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ABSTRACT 

The plane wave expansion method was implemented in modelling and simulating the band 

structures of three dimensional photonic crystals with FCC lattice formed from air spheres drilled in 

GaAs and diamond lattice formed by GaAs spheres drilled in air. Both these structures lead to a 

complete band gap not allowing EM waves with the frequency of the band gap to propagate through 

the crystal in any direction. Diamond lattice photonic crystal has a complete band gap for a wider 

range of filling fraction than FCC photonic crystal and also it has a wider band gap width.  
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1.  INTRODUCTION 

 

The three dimensional photonic crystals, an ideal three-dimensionally periodic structure 

(Figure 1) with a full band-gap in three-dimensions can be used in novel applications like 

band gaps, resonant cavities, wave guides etc. Unlike two dimensional photonic crystals, three 

dimensional photonic crystals have the freedom of controlling light in all along the three axes. 

But the band structures of these crystals are very complex and hard to predict. Manufacturing 

three dimensional photonic crystals is not easy and scientists are carrying giant researches to 

discover the means to facilitate the manufacturing process.  
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These photonic crystals are characterized by a periodic modulation of their dielectric 

constant in three spatial dimensions on a length-scale in the order of the wavelength of light 

they are intended to manipulate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 3D Photonic Crystals. 

 

 

This periodic variation of dielectric constant is achieved using a structure formed from 

two materials, typically a dielectric and air. The waves scatter from the periodic structure 

much like x-rays scattering from atoms within a crystalline solid. The periodic nature of the 

crystal leads to coherent scattering for certain directions as determined by the particular 

crystal symmetry, with an intensity that is dependent upon the constituent material properties 

[1]. The dispersion relation or band structure is used to analyze the properties of photonic 

crystals and determine whether photonic band gaps or pseudo photonic band gaps in a three 

dimensional photonic crystal that exist for some directions but not all, are present. 

In 1987 Yablonovitch [2] and John [3] predicted the existence of the photonic band gap 

as well as the potential for inhibiting spontaneous emission and localizing light within defects 

in a periodic lattice of appropriate dimensions.  

The first complete photonic band gap was achieved by Yablonovitch et al. in 1991 for  

the microwave regime [4]. By means of iterative optimization of approximate initial solutions 

through a parallel computing approach via block matrix diagonalization, Johnson and 

Joannopoulos [5,6] reduced the computational difficulty. As theoretical understanding and 

computational methods to calculate photonic band structure improved, researchers were 

guided to new structures, resulting in the demonstration of a complete photonic band gap in 

the NIR wavelengths.  

      In photonic band gap materials, the formation of photonic band gap is a result of 

macroscopic Bragg scattering and the microscopic Mie scattering. Scattering related to 

periodicity or the geometry of the lattice is Bragg scattering while the shape of individual 

scatterers are related to Mie scattering. The main parameter that affects the strength of these 

two scattering mechanisms is the refractive index contrast.  
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The effect is complex and hence there exist no simple correlation between the band gap 

and the parameters of photonic band gap structures. As a consequence, numerical calculations 

play a vital role in predicting the properties of light in these structures.  

The periodic nature of photonic crystals makes plane wave expansion method well 

suited for calculations [7]. There are a number of computational implementations of this 

method for arbitrary structures [5,6].  

The plane wave expansion method was adopted by Skoda [8] to compute the diffraction of 

two dimensional periodic band gap materials with finite thickness. Using this method Ho et 

al. [9] predicted the existence of complete band gap for a diamond lattice of spheres and 

established its dependence on dielectric contrast and filling fraction. The finite-difference 

time-domain method of computational analysis for electromagnetic systems allows for 

calculation of the time-evolution of electric fields in a given medium [10].  

The calculations are performed by dividing the computation cell into discrete points and 

solving Maxwell’s equations at each point in discrete time steps. This is, of course, an 

approximation of the real system which is improved as the discrete units of space and time are 

made smaller until a highly accurate representation of the true electromagnetic response may 

be calculated. 

The plane wave expansion method applicable to any type of non-dispersive dielectric 

functions applied by us to two dimensional photonic crystals [11] was extended to three 

dimensions and used as the numerical technique in the present work in modelling and 

simulating the band structures of photonic crystals with FCC lattice formed from air spheres 

drilled in GaAs and diamond lattice formed by GaAs spheres drilled in air.  

For the periodic dielectric function, the magnetic field vector was expanded using Bloch 

theorem leading to eigenvalue equation in matrix form. Standard eigenvalue equation was 

solved for the two lattice geometries. The effects of the parameters on the band gaps were 

studied.  

