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Abstract

The paper initiates the study of long term interactions where players’ bounded rationality varies over time. Time dependent
bounded rationality, for player i, is reflected in part in the number ψi(t) of distinct strategies available to him in the first t-stages.

We examine how the growth rate of ψi(t) affects equilibrium outcomes of repeated games. An upper bound on the individually
rational payoff is derived for a class of two-player repeated games, and the derived bound is shown to be tight.

As a special case we study the repeated games with nonstationary bounded recall and show that, a player can guarantee the
minimax payoff of the stage game, even against a player with full recall, by remembering a vanishing fraction of the past. A version
of the folk theorem is provided for this class of games.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Many social (economic, political, etc.) interactions have been modeled as formal games. The idea that players in a
game are rational is reflected in several aspects of the model, as well as in the analysis performed (optimization, equi-
librium). When a game theorist employs a particular solution concept, there is an implicit understanding that players
optimize or find a best response to others’ actions from their feasible set of strategies. Aside from the assumption that
the players can perform computations necessary for such tasks, it is assumed that players can carry out any strategy in
the specified strategy set should they choose to play it. While this latter assumption may seem innocuous in a model
where few strategies are available to each player,2 e.g., prisoner’s dilemma and the battle of the sexes, it may be crit-
icized as being unrealistically rational in more complex models where the theoretical definition of strategy leads to a
strategy set that contains a large number of choices, many of which are impractically complex.
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A case in point is models of dynamic interaction including repeated games in their most basic formulation. In
repeated games, a strategy is a set of history-contingent plans of action. Even when the underlying stage game contains
only a few possible actions, the number and complexity of histories quickly grows as time passes. Consequently, the
set of strategies contains a large number of elements, and many of them require the capability to process arbitrarily
complex history for their implementation.

The idea that the assumption of fully, or unboundedly, rational players is unrealistic is not new (Simon, 1955, 1972;
Aumann, 1981, 1997). There have been many attempts to model feasible (implementable) sets of strategies that reflect
some aspects of the bounded rationality of players. Finite automata, bounded recall, and Turing machines are a few of
the approaches taken. These models are useful because they provide us with quantitative measures of complexity of
strategies, e.g., the number of states of automata and the length of recall.3

Existing literature on bounded complexity in repeated games considers models where the complexity of strategies
is fixed during the course of a long interaction. In the case of finite automata and bounded recall (e.g., Neyman, 1985;
Ben-Porath, 1993; Lehrer, 1988), a single integer—the number of states or the length of recall—fully describes the
set of feasible strategies. As a consequence, the set of feasible strategies, e.g., those implemented by finite automata
of a fixed size, is finite. Moreover, the number of distinct feasible strategies in any subgame as well as the number
of distinct strategies in the first T stages of the interaction is bounded. While this literature has supplied significant
insights and formal answers to questions such as “when is having a higher complexity advantageous?” (op. cit.) or
“when does bounded complexity facilitate cooperation?” (e.g., Neyman, 1985, 1997), we argue below that it would
be fruitful to extend the analysis to include a salient feature and an implication of bounded rationality in dynamic
decision-making that are not captured by the existing approaches.

An important feature of an economic decision-maker (consumer, firm, government, trade and labor union, etc.) is
described by its set of feasible decision rules. These rules, strategies or policies, are neither unimaginably complex
or mindlessly simple. Nor is the set of feasible decision rules fixed over time. Technological progresses inevitably
influence the sophistication and efficiency of handling information necessary to determine the behavior of these agents.
Such changes bring about the transformation of the set of possible decision rules over time.

As argued in the beginning, complexity of repeated games as a model of interactive decision-making stems, in part,
from the wealth of strategies from which the theory allows players to choose. The number of theoretically possible
strategies is double-exponential in the number of repetitions. Some, in fact most,4 strategies are too complicated to
admit a short and practically implementable description: a short description of a strategy requires an efficient encoding
of histories, but some histories may have no shorter descriptions than simply writing them out in their entirety. These
considerations motivate research on bounded rationality in long-term interaction in general, and on various measures
of complexity of implementing strategies and their effects on equilibrium outcomes in particular.

Our aim in this paper is to take a first step toward formalizing the idea of temporal change in the degree of bounded
rationality and examining its consequences in long-term interactions. Thus, at the conceptual level, our motivation
may be paraphrased as follows. Players with bounded rationality are limited by the set of feasible strategies, but
computational resources available to the players may expand or contract over time. As a consequence, the limitation
would vary over time and, in particular, there may not be a finite upper bound on complexity of strategies for the entire
horizon of the game. Such considerations of the more general aspects of bounded rationality cannot be captured by
a model with a finite set of feasible strategies. Thus we are led to considering a feasible set consisting of infinitely
many strategies. The question that arises then is : “What are the characteristics of an infinite strategy set that (1) may
be derived from an explicit description (e.g., by means of a complexity measure) of a feasible strategy set and (2) can
be used to provide bounds on equilibrium outcomes?”

A common feature of feasible strategy sets described by means of any complexity measure is that it contains fewer
elements than the fully rational case. As we take aim at a temporal aspect of an infinite strategy set, we shall consider
how the number of strategies induced in the first t stages of the game grows. Specifically, we associate to each subset
Ψi of the full (theoretically possible) strategy set a function ψi from the set of positive integers to itself. The value
ψi(t) represents the number of strategies in Ψi that are distinguishable in the first t stages. The feasible strategy set Ψi

3 Variants of complexity measure associated with a Turing machine include the number of bits needed to implement a strategy by Turing machines
with a bounded amount of tape (Stearns, 1997), and algorithmic or Kolmogorov complexity (Lacôte, 2005; Neyman, 2003).

