissions, 
reducers, and servo drive systems [2]. Compliance matrix [3] 
has been used to describe the relation between an applied load 
and the deflection of the end-effector due to joint compliance. 
If joint / has a stiffness as k, (i = 1, . . . , ri), then we can 
construct a diagonal stiffness matrix 

K=diag[kuk2, • • • ,k„] (1) 
and the effective end-effector compliance matrix 

Ce = JK-iJT (2) 

where J is the conventional Jacobian matrix of a manipulator. 
By conventional, we mean that the relative joint displacements 
have been chosen to be the set of generalized coordinates and 
that the Jacobian is calculated with respect to this set of gen­
eralized coordinates [4-7]. The deflection AS (a generalized 
Cartesian displacement vector including both translation and 
rotation), caused by the joint compliance, of a manipulator 
end-effector under a load F (a generalized Cartesian force 
vector including both force and moment) is simply 

AS = CeF (3) 
When a manipulator has a simple actuation structure (that 

is, it is serial and each of its links is driven by an actuator 
mounted on the preceding link), the end-effector compliance 
matrix is easy to find. All we need is to measure the stiffness 
of each joint and to find the Jacobian matrix. However, finding 
the joint stiffness matrix corresponding to the conventional 
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Jacobian can become difficult when the actuation structure of 
a manipulator is not so simple. In many manipulator actuation 
structures, the motions of some links are coupled and the 
desired driving torques of the actuators (i.e., torques in ac­
tuator space) are not the same as the computed joint torques 
in joint space. Such manipulators are referred to as Coupled 
Manipulators. Many industrial manipulators, such as IBM 
7540/7576 and GE P-50, belong to this category. 

Lagrange-Euler and Newton-Euler formulations of robot 
dynamics, and their variations, have been used to compute 
joint torque T with the assumption that the driving actuator 
of each link is mounted on the immediate preceding link and 
that those torques are propagated sequentially back along the 
link chain through interaction [5, 6], But this is not true for 
coupled manipulators. The Jacobian and compliance matrices 
of coupled manipulators also differ from those computed by 
the conventional methods. Luh and Zheng [9] studied the com­
putation of joint force/torque for industrial robots having 
closed-chain linkages. Their approach involves cutting open 
the closed-chain linkage to form tree structured open-chain 
mechanism and constructing dynamics equations for the virtual 
open-chain robot with holonomic equality constraints at the 
cut joint. Such a direct approach for analysis needs to be done 
on an individual basis. Freudenstein and Yang [10] introduced 
a systematic method for deriving the displacement equations 
of gear trains, using the concept of fundamental circuits. Freu­
denstein et al. [11] extended the analysis to the complex bevel-
gear trains. Tsai [12] then showed that the kinematics of a 
complex bevel-gear train can be studied by applying the matrix 
transformation to an equivalent open-loop chain. Chang and 
Tsai [13] introduced the concept of transmission lines and 
structural matrix for kinematic analysis and synthesis of geared 
robotic mechanisms. In their study of the design of three jointed 
two-degree-of-freedom robot fingers, Leaver and McCarthy 
[14] used coupling matrix for analyzing tendon routing schemes 
and the driving gear trains. Tsai and Lee [15] studied the 
kinematic structure of tendon-driven mechanisms using graph 
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theory. They showed that the displacement equations of such 
mechanisms can be systematically derived from the routing of 
tendons, using the "structure matrix." The results of the static 
(kinematic) analysis can be extended for relating torques in 
joint space to those in actuator space. But there has been no 
discussion on its usage for mapping other parameters such as 
Jacobian and compliance matrices. 