 

 

2.  PLANE WAVE EXPANSION  
 

The propagation of light in a photonic crystal governed by Maxwell equations leads to 

the master equation for a periodic dielectric structure in terms of electric field E and magnetic 

field strength H with angular frequency : 

 
2
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  H H    (1) 

 

Here photonic crystal was considered to be a macroscopic, homogeneous, isotropic 

dielectric material with no placed charges or current densities with real dielectric constant 

( ) r and no dispersion.  

One of the most commonly used techniques for calculation of semiconductor band 

structure is the plane wave expansion method. A set of plane waves may be used to expand 

any function in a Fourier series given a periodic nature of the function.  

Because of the periodic nature of photonic crystals, the magnetic field is expanded into 

a sum of plane waves in reciprocal space giving an arbitrary spatial frequency call reciprocal 
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lattice vector i i ihG b  in terms of basis vectors in the reciprocal space ib and set of are 

integers ih ,  

( ).
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where ê are two orthogonal unit vectors perpendicular to 
i

k + G . The dielectric function of the 

structure is similarly expanded in terms of reciprocal lattice vectors. 
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The Fourier component ( ') G G is calculated by integrating over the area A of one 

lattice unit cell. Periodic dielectric function in real space can be simplified. Fourier 

transformation of the dielectric function can be further simplified to,  
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where  a and  b refer to the dielectric constants of the localized medium and background 

respectively and f is the filling factor, defined as the fraction of area occupied by the localized 

medium in one unit cell. The factor ( )S G  relying on the geometry of the localized medium 

and the lattice structures is given by,  
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The structure factor for a three dimensional sphere with radius R is given by 

 

3

sin( ) cos( )
  ( ) 3

( )

GR GR GR
S G f

GR

 
  

 
  (6) 

 

Substituting equations 2 and 3 in 1: 
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Unlike in one dimensional and two dimensional simplifications, master eigenvalue 

equation does not exist in three dimensional case. Hence the two unit vectors 
1,
ˆ
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which are perpendicular to k + G vector, had to be calculated. First, grid points in space were 

specified in a three dimensional grid.  
Number of grid points or plane waves used was (2n+1)

3
, where n is the number of grid 

points in the direction of each basis lattice vectors. Hence the complexity and dimensions of 

dielectric function would be so large compared to two dimensional photonic crystals. In this 

study, only the dielectric spheres were considered as the localized medium.  

The analytical expression for calculating Fourier transform of a sphere was used in both 

cases. After specifying the high symmetrical points in a three dimensional geometry, all the 

coefficients in matrix M were formed by calculating two unit vectors. All the eigenvalues for 

the matrix were calculated for each k vector in the first irreducible Brillouin zone.  

 

 

3.  FCC CRYSTAL LATTICE  

 

The face-centered cubic lattice (FCC) and the Brillouin zone, which is the Wigner–Seitz 

primitive cell in the reciprocal lattice is shown in Figure 2.  

 

…  

 

 

 

Figure 2. FCC lattice (left) and the first Brillouin zone (right). 

 

 

There is one host atom at each corner and one host atom in each face in the unit cell. 

Basis lattice vectors are 
1

(0,1,1) 2,aa  
2 (1,0,1) 2aa  and 

3 (1,1,0) 2aa  with atom positions 

(0,0,0)a .  

Basis reciprocal lattice vectors are  1
2 /1,1,1 a b ,  2

2 /1, 1,1 a b and 

 3
2 /1,1, 1 a b . For a photonic crystal with a FCC lattice formed by air holes drilled in 
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GaAs, with a dielectric constant 13   , the band diagram with modified frequency / 2a c   

verses wave vector is shown in Figure 3.  

 

 
 

Figure 3. The band structure of three dimensional FCC lattice with air holes drilled in a 

GaAs medium with b =13 

 

 

The filling fraction considered is 0.74 of the closed packed filling fraction of FCC 

lattice. The complete band gap, highlighted in yellow occurs between the eighth band and 

ninth band. Band gap width is about 0.0384  2a c   and gap to mid gap ratio is 5%. The 

band gap occurred in high frequency region. The structure can be used in applications at 

telecommunication wavelength. For instance, in order to create a structure operating around 

1.55μm  , from the mid-gap frequency 0.7682  2a c   lattice constant a is 1.1907 m 

and the radius of the holes must be 0.4210 m.  

The band structure of the photonic crystal not only describes the presence of photonic 

band gap, it also lends insight into light propagation within the crystal, specifically the group 

velocity of light as it travels through the photonic crystal. Flat bands seen in the high energy 

regions of the band structure and near the edges of the Brillouin Zone at the high symmetry 

points shown in the figure are indicative of low group velocities.  

The band structure relates the frequency and wave vector and therefore to the group 

velocity of light.  
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This is particularly useful if materials that rely on light-matter interaction, such as 

nonlinear optical materials are incorporated into the photonic crystal as their properties should 

be enhanced due to the low group velocity.  