4 For instance, if a feasible set of strategies contains K distinct strategies, then one needs close to logK bits (for sufficiently large K) to encode
most of them.
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may contain infinitely many strategies, but it can differ from the fully rational case in the way ψi grows reflecting a
broad implication of bounded rationality that may vary over time.5 To be more precise, for each t , let Ψi(t) be the
projection of Ψi to the first t stages of the game. Then ψi(t) is the number of equivalence classes of strategies in Ψi(t).
If Ψi contains all theoretically possible strategies, then, as mentioned in the beginning, ψi(t) is double-exponential
in t . Thus it is of interest to study how outcomes of repeated games are affected by various conditions on the rate of
growth of ψi(t).

Since no structure is imposed on the strategies that belong to Ψi , it appears to be difficult, if not impossible, to derive
results purely on the basis of how ψi(t) grows. For this reason, and as a first undertaking in this line of research, we
will study a simple case of two-person repeated games in which player 1 with a feasible set Ψ1 plays against a fully
rational player 2. The payoff in the repeated games is the long-run average of the stage payoffs. In this setup we will
show that there is a continuous nondecreasing function U : R+ → R such that player 1 cannot guarantee more than
(cavU)(γ ), where cavU denotes the concavification of U , whenever ψ1(t) grows at most as fast as 2γ t . Moreover,
this bound is tight. The function U will be defined using the concept of entropy and it will be shown that U(0) is the
maximin value of the stage game in pure actions and that for sufficiently large γ , U(γ ) is the usual maximin value of
the stage game in mixed actions.

As a concrete case of an infinite feasible strategy set arising from a complexity consideration, we will study the
repeated game with nonstationary bounded recall strategies, which is a model of a player whose depth of memory of
the past varies over time and hence, it is an extension of classical stationary bounded recall strategies. As a direct con-
sequence of a theorem mentioned above, we will show that a player with nonstationary bounded recall can guarantee
no more than the maximin payoff in pure actions of the stage game if the size of his recall is less than K0 log t at stage t

for some constant K0 > 0. In addition, we will show that there is a constant K1 > K0 such that if, for all sufficiently
large t , the recall at stage t is at least K1 log t , the minimax payoff of the stage game can be guaranteed. Hence, in
order to secure the minimax payoff of the stage game against a player with full recall, one needs to remember a long
enough history. However, the length of that history is only a negligible fraction of the entire history.

In order to avoid possible confusion, we point out that, as is standard in the literature, we consider mixed strategies
so long as their support lies in the set of feasible pure strategies. A possible interpretation of mixed strategies in games
in general is that they are distributions of pure strategies in a population of potential players. In the context of games
we analyze in this paper, a fully rational player faces one of the players randomly drawn from this population. Thus a
mixed strategy of her opponent reflects the uncertainty that she faces as to which feasible pure strategy is employed
by this particular opponent.

In Section 2 we will set the notation used throughout the paper and formalize the idea of the growth of strategy sets.
Some examples, including nonstationary bounded recall strategies, will also be discussed in this section. Section 3
contains some results on the values of two-person repeated games where a player with bounded rationality plays
against a fully rational player. As mentioned above these results are based purely on the rate of growth of strategy sets
regardless of which strategies they contain. In Section 4, nonstationary bounded recall strategies are examined.

2. Growth of strategy sets

Let G = (Ai, gi)i∈I be a finite game in strategic form. The set of player i’s mixed actions is denoted by Δ(Ai).
Henceforth we refer to G as a stage game.

In the repeated version6 of G, written G∗, a pure strategy of a player is a rule that assigns an action to each history.
A history by definition is a finite string of action profiles (including the null string which is denoted by ε). Thus
the set of all histories is A∗ = ⋃∞

t=0 At where A = �i∈IAi and A0 = {ε}. A pure strategy of player i is a mapping
σi :A∗ → Ai . Let Σi be the set of all pure strategies of player i. The set of mixed strategies of player i is denoted by
Δ(Σi).

We say that two pure strategies of player i, σi and σ ′
i , are equivalent up to the t th stage if, for every profile of

other players’ strategies σ−i , the sequence of action profiles induced by (σi, σ−i ) and (σ ′
i , σ−i ) are identical up to,

5 In this paper, the feasible set Ψi , and hence the growth of the function ψi , is exogenously given. We recognize the importance of studying
models where players may invest in order to expand their strategic possibilities, thereby endogenizing the growth rate of ψi . This certainly deserves
further research. The work reported here provides limits to what can and cannot be achieved by such a choice.

6 In this paper we consider the most basic model of repeated games, i.e., ones with complete information and perfect monitoring.
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and including, stage t . If two strategies are equivalent up to the t th stage for every t , then we simply say they are
equivalent. Equivalence between two mixed strategies is defined similarly by comparing the induced distributions
over sequence of action profiles.

Let us denote by mi the number of actions available to player i, i.e., mi = |Ai |, and let m = ∏
i∈I mi = |A|. We note

first that the number of strategies available to player i in the first t stages of a repeated game is7 mm0

i × · · · × mmt−1

i =
m

mt −1
m−1

i . This number is double exponential in t .
Suppose that player i has access to a set of strategies, Ψi ⊂ Σi . This would be the case, for example, when there

is limitations on some aspects of complexity of his strategies. For each positive integer t , let Ψi(t) be formed by
identifying strategies in Ψi that are equivalent up to the t th stage. If two strategies in Ψi are equivalent, then they are
never distinguished in Ψi(t) for any t . So the reader may consider Ψi to be the set of equivalence classes of strategies.
Let ψi(t) be the number of elements in Ψi(t). Any consideration on strategic complexity gives rise to some strategy
set Ψi and thus limitation on the rate of growth of ψi(t). For example, if player i’s feasible strategies are described by
finite automata with a fixed number of states, then Ψi is a finite set and Ψi(t) = Ψi for all sufficiently large8 t . In this
case ψi(t) = O(1). Below we illustrate some examples of feasible strategy sets with various rate of growth of ψi(t).