This paper presents not only a different approach to the 
previously studied problem, it also addresses computation of 
Jacobian and compliance matrices for coupled manipulators. 
We will present a method, derived based on dynamics for­
mulation, for constructing the,torque mapping matrix, which 
is key to all of the relations between speed, Jacobian and 
compliance in actuator space and the same parameters in joint 
space. Once this matrix becomes available, torques and Ja-
cobians computed with conventional formulations can be easily 
transformed into the actual torques and Jacobians of coupled 
manipulators. The fact that the matrix is derived directly from 
dynamics formulation ensures its validity for mapping of dy­
namic parameters. A major feature of this approach is that 
the mapping matrix can be constructed by inspecting the lo­
cations of a manipulator's actuators. This enables the study 
of the compliance property of a coupled robot without having 
to disassemble the robot for the information of its kinematic 
structure. This approach is, however, not applicable to the 
open-ended tendons where the dimension of the joint space 
and that of the actuator space are different. 

2 Mapping of Parameters between Actuator Space and 
Joint Space 

Let us map T*, the torque vector in actuator space, into T, 
the torque vector in joint space, with a matrix N 

T = NT* (4) 

It has been shown [3, 4] 

T = JTF (5) 

Let J* be the Jacobian with respect to the generalized coor­
dinates in actuator space, then it can be shown 

T*=(J*)TF (6) 

From the above three equations we have 

J=J*NT (la) 

J* = JN~T (lb) 

Let the stiffness of the ;th actuator and its transmission in 
actuator space be kf, then we have another diagonal stiffness 
matrix K* = diag[kf, k%, • • •, k%]. The end-effector com­
pliance matrix Ce can be written as 

Ce = J*(K*yl(J*)T (8) 

Combining Eqs. (2), (7), and (8), we get 

Ce = JK~q
lJT (9) 

where 

Keq = NK*NT (10) 

is the equivalent stiffness matrix when the conventional Ja­
cobian is used to obtain the end-effector compliance matrix. 

Equations (7) and (10) show that the relation between / a n d 
J* and the relation between Keq and K* both depend on N, 
the torque mapping matrix from actuator space to joint space. 
According to the virtual work principle, 

(r*)Tij, = 7
Te (11) 

where <t> is the vector of generalized coordinates in actuator 
space, 8 is the vector of generalized coordinates in joint space, 
and 6 and </>are their time derivatives. Using Eq. (4), we have 

ij>=NT9 (12) 

Equation (12) shows that the torque mapping matrix N is 

in fact the mapping matrix between joint velocity and actuator 
velocity. Thus, matrix TV plays an important role in mapping 
between variables represented in the two different sets of gen­
eralized coordinates. For a simple manipulator, the joint 
torques are the same as the actuator torques: In this case, N 
is an identity matrix and Keq = K*. This is not the case in 
coupled manipulators, however. For example, in many ma­
nipulator designs some actuators are installed at or near the 
base of a manipulator so that one actuator does not act as 
load to other actuators. (There are other reasons, of course, 
for doing this.) That means not all the joint torques are prop­
agated sequentially back along the link chain. Converting joint 
torques to actuator torques becomes a coupled mapping. To 
gain an insight on how this mapping can be used for studying 
the dynamics of a coupled manipulator, a method for con­
structing this mapping matrix based on dynamics formulation 
will be given in the next section. 

3 Construction of Mapping Matrix, N 

We first consider a manipulator with all revolute joints. If 
every link of a manipulator is driven by an actuator mounted 
on its preceding link, then from the iterative Newton-Euler 
formulation [5] 

ifi = i
i+lR

i+lfi+i + iFi (13) 

'n, = 'Ni + 'l+iR i+ lni+, + 'Pd x 'F, + lPi+, x {+,/?
 i+[fi+l (14) 

ri = 'nj% (15) 

where, as shown in Fig. 1, 

'«,• = moment exerted on link / by link / - 1 
'fi = force exerted on link i by link i - 1 

'Ni = inertial moment of link i 
'Fi = inertial force of link i 

'Pci = position vector of the center of mass of link i 
'Pi+i = position vector of the origin of frame [/ + l j 
'i+iR = rotation matrix describing frame {/ + 1) relative to 

frame {/} 
'ii = axis vector of joint i 
TI = computed joint torque for link i 

Now suppose link i is actuated by a motor Mi mounted on 

(i+D 
'U+i 

F: 