The scattering strength in the crystal may be assessed qualitatively by the refractive 

index contrast between the two materials, specifically the ratio of their refractive indices. The 

existence and size of a photonic band gap in a photonic crystal depend on the symmetry of the 

crystal and the magnitude of the difference in refractive index between the materials in the 

system. Therefore for each crystal structure there is a minimum refractive index contrast, 

which opens a photonic band gap. In order to increase the size of the gap, the difference in 

refractive index should be maximized.  

The variation of gap width to mid gap ratio of the FCC lattice with dielectric contrast 

and filling fraction are presented in Figure 4.  

The gap width to mid gap ratio was increased with dielectric constant b .  

The figure 3(a) also reveals the minimum dielectric constant b or the minimum 

dielectric contrast to open a complete band gap is 9. Hence the background materials having a 

dielectric constant below 9 will not have a complete band gap. The variation of gap width to 

mid gap ratio with filling fraction shows that the closed packed filling fraction 0.74, yields the 

largest gap. The gap width decreases when the filling fraction reduces. Also a minimum 

filling fraction of 0.6 and the minimum filling fraction needed to have a complete band gap is 

0.6. 
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3(b) 

Figure 4. The variation of gap to mid gap ratio of 3D FCC photonic crystal with air spheres  in a 

dielectric medium with b =13. (a) variation with b    (b) Variation with filling fraction 

 

4.  DIAMOND CRYSTAL LATTICE  

 

The space lattice of a diamond is a face–centered cubic with two spherical atoms in the 

unit cell as shown in Figure 5.  

Assuming the length of the simple cubic side is a, the primitive lattice vectors are 

 1
0,1,1 2aa ,  2

1,0,1 2aa  and  3
1,1,0 2aa , with atom positions  0,0,0 a  and 

 1/ 4,1/ 4,1/ 4 a .  

Basis reciprocal lattice vectors are  2 /1,1,1 a b ,  2 2 /1, 1,1 a b and 

 3 2 /1,1, 1 a b .  

The Brillouin zone, which is the Wigner–Seitz primitive cell in the reciprocal lattice is 

also shown in the Figure 5 (right).  

Assuming the radius of the sphere is R, the Fourier coefficient at the reciprocal lattice 

grid was expressed using the shift property of Fourier transform and the analytical expression 

of a sphere Assuming the radius of the sphere is R, the Fourier coefficient at the reciprocal 

lattice grid was expressed using the shift property of Fourier transform and the analytical 

expression of a sphere is 
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where r0 is equal to (1/ 4,1/ 4,1/ 4) . The filling fraction f  is  
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Figure 5. Diamond lattice (left) and the first Brillouin zone (right). 

 

 

The band structure for 3D diamond lattice with GaAs dielectric spheres with  = 13 

drilled in air is shown in Figure 6.  

This structure has a large complete band gap 0.433 0.503  2a c   between second 

and third bands. Variation of gap to mid gap frequency with dielectric contrast and filling 

factor is presented in Figure 7. As expected, the gap width increased with dielectric contrast 

and also with filling factor.  

The minimum dielectric contrast needed to open a complete band gap was around 

4.1  . The maximum band gap occurred for close packed condition of Diamond lattice, 

when the filling fraction was equal to 0.34.  
The main difference between this structure and FCC lattice was; this structure has a 

complete band gap in a wider range of filling fractions.  

 
 

 

 

 

 



World Scienti f ic News 12 (2015) 57-68 
 
 

-66- 

 
 

Figure 6. The band structure of three dimensional diamond lattice formed from GaAs spheres 

drilled in air a =13. 
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6(b) 

 

Figure 7. The variation of gap to mid gap ratio of 3D diamond photonic crystal formed from 

GaAs spheres  in air a =13. (a) variation with a    (b) Variation with filling fraction. 
 

 

5.  CONCLUSIONS 

 

The band diagram for three dimensional face centred cubic photonic lattice formed from 

air spheres drilled in GaAs dielectric medium gave a complete band gap of 0.0384  2a c   

with a gap to mid gap ratio 5%. This structure with a lattice constant 1.1907 m formed from 

air spheres of radius 0.4210 m drilled in GaAs can be used to operate at telecommunication 

wavelength 1.55μm.   The minimum dielectric contrast of 9 and minimum filling fraction 

of 0.6 are needed to open a complete band gap. For the diamond photonic lattice formed from 

GaAs dielectric spheres drilled in air gave a much larger band gap of 0.07  2a c  . Also a  

complete band gap could be obtained for wider range of filling fractions. The minimum 

dielectric contrast of 4.1 and minimum filling fraction of 0.18 were needed to open a complete 

band gap. For both lattices the maximum band gap occurred for close packed condition. 
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