Example 1. In this example we provide a framework for nonstationary bounded recall strategies that we will examine
in detail in Section 4. Recall that a stationary bounded recall strategy of size k is a strategy that depends only on at
most the last k-terms of the history. More precisely, for each pure strategy σi ∈ Σi , define a strategy σi � k :A∗ → Ai

by

(σi � k)(a1, . . . , at ) =
{

σi(a1, . . . , at ) if t � k,

σi(at−k+1, . . . , at ) if t > k.

The set of stationary bounded recall strategies of size k is denoted by B̄i (k), i.e.

B̄i (k) = {σi � k: σi ∈ Σi}.
It is clear that the number of distinct strategies, i.e. the number of equivalence classes, in B̄i (k) is at most the number

of distinct functions from
⋃k

	=0 A	 to Ai which is of the order m
O(mk)
i .

Now consider a function κ : N → N ∪ {0} with κ(t) � t − 1. For each t ∈ N, the value κ(t) represents the length of
recall at stage t . A κ-recall strategy of player i is a pure strategy that plays like a stationary bounded recall strategy of
size k whenever κ(t) = k regardless of the time index t . Formally, for each σi ∈ Σi define a strategy σi ∧ κ :A∗ → Ai

by

(σi ∧ κ)(a1, . . . , at ) = σi(at−κ(t)+1, . . . , at ).

Observe that in this definition player i must take the same action at stage t and t ′ where κ(t) = κ(t ′) = k so long as
he observes the same sequence of action profiles in the last k stages. Thus, the set of κ-recall strategies is

Bi (κ) = {σi ∧ κ: σi ∈ Σi}.
Set Ψi = Bi (κ). Then from its definition it is clear that there is a canonical embedding of Ψi into �k∈κ(N)B̄(k) as well
as a canonical embedding of Ψi(t) into �k∈κ({1,...,t})B̄(k) for each t . Hence

ψi(t) �
∏

k∈κ({1,...,t})
mmk

i � mcmκ̄(t)

i

for some constant c (in fact, c = m/(m − 1)) where κ̄(t) = maxs�t κ(s).

7 The number of equivalence classes of strategies (reduced strategies) available to player i in the first t stages is m
(mt−i

−1)/(m−i−1)

i
where

m−i = ∏
j 
=i mj .

8 In fact, this holds for all t � k2 and 2ck logk � |Ψi | � 2dk log k where k is the bound on the number of states of automata and c and d are positive
constants.
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Example 2. A strategy of player i is said to be oblivious (O’Connell and Stearns, 1999) if it depends only on the history
of his own actions. That is, σi :A∗ → Ai is oblivious if σi((ai1, a−i1), . . . , (ait , a−it )) is independent of a−i1, . . . , a−it .
The set of oblivious strategies of player i is denoted by Oi . Every oblivious strategy induces a sequences of player i’s
actions. Also, any sequence of player i’s actions can be induced by an oblivious strategy. So the set of equivalence
classes of strategies in Oi can be identified with the set of sequences of player i’s actions, A∞

i . Hence if Ψi = Oi ,
then Ψi(t) is identified with At

i and so ψi(t) = mt
i . For each sequence a = (ai1, ai2, . . .) ∈ A∞

i , we denote by σi〈a〉
the oblivious strategy that takes action at at stage t regardless of the past history.

In all the examples that follow, consider a two person game in which each player has two actions, A1 = A2 = {0,1}.
The strategies described in these examples are kinds of “trigger strategy” where a certain action is triggered by specific
history or set of histories.

Example 3. For each integer k � 0, define a strategy σ
(k)
1 as follows. For each history h, let N(1|h) be the number of

times player 2 chose action 1 in h.

σ
(k)
1 (h) =

{
1 if N(1|h) � k,

0 otherwise.

Let Ψ1 = {σ (0)
1 , σ

(1)
1 , . . .}. Then Ψ1(t) = {σ (0)

1 , . . . , σ
(t−1)
1 } and ψi(t) = t .

Example 4. A prefix of a history h = (h1, . . . , ht ) is any of its initial segment h′ = (h1, . . . , hs), s � t . A set of
histories L ⊂ ⋃∞

t=1 Ht is said to be prefix-free if no element of L is a prefix of another. For each positive integer t , let
L(t) = L ∩ (H1 ∪ · · · ∪ Ht−1); L(t) is prefix-free and L(t) ⊂ L(t + 1). Define a strategy σL

1 as follows.

σL
1 (h1, . . . , ht ) =

{
1 if (h1, . . . , hs) ∈ L for some s � t,

0 otherwise.

This is a generalization of the trigger strategy: σL
1 takes action 1 forever as soon as a history in L occurs. Let L be

the class of all prefix-free sets of histories. Take a subset M of L and define Ψ1 to be the set of player 1’s strategies
σM

1 with M ∈ M. Let us examine Ψ1(t) and ψ1(t).
It is easy to verify that, for any L and M in L, σL

1 and σM
1 are equivalent up to the t th stage whenever L(t) = M(t).

Then we have9 ψ1(t) � |M(t)| where M(t) = {M(t): M ∈ M}. Examples of M can be constructed so that the
corresponding function ψ1(t) is, e.g., O(tp) for a given p � 1, or O(2αt ) for 0 < α < 1.

3. Games against a fully rational player

We now derive a few consequences of bounded rationality implied by a growth rate of ψi(t) = |Ψi(t)|. We empha-
size that the nature of the feasible strategy set Ψi is completely arbitrary. It may include infinitely many strategies and
also the strategies that cannot be represented by any finite state machines or finitely bounded recall.

Various forms of the folk theorem assert that any feasible payoff vector that gives each player at least his individ-
ually rational (I.R.) payoff can be an equilibrium outcome of the repeated game. Thus two repeated games with the
same set of feasible payoffs may differ in the set of equilibrium payoff as a result of the difference in the I.R. payoffs.
In the repeated game with perfect monitoring played by fully rational players, e.g., Aumann and Shapley (1994), the
I.R. payoff of the repeated game coincides with that of the stage game. This is because, for every strategy profile of
the other players, a player has a strategy that yields him at least his I.R. payoff of the stage game in the long run. In
particular, the minimax theorem implies that, in a two-person game, each player has a repeated game strategy that
yields at least the stage game I.R. payoff in the long run regardless of the other player’s strategy. However, when the
set of feasible strategies of a player differs from the fully rational case, the I.R. payoff of the repeated game may
be different from that of the stage game, and, accordingly, the set of equilibrium payoffs may differ from that of the
standard folk theorem.

