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Abstract. The results obtained in the current study are a supplement
to those described by Chauvineau, Farinella and Mignard (1993), where
the planar motion of a small satellite is considered close to a triaxially
ellipsoidal asteroid (with semiaxis ratios a : b : ¢ = V2 : 1 : 1/V/2),
and where most computations are made for a long asteroid spin period
(T = 40 h). To ease comparison, in the current study the same system
of units and the same designations are adopted as used earlier. The
planar dynamics of a small satellite is studied in the close vicinity of
the asteroid 243 Ida, which is approximated by a triaxial ellipsoid of
density 2.5g/cm?® with semiaxes 28, 12, 10.5 km (Belton, 1995). The
asteroid is fast rotating (T = 4.63 h) and strongly elongated (Belton,
1995). The triaxial problem (where Ida is approximated by a triaxial
ellipsoid) is viewed as a perturbation of the Keplerian problem (where
Ida is approximated by a sphere of the same mass and density). The
results of numerical integrations are plotted using the method described
in Chavineau et. al (1993). They point to the generation of a wide zone
of chaotic motion in the triaxial case (Fig. 4). This zone is associated
with orbits which are retrograde in both the rest and rotating frames,
and it comes into contact with the zone of collisions.

1. General equations

Restricting ourselves to satellite orbits lying in the equatorial plane of the as-
teroid (which rotates uniformly at a rate w around its shortest axis) we can
write the equations of motion of a small satellite in a rotating reference frame

as follows (Subbotin, 1937):
i=2wy+wir+ Ve, = —2wit+wly+V,. (1)

In the chosen system of units, in which the mass of the asteroid, its mean
radius and the Gauss constant are all equal to 1 (Chauvineau et. al, 1993), the
gravitational potential of the asteroid with semiaxes a > b > ¢, approximated
by a triaxial ellipsoid, and its first derivatives can be expressed in the following
classical form (Subbotin, 1949):
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where A\ and R(s) are determined from
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a23:+ T + b2y—|— 5 = 1, R(s)= \/(QQ +5)(b2 + 5)(c2 + ) . (3)
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The method of Chauvineau, Farinella, Mignard (1993) can be described as
follows: for an orbit in four-dimensional phase space (x, y, @, ¥) we consider
only those of its points which satisfy the conditions y = 0, ¢ > 0. Associating
with each of these points, a point (z, s = sin ), where tan 6 = &/y, we
form the Poincare’s section of the orbit. The initial point (x, s = 0) in the
section for a fixed value C of the Jacobi constant corresponds to the point
(x, y=0, =0, § = v—C + w222 + 2V) in four-dimensional space.

2. Description of results

In Figs. 1 and 2, the Poincare sections of orbits for a small satellite of the asteroid
243 Ida are represented for C' = 2.2. The variables 10 arctan (z/10), s) are
used (Chauvineau et. al, 1993) instead of (x, s) which allow us to consider
the orbits passing at large distances from the asteroid. Because of symmetries
of the problem the plots are limited to s > 0. The mapping is constructed by
numerical integration of the orbits with initial conditions (x # 0, y = 0, & =
0, ¥ = vV—C + w222 4 2V). The regions with 2 > 0 (x < 0) correspond to orbits
which are direct (retrograde) in the rotating frame fixed in the asteroid body.
In the triaxial case (Fig. 2) the orbits with initial coordinates (z, s = 0), where
x > 6 times the mean asteroid radii, are chaotic.

As the choice of values for C' and x determines the initial conditions com-
pletely, the global dynamics of the orbits can be analyzed in the Cz plane.
Figs. 3, 4 display such diagrams for the Keplerian and triaxial cases of motion
close to the asteroid 243 Ida. The zones of initial conditions which lead to
chaotic motion are diagonally dashed. The wider chaotic zone is associated with
orbits which are retrograde in both the rotating (as < 0) and rest frames. The
initial conditions (C, x) were assigned to the chaotic zone if the corresponding
orbit was not regular and if it did not lead to collision with the asteroid during
10 years. The left part of the chaotic zone comes into contact with the zone of
collisions (horizontally dashed) and its right part touches the zone of escaping
orbits (vertically dashed). There is a wide zone of regular orbits (not dashed,
with the curve marked “3” of almost circular orbits within it) inside the chaotic
zone. It is seen (Fig. 4) that the chaotic zone does not allow the almost circular
orbits corresponding to the curve “3” (retrograde in both frames) to pass closer
than nearly 3 asteroid radii from the asteroid center, while in the Keplerian case
the circular orbits corresponding to the curve “3” (Fig. 3) and regular orbits
about them can exist at very short distances.
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Figure 1.  The Poincare’s sections at C' = 2.2 for the motion about the
asteroid 243 Ida approximated by a sphere. The dark point is the section
of circular orbit with initial conditions (x = —4.89603, s = 0); the sections
of resonant orbits are marked with three open squares (resonance 6/1) and
three open circles (resonance 5/1). The unit of length is mean radius of the

asteroid (v/abc).
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Figure 2. The Poincare’s sections at C' = 2.2 for the motion about the
asteroid 243 Ida approximated by a triaxial ellipsoid. The initial condi-
tions for the Keplerian resonant orbits (Fig. 1) generate chaotic motion.
The dark point is the section of almost circular orbit with initial conditions
(x = —4.78515, s = 0) obtained by numerical continuation of the Keplerian
circular orbit (Fig. 1) with initial conditions (z = —4.89603, s = 0).
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Figure 3. Dynamical zones about the asteroid 243 Ida approximated by
a sphere. The white area is associated with regular orbits. The wvertically
dashed regions correspond to escape orbits. The dark bar corresponds to
initial conditions lying inside the asteroid: x < a for the triaxial problem
(Fig. 4) and = < V/abc for the Keplerian problem (Fig. 3). The dark regions
lying above and below the dark bar are the zones of imaginary velocity. The
horizontally dashed area corresponds to orbits which lead to collision with the
surface of the asteroid (spherical or ellipsoidal). The black curves marked 1,
2, 3 correspond to circular orbits in the Keplerian problem (Fig. 3) or almost
circular orbits in the triaxial problem (Fig. 4). The dark curve lying inside the
collisional area corresponds to the boundary between the orbits (retrograde
in the rotating frame) that are either direct or retrograde in the fixed frame.
Diagonally dashed regions correspond to chaotic orbits.
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Figure 4.  Dynamical zones about the asteroid 243 Ida approximated by
a triaxial ellipsoid. Regions are marked as in figure 3.