Fig. 1 Forces and moments acting on link / 
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Fig. 2 Effect of replacement of motor Ml from link / - 1 to a link closer 
to the base 
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linky (/ - 1 > j) and the torque T* exerted on link / by Mi 
is transmitted along the link chain to link /. (The transmission 
ratio is assumed to be one along the path for simplicity.) Such 
an arrangement changes the actual interaction moments be­
tween l ink i and its adjacent links. The effect of the replacement 
of motor from link i — 1 to a link closer to the base is shown 
in Fig. 2. Figures 2(a) and (c) have motor Mi mounted on link 
/ - 1. Due to its support of the motor , link i - 1 receives a 
reaction torque from the motor. Figures 2(b) and (d) show 
that the motor has been replaced from link / - 1. Although 
link ; is still driven by motor Mi, the reaction moment exerted 
on link /' — 1 by link i has changed. Depending on the type 
of mechanism used for transmitting torque from motor Mi to 
link /, the axis of the motor Mi before replacement may or 
may not be parallel to the joint axis z-,. If we denote the actual 
moment exerted on link / by link / - 1 as '«* for the general 
case, then the moment before the replacement '«,• can be related 
to the moment after the replacement 'nf as 

'n^'nt + rf'zf (16) 

where 'z* is the unit vector along the axis of motor Mi before 
the replacement. 

Since reaction moments are propagated backwards, change 
of motor location from link / — 1 to link j does not change 
the torques needed for driving link / and its outer links. Thus 

T* = T* forfc>< (17) 

With the assumption that motor Mi is mounted on link / -
1 but the link inertias are calculated based on the actual physical 
links, the original moment equation for link i - 1 is 

' - v i=;~ w,- ,+r \R'«,v- ipC]i_, 
x ' - 1 F,_ , + '-1P1-x{- ,tf'// (18a) 

and the actual moment equation (with motor Mi mounted on 
link j) becomes 

y_i= ' -w / _ 1 +r i i j '« f+ ' 
x ' - ' F ; _ ! + ' " l P i X \ - X R lfi (186) 

Combining Eqs. (16) and (18), we get 
/ - l ' - W - I + T / ' ' - 1 * ; (19) 

Zi-\, we obtain 
,.*/"/- l i * \ T i- 1* 

« / - 1 = 

Multiplying Eq. (19) with !~u 

T,_, = T?_ , + T? ('-'«? )"- 'f,_, (20) 

The same relation holds for all other links between i and j . 
Therefore, for any link between /' andy, we have 

Tk=T*k + Tf(kz?)Tkzk (j<k<i) (21) 

But for link y, we have the original moment equation as 

Jnj=JNj+j+iR
 j+lnJ+i+

jPCjXJFj+jPj+lxj+lR
 j+,fj+l (22a) 

and its modified form 
Jnf=JNj+j+1R

j+lnf+i+
JP^XJFj+JPJ+l_ 

xJ
J+iRJ+lfJ+i + T?Jz, (22b) 

where zi is the unit vector along the actual axis of motor Mi. 
Therefore, 

Jnj=Jnf +j+!R (J+ V i ~j+ V+1) - ^ % 

=jnJ + Tt(jz?-jZi) 

Multiplying it with jzj, we get 

Tt=Tj+Tf<!%-JZi)T% (23) 

For link j — 1, we have 

' " ' 'zii J-K 
nj_, =J~ [n?„! +j~ lR (Jnj-Jnf) =J~'«/_, + Tf (J-'z? T* rJ-is* -J~x?. 