9 Some histories are not compatible with the strategy, hence the inequality.
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In models of repeated games where the sets of feasible strategies are specified via bounds on some complexity
measure, and therefore they differ from the fully rational case, it is essential to know the relationship between the
complexity bounds and individually rational payoffs before proceeding to the question of equilibria. In fact, once
individually rational payoffs are characterized, and strategies that achieve such payoffs are found, versions of the folk
theorem follow in a relatively straight forward manner (Lehrer, 1988; Ben-Porath, 1993). The reader will see that this
is the case in the next section on nonstationary bounded recall.

Thus, our focus in this, and the next, section will be what payoff a player with bounded rationality, implied by a
specified rate of growth of ψi , can guarantee or defend in a repeated game. As we mentioned in the introduction, we
study a benchmark case for which we can obtain concrete results in this abstract setting: two-person repeated games
where a player with bounded rationality plays against a fully rational player. We point out that our results apply to any
measure of strategic complexity that gives rise to a feasible strategy set satisfying our condition on the rate of growth
ψ1(t).

We shall follow the following notational rule. Actions of player 1 and 2 in the stage game are denoted by a

and b, respectively, and their strategies in the repeated game are denoted by σ and τ , respectively, with sub- or
superscripts and other affixes added as necessary. The payoff function of player 1, g1, will be denoted simply by g.
Let w be player 1’s maximin payoff in the stage game where max and min are taken over the pure actions: w =
maxa∈A1 minb∈A2 g(a, b). This is the worst payoff that player 1 can guarantee himself for sure in the stage game.
Also, let v be the minimax payoff to player 1: v = minb∈Δ(A2) maxa∈A1 g(a, b) = maxa∈Δ(A1) minb∈A2 g(a, b). For
a pair of repeated game strategies (σ, τ ) ∈ Σ1 × Σ2, we write gT (σ, τ ) for player 1’s average payoff in the first T

stages.

3.1. Slowly growing strategy set

Recall that Ψ1(t) is formed by identifying strategies in Ψ1 that are equivalent up to the t th stage and ψ1(t) = |Ψ1(t)|.
Our first theorem states that if the growth rate of ψ1(t) is subexponential in t , then player 1 cannot guarantee more
than the maximin payoff in pure actions, w, in the long run. We first present a lemma10 which provides a bound
on player 1’s minimax payoff in the repeated game for an arbitrary feasible set Ψ1. Set ‖g‖ = 2 max{|g(a, b)|: a ∈
A1, b ∈ A2}.

Lemma 1. For every Ψ1 ⊂ Σ1 and every nondecreasing11 sequence of positive integers {tk}∞k=0 with t0 = 0, there
exists τ ∗ ∈ Σ2 such that

gtk (σ, τ ∗) � w + ‖g‖ 1

tk

k∑
	=1

log2 ψ1(t	)

for all σ ∈ Ψ1 and k = 1,2, . . . .

Proof. We construct the strategy τ ∗ ∈ Σ2 as follows. Fix a stage t and let 	 be the unique index with t	−1 < t � t	. If a
history h = (h1, . . . , ht−1) = ((a1, b1), . . . , (at−1, bt−1)) is observed, let Ψ1(t	, h) be the set of player 1’s strategies in
Ψ1(t	) that are compatible with h, i.e., σ ∈ Ψ1(t	, h) if, and only if, σ ∈ Ψ (t	), σ(ε) = a1, and σ(h1, . . . , hs−1) = as

for all s = 2, . . . , t − 1. For each a ∈ A1, let Ψ1(t	, h, a) be the set of strategies in Ψ1(t	, h) that takes the action a

after the history h, i.e., Ψ1(t	, h, a) = {σ ∈ Ψ1(t	, h): σ(h) = a}. Choose a(h) ∈ A1 such that |Ψ1(t	, h, a(h))| �
|Ψ1(t	, h, a)| for all a ∈ A1. The action a(h) may be considered the most likely action taken by player 1 after the
history h. Now define τ ∗ by

τ ∗(h) ∈ argmin
b∈A2

g
(
a(h), b

)
.

10 Lemma 1 and Theorem 1 are slight generalizations of Theorem 3.1 (and the remarks following it) in (Neyman and Okada, 2000b).
11 In this paper, we use the terms “nondecreasing” and “increasing” (resp. “nonincreasing” and “decreasing”), rather than “increasing” and “strictly
increasing” (resp. “decreasing” and “strictly decreasing”).
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Clearly, {Ψ1(t	, h, a) |a ∈ A1} forms a partition of Ψ1(t	). From the definition of a(h) it follows that |Ψ1(t	, h, a)| �
1
2 |Ψ1(t	, h)| for all a 
= a(h). Thus, if h′ = hht = (h1, . . . , ht−1, ht ) and ht = (at , bt ) with at 
= a(h), then

∣∣Ψ1(t	, h
′)
∣∣ � 1

2

∣∣Ψ1(t	, h)
∣∣. (1)

Fix σ ∈ Ψ1 and let (h1, h2, . . .) = ((a1, b1), (a2, b2), . . .) be the play generated by (σ, τ ∗). For each t , let It = 0
or 1 according to at = a(h1, . . . , ht−1) or at 
= a(h1, . . . , ht−1). Then (1) implies that

t	∑
t=t	−1+1

It � log2

∣∣Ψ1
(
t	, (h1, . . . , ht	−1)

)∣∣ � log2 ψ1(t	) for all 	 = 1,2, . . . .

That is, the number of stages t with t	−1 + 1 � t � t	 at which player 1’s action differs from a(h1, . . . , ht−1) is at
most log2 ψ1(t	). Hence

t	∑
t=t	−1+1

g(ht ) �
t	∑

t=t	−1+1

(
(1 − It )w + It

‖g‖
2

)
� (t	 − t	−1)w + ‖g‖ log2 ψ1(t	).

Summing over 	 = 1, . . . , k (where t0 = 0) we have

tk∑
t=1

g(ht ) � tkw + ‖g‖
k∑

	=1

log2 ψ1(t	). �

If Ψ1 is a finite set, e.g., the set of finite automata of a bounded size, then there is a t̂ such that Ψ1(t) = Ψ1 for all
t � t̂ . In this case, a straightforward modification of the proof of Lemma 1 (in fact, the same proof but with t1 = ∞)
shows that12 there exists τ ∗ ∈ Σ2 such that

gT (σ, τ ∗) � w + ‖g‖ log2 |Ψ1|
T

for all σ ∈ Ψ1 and T = 1,2, . . . .

Theorem 1. Suppose that log2 ψ1(t)

t
−→
t→∞ 0. Then there is a strategy τ ∗ ∈ Σ2 such that

lim
T →∞ max

σ∈Ψ1
gT (σ, τ ∗) � w.

Proof. Let {tk}∞k=1 be an increasing sequence of positive integers satisfying the following properties:

(A)
tk+1 − tk

tk
−→
k→∞ 0, and (B)

log2 ψ1(tk+1)

tk+1 − tk
−→
k→∞ 0.

It is easy to verify that such a sequence exists under the condition of the theorem.
Lemma 1 and (B) imply that there is a τ ∗ ∈ Σ2 such that, for every ε > 0, gtk (σ, τ ∗) � w + ε/2 for all σ ∈ Ψ1 and

all sufficiently large k. Hence, (A) implies that gT (σ, τ ∗) < w + ε for all σ ∈ Ψ1 and all sufficiently large T . �
Note that whether player 1 can actually attain w or not depends on what strategies are in Ψ1. For example, if

a∗ = argmaxa∈A1
minb∈A2 g(a, b), and a strategy that takes a∗ in every stage is available, then w can be achieved by

using such a strategy.

3.2. Growth of strategy sets and entropy

In this section we prove a generalization of Theorem 1 for the case when log2 ψ1(t)

t
converges to an arbitrary positive

number. To do this we use the concept of entropy and its properties which we now recall.13

12 This first appeared in Neyman and Okada (2000b) in a study of repeated games with finite automata.
13 For more details on entropy and related information theoretic tools, see Cover and Thomas (1991).
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Let X be a random variable that takes values in a finite set Ω and let p(x) denote the probability that X = x for
each x ∈ Ω . Then the entropy of X is defined as

H(X) = −
∑
x∈Ω

p(x) log2 p(x)

where 0 log2 0 ≡ 0. The entropy as a function of the distribution p is uniformly continuous (in L1-norm), concave,
and 0 � H(X) � log2 |Ω| where the lower bound 0 is achieved by any one of the degenerate distributions, p(x) = 1
for some x ∈ Ω , and the upper bound is achieved by the uniform distribution, p(x) = 1/|Ω| for all x ∈ Ω .

The conditional entropy of a random variable X given another random variable Y is defined as follows. Given the
event Y = y, let H(X|y) be the entropy of X with respect to the conditional distribution of X given y, that is,

H(X|y) = −
∑
x

p(x|y) log2 p(x|y).

Then the conditional entropy of X given Y is the expected value of H(X|y) with respect to the (marginal) distribution
of Y :

H(X|Y) = EY

[
H(X|y)

] =
∑
y

p(y)H(X|y).

Conditioning reduces entropy, i.e., H(X) � H(X|Y) � H(X|Y,Z), and H(X|Y) = H(X) if, and only if, X and Y

are independent. An important consequence of the definition of the conditional entropy is the “chain rule”:

H(X1, . . . ,XT ) = H(X1) +
T∑

t=2

H(Xt |X1, . . . ,Xt−1).

Let (Ω, F ,μ) be a probability space and let P be a finite partition of Ω into sets in F . Then the entropy of the
partition P with respect to μ is defined by

Hμ(P ) = −
∑
F∈P

μ(F) log2 μ(F).

It is easy to see that if Q is a refinement of P , then Hμ(P ) � Hμ(Q).
Given a feasible strategy set of player 1, Ψ1 ⊂ Σ1, we have defined, for each t , the set Ψ1(t) to be the partition of

Ψ1 induced by an equivalence relation. Specifically, we define an equivalence relation ∼
t

by

σ ∼
t

σ ′ ⇐⇒ ∀τ ∈ Σ2, as(σ, τ ) = as(σ
′, τ ) for s = 1, . . . , t.

Then Ψ1(t) = Ψ1/∼
t

.

Now fix player 2’s strategy τ . Define an equivalence relation ∼
t,τ

by

σ ∼
t,τ

σ ′ ⇐⇒ as(σ, τ ) = as(σ
′, τ ) for s = 1, . . . , t,

and let Ψ1(t, τ ) = Ψ1/ ∼
t,τ

. Clearly Ψ1(t, τ ) is a finite partition of Ψ1, and Ψ1(t) is a refinement of Ψ1(t, τ ). Hence, by

the property of the entropy of partitions mentioned above,

Hσ

(
Ψ1(t, τ )

)
� Hσ

(
Ψ1(t)

)
� log2

∣∣Ψ1(t)
∣∣ = log2 ψ1(t). (2)

By the definition of the equivalence relation defining Ψ1(t, τ ), each equivalence class S ∈ Ψ1(t, τ ) is associated
with a history of length t , say h(S) ∈ Ht . More precisely, h(S) is the history of length t which results when the
strategy profile (s, τ ) is played, for any s ∈ S. Conversely, for any history h ∈ Ht , there is an equivalence class
S ∈ Ψ1(t, τ ) such that h = h(S). So there is a one-to-one map from Ψ1(t, τ ) into Ht . Furthermore, the event “a
strategy s ∈ S ⊂ Ψ1(t, τ ) is selected by σ ” is equivalent to the event “the history h(S) occurs when (σ, τ ) is played.”
Therefore,

σ(S) = Pσ,τ

(
h(S)

)
.