Multiplying it with J ij-i, we get 

T,-_1 = T/_I + T ; ( / - ^ 
7 - 1 * * _j-ls\Tj-l" 

z,y Zj-l (24) 

The same relation holds for all other links before j - 1. 
Therefore, for link j or any link before j , 

(25) 

(26) 

*k = r*k + Tf(kzf - kzd T kzk (k<j) 

Combining Eqs. (17), (21), and (25), we get 

Tk=T*k+Tfbki 

with 

(z*-Zi)Tzk k<j 

bki={(zffzk j<k<i (27) 

.0 k>i 

The above procedure can be extended to manipulators with 
m of their links, that is i = z'l, i2, . . . , im, having actuators 
located on links j \ , j2, . . . , jm, respectively. The result can 
be obtained as 

frt + T% bkJi + ...+ TfmbkJm k<i\ 

rk + T*ibk>a +•••+ rfmbkJm i\<k<i2 

rk~- (28) 
]T*k+T?mbk,i, 

KT*k 

im-l<k< im 

k>im 

where bkiii, bkta, • • •, bkj,„ are the same as that defined in Eq. 
(27), withy replaced byyV and / replaced by // (1 < / < m). 

Equation (28) can be used to construct the general torque 
mapping matrix as: 

N= 

bi,n 

bn-i,n 

1 bn, a 

". bn-\,n 

1 

bi\,im 

bjljm 

' . Ojm-l,im 

1 

(29) 
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Fig. 3 Drive system of IBM 7540 robot 

where all the diagonal elements are 1 's and all unmarked ele­
ments are 0's if they are not b's. The values of b's could vary 
according to manipulator configurations. For most industrial 
manipulators, twist angles are either 0 deg or 90 deg. This 
property leads to a simpler torque mapping matrix N because 
the values of b's become constants (either 0 or ± 1). 

In the above derivation, we have considered revolute joints. 
However the formulation can be readily extended to prismatic 
joints. A prismatic joint should be driven by a rotary actuator 
with a mechanism, such as a pinion and rack set, to convert 
rotary motion to linear motion if the joint is to be actuated 
remotely. If the joint between links / — 1 and / is prismatic 
and the joint force is CT,- along the joint axis, then the motor 
Mi should provide a torque rf = a,- x /-,- for driving link /, 
where r,- is the radius of the pinion used and 07 = 'fj'z;- After 
moving motor Mi from link / — 1 to link j , the force exerted 
on link i by link / - 1, % does not change. But the moment 
exerted on link / by link / - 1, '«,-, changes to 'n* as in Eq. 
(16). Thus, all the above equations still hold. 

The mapping matrix N can be determined with Eq. (27) by 
physically examining the locations of the motors and the di­
rections of the motor axes. Usually, such information is readily 
available. Once the mapping matrix Â  is determined, it can be 
used to transform kinematic and dynamic parameters in con­
ventional formulations to corresponding parameters of cou­
pled manipulators using Eqs. (7), (10), and (12). 

The dynamics of a coupled manipulator can be studied as 
follows .First, the manipulator is treated as a serial manipulator 
by "disconnecting" all the coupling members (not physically, 
of course), and a conventional dynamics formulation is applied 
to this open-chain serial manipulator to obtain joint torques. 
This technique is similar to that proposed by Luh and Zheng 
[9]. However, instead of studying the manipulator dynamics 
by applying a direct formulation to the resultant tree structure, 
we use mapping to account for the coupling effect. In the case 
where belts/pulleys or chains/wheels are the coupling mem­
bers, their masses are still part of the link on which they are 
mounted. The inertial forces of these elements are calculated 
based on their motion parameters. Part of the inertial forces 
is transmitted to the link through bearings and therefore it 
should be added accordingly to the force and moment equi­
librium Eqs. (13) and (14) in the dynamics formulation. The 
rest of inertial forces of these members (i.e., the part that is 
not transmitted to links through bearings) becomes additional 
load to their corresponding motors. If the coupling is caused 
by closed-chain linkages, the coupling links are not part of the 
imaginary open-chain serial manipulator, therefore their in­
ertial forces are not considered in this step. 

Then the joint torques are mapped into the actuator torques 
with the mapping matrix N as 

T*=N-\ (30) 

Finally, additional actuator torques AT* for balancing the 

remaining inertial forces of the coupling members are com­
puted and added to the total actuator torques. It is straight­
forward for the case involving belts/pulleys or chains/wheels. 
For a closed-chain linkage, this can be done by considering its 
dynamic equilibrium. In this consideration, the links that have 
been considered in the imaginary open-chain manipulator are 
treated as massless and the inertial forces of the coupling links 
are computed based on their known motions and inertial prop­
erties. Actuator torques needed for maintaining dynamic equi­
librium of the coupling links are then computed and added to 
the actuator torques obtained in Eq. (30). Two examples are 
given in the next section illustrating the approach. 