Let us write X1, . . . ,Xt for the sequence of action profiles up to stage t when (σ, τ ) is played. So it is a random vector
with distribution Pσ,τ . Then the observation in this paragraph implies that
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Hσ

(
Ψ1(t, τ )

) = −
∑

S∈Ψ1(t,τ )

σ (S) log2 σ(S)

= −
∑
h∈Ht

Pσ,τ (h) log2 Pσ,τ (h)

= H(X1, . . . ,Xt ).

Combining this equality with (2) we have

Lemma 2. Let σ ∈ Δ(Ψ1) and τ ∈ Σ2 and (X1, . . . ,Xt ) be the random play up to stage t induced by (σ, τ ). Then, for
every t ,

H(X1, . . . ,Xt ) � log2 ψ1(t).

Next, for each mixed action α of player 1, let H(α) be its entropy, i.e.,

H(α) = −
∑
a∈A1

α(a) log2 α(a).

Define a function U : R+ → R+ by

U(γ ) = max
α∈Δ(A1)
H(α)�γ

min
b∈A2

g(α, b).

Thus U(γ ) is what player 1 can secure in the stage game G using a mixed action of entropy at most γ . Clearly,
U(0) = w, the maximin payoff in pure actions. On the other hand, U(γ ) = v, the minimax payoff, if γ � γ̄ where
γ̄ = min{H(α): α ∈ Δ(A1),minb∈A2 g(α, b) = v}. Let cavU be the concavification of U , i.e., the smallest concave
function which is at least as large as U at every point in its domain.

The function U(γ ) is strictly increasing and piecewise convex for 0 � γ � γ̄ , and then constant, v, for γ � γ̄ .
Thus, for every γ � γ̄ , there is an α ∈ Δ(A1) such that H(α) = γ and minb∈A2 g(α, b) = U(γ ). In other words, the
entropy constraint defining U(γ ) is binding for γ � γ̄ . See Neyman and Okada (2000a) for examples.

The theorem below asserts that, if ψ1(t) grows like an exponential function 2γ t , then player 1’s maximin payoff in
the repeated game is at most (cavU)(γ ). The proof, though standard (see Theorem 5.1 in Neyman and Okada, 2000a,
and also Proposition 14 in Gossner and Vieille, 2002), is provided here for completeness.

Theorem 2. Suppose that limt→∞ log2 ψ1(t)

t
� γ . Then, for every σ ∈ Δ(Ψ1), there is τ ∈ Σ2 such that

lim
T →∞gT (σ, τ ) � (cavU)(γ ).

Proof. Fix player 1’s strategy σ ∈ Δ(Ψ1). Let τ be player 2’s strategy such that Eσ,τ [g(a)
∣∣h] = minb∈B Eσ(h)[g(a, b)]

for any history h. Let X1,X2, . . . be the sequence of random actions induced by (σ, τ ). Let H(Xt |h) be the en-
tropy of Xt given that a history h ∈ Ht−1 is realized. Then, by the definitions of U , cavU , and τ , we have
Eσ,τ [g(Xt )|h] � U(H(Xt |h)) � (cavU)(H(Xt |h)). Taking the expectation and using Jensen’s inequality, we have
Eσ,τ [g(Xt )] � (cavU)(Eσ,τ [H(Xt |h)]) = (cavU)(H(Xt |X1, . . . ,Xt−1)). Summing over t = 1, . . . , T and using
Jensen’s inequality again, we have

1

T

T∑
t=1

Eσ,τ

[
g(Xt )

]
� (cavU)

(
1

T

T∑
t=1

H(Xt |X1, . . . ,Xt−1)

)

= (cavU)

(
1

T
H(X1, . . . ,XT )

)
by the chain rule

� (cavU)

(
log2 ψ1(T )

T

)
by Lemma 2.

Since limt→∞ log2 ψ1(t) � γ , we have the desired result. �

t
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As in Theorem 1, whether player 1 can achieve (cavU)(γ ) or not depends on what strategies are available to him.
The next two theorems state that there is indeed a strategy set with an appropriate growth rate with which (cavU)(γ )

can be achieved. Furthermore, it states that it suffices to consider oblivious strategies. Combined with Theorem 2, it
implies that there is a strategy set Ψ1 of player 1 consisting only of oblivious strategies for which ψ1(t) grows like 2γ t

and, relative to which, the maximin value of the repeated game is precisely (cavU)(γ ). We present first the result for
finitely repeated games as its proof may aid the reader in grasping the main idea while avoiding a few complications
arising in infinitely repeated games.

Theorem 3. For every γ > 0 and ε > 0, there is a positive integer T ∗ with the following properties. For every T � T ∗,
there is a set of oblivious strategies Ψ1(T ) such that |Ψ1(T )| � 2γ T and

min
τ∈Σ2

max
σ∈Δ(Ψ1(T ))

gT (σ, τ ) � (cavU)(γ ) − ε.

Proof. Recall from Example 2 that, for each sequence a = (a1, a2, . . .) of player 1’s pure actions, σ 〈a〉 denotes his
oblivious strategy that takes action at at stage t regardless of the past history.

If γ = 0, then (cavU)(γ ) is the maximin payoff in pure actions, w. In this case the set Ψ1(T ) can be taken as a
singleton σ 〈a〉 where {a = (a, a, a, . . .)} with a being any one of player 1’s pure actions that guarantees him w.

If γ > 0, choose θ > 0 sufficiently small so that (cavU)(γ −θ) > U(γ −θ). Then there are γ−, γ+ and a 0 < p < 1
such that γ− < γ − θ < γ+, (cavU)(γ±) = U(γ±), γ − θ = pγ− + (1 − p)γ+ and (cavU)(γ − θ) = pU(γ−)+ (1 −
p)U(γ+). Let α−, α+ ∈ Δ(A1) be such that H(α±) = γ± and minb∈A2 g(α±, b) = U(γ±).

Given a sufficiently large positive integer T , define

F− =
{

(a1, . . . , apT )

∣∣∣ ∑
a∈A1

∣∣∣∣∣ 1

pT

pT∑
t=1

1(at = a) − α−(a)

∣∣∣∣∣ � |A1|
pT

}
,

F+ =
{

(a1, . . . , a(1−p)T )

∣∣∣ ∑
a∈A1

∣∣∣∣∣ 1

(1 − p)T

(1−p)T∑
t=1

1(at = a) − α+(a)

∣∣∣∣∣ � |A1|
(1 − p)T

}
,

and F = F− × F+. (Assume for simplicity and without loss of generality that pT and (1 − p)T are integers.) Note
that F− and F+ are nonempty. Let Ψ1 = {σ 〈a〉: a ∈ F }.

Let z = (z1, z2, . . . , zT ) be a sequence of A1-valued random variables such that the first pT elements z− =
(z1, . . . , zpT ) is drawn uniformly from F−, and the next (1 − p)T elements z+ = (zpT +1, . . . , zT ) are drawn uni-
formly from F+ and independently from z−. Then define σ̂ = σ 〈z〉. Observe that σ̂ is indeed a mixture of strategies
in Ψ1.

Note that |Ψ1(T )| = |F−| × |F+|. We estimate the size of F− and F+ as follows. Since the entropy H(α) as a
function on Δ(A1) is uniformly continuous (in the L1-distance), there is an ε− > 0 such that |H(ρ(a−))−H(α−)| =
|H(ρ(a−))−γ−| < ε− for all a− ∈ F− where ρ(a) denotes the empirical distribution of the sequence a. Observe that
ε− can be made arbitrarily small by choosing T large enough. Since the number of distinct empirical distributions
arising from sequences in A

pT

1 is at most (pT + 1)|A1|, and the number of sequences in A
pT

1 with an empirical
distribution α− is at most 2pT H(α−) = 2pT γ− , we deduce that

1

(pT + 1)|A1| 2pT (γ−−ε−) � |F−| � (pT + 1)|A1|2pT (γ−+ε−)

or

2pT (γ−−δ−) � |F−| � 2pT (γ−+δ−)

where δ− = ε− + |A1| log2(pT + 1)/pT . Note that δ− can be made arbitrarily small by choosing T large enough.
Similarly, there is an δ+ > 0 such that

2(1−p)T (γ+−δ+) � |F+| � 2(1−p)T (γ++δ+).

From these estimates it is clear that |F | < 2γ T for sufficiently large T .
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In order to show the second part of the theorem, fix an arbitrary strategy τ ∈ Σ2. Let (x1,y1), . . . , (xpT ,ypT ) be
the random action pairs induced by (σ̂ , τ ) in the first pT stages and let (x̄, ȳ) be a (A1 × A2)-valued random variable
whose distribution is given by

P
(
(x̄, ȳ) = (a, b)

) := 1

pT

pT∑
t=1

P
(
(xt ,yt ) = (a, b)

)
.

Then, from the definitions of F− and σ̂ , it easily follows that∑
a∈A1

∣∣P(x̄ = a) − α−(a)
∣∣ � |A1|

pT
< δ−. (3)

Since the conditional entropy H(X|Y) is concave in the joint distribution of (X,Y ) (see, e.g., Gossner et al., 2006,
Lemma 1), we have

H(x̄|ȳ) � 1

pT

pT∑
t=1

H(xt |yt )

� 1

pT

pT∑
t=1

H(xt |yt ,x1, . . . ,xt−1)

= 1

pT

pT∑
t=1

H(xt |x1, . . . ,xt−1)

where the last equality holds due to the fact that τ is a pure strategy and hence yt is a deterministic function
x1, . . . ,xt−1. Using the chain rule for entropy, and since the string (z1, . . . , zpT ) is chosen uniformly from F−, the
last expression above is equal to

H(x1, . . . ,xpT )

pT
= H(z1, . . . , zpT )

pT
= log2 |F−|

pT
� γ− − δ−.

As γ− = H(α−), we conclude that

H(x̄| ȳ) > H(α−) − δ−. (4)

The inequalities (3) and (4), together with Lemma 3 in Appendix A (applied to (x̄, ȳ)), imply that there is a function
η : R+ → R+ with η(δ)−→

δ→0
0 such that

E

[
1

pT

pT∑
t=1

g(xt ,yt )

]
= E

[
g(x̄, ȳ)

]
� U(γ−) − η(δ−).

By a similar operation performed on (xpT +1, ypT +1), . . . , (xT , yT ) conditional on a realization h = ((a1, b1), . . . ,

(apT , bpT )) of the first pT stages, we have

E

[
1

(1 − p)T

T∑
t=pT +1

g(xt ,yt )

∣∣∣h
]

� U(γ+) − η(δ+).

Therefore,

E

[
1

T

T∑
t=1

g(xt ,yt )

]
� (cav)U(γ − θ) − (

pη(δ−) + (1 − p)η(δ+)
)
.

Given any ε > 0, the last term can be made larger than (cav )U(γ )−ε by choosing θ sufficiently small and then taking
a sufficiently large T . �
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Theorem 4. For every γ � 0 and a function f : R+ → [1,∞) with log2 f (t)

t
−→
t→∞γ , there exists a set of oblivious

strategies Ψ1 ⊂ Σ1 and a mixed strategy σ̂ ∈ Δ(Ψ1) with the following properties:

(i) ψ1(t) � f (t) for every t ∈ N,

(ii) lim
T →∞

(
inf

τ∈Δ(Σ2)
gT (σ̂ , τ )

)
� (cavU)(γ ),

(iii) inf
τ∈Δ(Σ2)

Eσ̂ ,τ

[
lim

T →∞
1

T

T∑
t=1

g(at , bt )

]
� (cavU)(γ ).