4 Examples 
As an example, let us look at the drive system of the IBM 

7540 robot as shown in Fig. 3. We consider the three revolute 
joints driven by motors MX, M2, M3. The motor M3, which 
provides the roll motion of the third joint, is located at the 
base of the robot. Thus, /' = 3 and j = 0. Since the three 
joints and three motor axes are all parallel, bu = {z$)TZi = 
1 and fry = (z*)TZi = 1. The mapping matrix for this case is 

N= 

"1 

0 

0 

0 

1 

0 

f 
1 

1 
(31) 

Substituting Eq. (31) into Eq. (12), we can obtain the fol­
lowing velocity relation: 

>, = », 

»2= 0 2 (32) 

o3=e] + d2+63 

which has been verified through experimental observations. 
The Jacobian matrix corresponding to the position and ori­

entation [x, y, <t>] of the manipulator end-effector on the hor­
izontal plane can be found as 

-(te\ + ten) -ten 0 

J=U\ h h\= tei + ten ten 0 (33) 

1 1 1 

and 

J* = JN = [•/,-/, 

- ten 0 
ten 0 

0 1 

(34) 

J2-J3 />] 

-(tei + ten) 
tei + ten 

0 

where S\ = sin^j, c\ = cosdi, sl2 = sin(#i + 62) and ci2 = 
cos(0, + 62). 

With K* = diag[/tf, ki, k$] and from Eq. (10), we have 

kf + kf kl k$ 

k$ kt+kS k$ 

k* k* k* 

From Eq. (8) or Eq. (9), the elements of the effective end 
effector compliance matrix are 

(hSi + ten)2 , l¥n 
C " ~ kf + k*2 

Keq = (35) 

C,2 = 

C22-

CT 
(/1S1 + ten) (hci + ten) tencn 

(/1C1 + /2C12)2 l\cji 
ki kt 

C - -L °33~k! 
Cl3 = C31 = C23 = 

(36) 
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(a) (b) 

Fig. 4 Drive system of GE P-50 robot 

To compute the actuator torques, the belts are "removed." 
The joint torques TU T2, and r3 of the resultant "serial robot" 
are then computed using a conventional dynamics formulation. 
The inertial forces of the belts and pulleys transmitted to the 
links through bearings are included in the joint torque com­
putation . Based on the mapping matrix in Eq. (31), the actuator 
torques are 

~rf 
ri 

X 
= N~l 

T\ 

T2 

_r3_ 

= 

T 1 - T 3 

T 2 - T 3 

r3 

(37) 

The rest of inertial forces of the belts and pulleys (i.e., the 
part that is not transmitted to links through bearings) becomes 
additional load to motor M3, and additional torque AT3* is 
then computed for balancing this load. 

Another example is the drive system of GE P-50 robot as 
shown in Fig. 4. One special feature of this type of robot is 
the parallelogram mechanism, which also exists in the GMF 
S-series and the ASEA robots. 

As we can see from Fig. 4(a), link 1 is driven by motor Ml 
mounted on the base, and link 2 is driven by motor Ml mounted 
on link 1. Link 3 is driven by motor Mi mounted on link 1 
through the parallelogram, therefore the motion of link 3 is 
coupled to that of link 2. Link 4 and link 5 are driven by 
motors MA and M5, respectively, through transmission chains. 
Both MA and MS are mounted on a vertical bar in another 
parallelogram so that their rotations with respect to link 1 are 
not affected by the rotation of link 3; therefore, they can be 
treated as mounted on link 1. The motions of links 4 and 5 
are shown in Fig. 4(b). The /'s a n d / s parameters needed for 
calculating b's in Eq. (29) are 

Vl = 3 (72 = 4 (73 = 5 

Jl = l U = l (.73 = 1 

and 

From Eq. (27), we can obtain 

&13 = &14 = 6 l 5 = 0 

623 = *24 = bu = b25 = bi5 = b45 = 1 

Thereore, the mapping matrix for this manipulator is 

N= 

1 0 0 0 0 

0 1 1 1 1 

0 0 1 1 1 

0 0 0 1 1 

0 0 0 0 1 

(38) 

Combining Eq. (38) with Eq. (12), we can work out the 
following velocity relation: 

vi — »i 

63=03+4>2=03+02 

64= 04+03= 0 4 + 0 3 + 02 

t>5= 05 + 04= 05+ 04+ 03+ 02 

(39) 

which has been experimentally verified to be correct. 
The conventional Jacobian for this robot can be found with 

the vector cross product method [6, 8] as follows: 

"0" 

Zi-

0p _ 0 p _ 
r\e— fie-

%- %- Z4 = 

Si 

~Ci 

0 
,% = 

~ C\S2}4 

~ slS2M 

C234 

(l2C2 + hC23)Cl 

(l2C2 + l3C23)Si 

l2S2 + liS2i 

/3C23C1 

/3C23*1 

hs-a 

where °Pie is the position of the end-effector from the origin 
of the /th coordinate frame, expressed in the base coordinate 
frame. 

Thus, 

J— [J 1 Ji Ji JA J$] (40) 
where 

/ ,= 

Ji = 

Z\ X Ple 

% J 

~%X°P2e 

% 

- (l2c2 + l3c23)s{ 

(hc2 + hcn)ci 

0 

0 

0 

1 

- ( / 2 5 2 + /3*23)Cl 

(l2s2 + hs23)s, 

/2C2 + /3C23 

Si 

- C i 

1 

/ ,= 
z3x°Ple~ 

% i 

- /3S23C1 

- /3*23^1 

/3C23 

Si 
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Fig. 5 Dynamics of the coupling parallelgrams 

ZA X P^e 

% 

o " 
0 

0 

Si 

-Cl 

0 . 

Zs X P$e 

% J 

0 

0 

0 

C1S234 

S\S-m 

. - C234. 

Js = 

and 
J*=JN~T=[Jl J2-J3 J1-J4 JA-Ji J5] (41) 

Similar to the first example, the transmission chains and the 
coupling links (marked with x in Fig. 4) are treated as being 
removed to form an uncoupled serial robot, and its joint torques 
are computed with a known dynamics formulation. The ac­
tuator torques are calculated based on the mapping matrix in 
Eq. (38) as 

(42) 

The inertias of the chain-wheel sets can be treated the same 
way as the belts and pulleys of the first example. With known 
motions and inertial properties of the coupling links, we can 
solve the dynamic equilibrium of the links in the two paral­
lelograms shown in Fig. 5 (with links not marked with x 
treated as massless). This gives us the additional torques AT*, 
AT| and Arf needed for balancing the inertial forces and mo­
ments of the coupling links. 

~rf 
A 
r$ 

rt 
St. 

= 

Tl 

T2-T3 

T3-T4 

T4-T5 

. T5 . 

5 Conclusion 
The conventional methods for computing the joint torques, 

Jacobian matrix, and compliance matrix are not directly ap­
plicable to manipulators with coupled joint motions. This study 
provides a systematic approach which utilizes the mapping 
matrix to relate the joint torques, joint speeds, Jacobian ma­
trix, and compliance matrix in one set of generalized coordi­
nates (i.e., the relative joint displacements) to those in another 
set of generalized coordinates (i.e., the actuator displace­
ments), so that the results obtained with the conventional meth­
ods can be easily transformed to the actual ones for coupled 
manipulators. The method of constructing the mapping matrix 
presented is derived from the Newton-Euler formulation of 
manipulator dynamics and it is easy to use. By relating the 
various parameters using the mapping matrix, the dynamic 
equations of motion derived for serial manipulators can also 
be used for coupled manipulators. 
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