Proof.14 Construction of Ψ1: As in the proof of Theorem 3 we will define a particular class of sequences F ⊂ A∞
1

and then set

Ψ1 = {
σ 〈a〉: a ∈ F

}
. (5)

If γ = 0, then (cavU)(γ ) is the maximin payoff in pure actions, w. In this case the set F can be taken as a singleton
{a = (a, a, a, . . .)} where a is any one of player 1’s pure actions that guarantees him w.

Suppose that γ > 0. Recall that γ̄ = min{H(α): α ∈ Δ(A1),minb∈A2 g(α, b) = v}. As U(γ ) = v for all γ � γ̄ , we

assume w.l.o.g. that γ � γ̄ . By modifying f (t) to f̂ (t) = infs�t f (s)t/s if necessary, we also assume that log2 f (t)

t
is

nondecreasing in t , or, equivalently,

log2 f (s) − log2 f (t) � (s − t)
log2 f (t)

t
whenever s > t. (6)

In particular, this implies that f (t) is also nondecreasing in t .
In order to construct the set F ⊂ A∞

1 , we first partition the stages into blocks. Set t0 = 0. The nth block consists of
stages tn−1 + 1 to tn. We denote the length of the nth block by dn, i.e., dn = tn − tn−1. Second, we define for each n

a set Fn consisting of finite sequences of player 1’s actions of length dn with certain properties. Then we set F to be
those sequences a = (a1, a2, . . .) in A∞

1 whose nth segment a[n] = (atn−1+1, . . . , atn) belongs to Fn:

F = {
a = (a1, a2, . . .) ∈ A∞

1 : a[n] = (atn−1+1, . . . , atn) ∈ Fn

}
. (7)

Now we describe the construction of the set Fn in detail.
The blocks are chosen so that dn is increasing, dn −→

n→∞∞, dn−1
dn

−→
n→∞ 1, and thus dn

tn
−→
n→∞ 0. For example, take

dn = n. Next, we construct the sets (Fn)n by means of a sequence of nonnegative reals, (γn)n with γn � γ̄ . The
sequence (γn)n depends on the function f and will be specified in the last part of the proof. For each n, choose
player 1’s mixed action αn so that H(αn) = γn and minb∈A2 g(αn, b) = U(γn). (See the remark on the property of U

on p. 18.)
If γn = 0, then αn is a pure action, say a∗, that guarantees w. In this case we set Fn to be a singleton consisting of

(a∗, . . . , a∗) ∈ A
dn

1 . If γn > 0, then Fn is defined to be the set of all sequences (a1, . . . , adn) ∈ A
dn

1 whose empirical

distribution is within |A1|
dn

of αn. Formally,

Fn =
{

(a1, . . . , adn) ∈ A
dn

1 :
∑
a∈A1

∣∣∣∣∣ 1

dn

dn∑
k=1

1(ak = a) − αn(a)

∣∣∣∣∣ � |A1|
dn

}
. (8)

Note that Fn 
= ∅. We complete this part by defining F by (7) and then Ψ1 by (5).

Construction of σ̂ ∈ Δ(Ψ1): Let z = (z1, z2, . . .) be a sequence of A1-valued random variables such that its nth
segment z[n] = (ztn−1+1, . . . , ztn ) is drawn uniformly from Fn, and independently from z[1], . . . , z[n−1]. Then define
σ̂ = σ 〈z〉. Observe that σ̂ is indeed a mixture of strategies in Ψ1.

14 The reader will see that the proof presented here makes use of a lemma stated and proved in Appendix A. One may wonder, however, whether
a different proof not relying on the lemma can be devised. Such a proof, though slightly longer, indeed exists and is presented in Appendix B.
We have decided to present the proof using the lemma in the main body of this paper because the lemma is used in a crucial way in the proof of
Theorem 6 in the next section, and its inclusion here gives a methodological consistency as well as acquaint the reader with how the lemma is used.
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Verification of the theorem: It remains to specify the sequence (γn)n so that the strategy set Ψ1 and the mixed
strategy σ̂ ∈ Δ(Ψ1) satisfy the conditions (i), (ii) and (iii) of the theorem.

From (7) it is clear that we can identify each sequence in the set F with an element of �
∞
n=1Fn and each strategy in

Ψ1(tN ) with an element in �
N
n=1Fn, N = 1,2, . . .. Hence ψ1(tN ) = |Ψ1(tN )| = ∏N

n=1 |Fn| for each N = 1,2, . . .. Since
both ψ1(t) and f (t) are nondecreasing, in order to verify that Ψ1 has the property (i) of the theorem, it is enough to
ensure that15

N∑
n=1

log2 |Fn| � log2 f (tN−1) for each N > 1. (9)

Recall that |Fn| = 1 for n with γn = 0. For n with γn > 0 we estimate |Fn| in a similar manner as in the proof of
Theorem 3:

1

(dn + 1)|A1| 2dn(γn−εn) � |Fn| � (dn + 1)|A1|2dn(γn+εn)

where εn −→
n→∞ 0. Setting δn = εn + |A1| log2(dn+1)

dn
we have

2dn(γn−δn) � |Fn| � 2dn(γn+δn).

Note that the sequence (δn)n�2 is decreasing and δn −→
n→∞ 0.

Thus, to ensure that (9) holds, it is enough to choose (γn)n so that

N∑
n=1

1(γn > 0)dn(γn + δn

)
� log2 f (tN−1) for each N > 1. (10)

Next we derive a sufficient condition to be verified in order to show that σ̂ has the property (ii). Fix an arbitrary
strategy τ ∈ Σ2. For each n = 1,2, . . ., let (x(n)

1 ,y(n)
1 ), . . . , (x(n)

dn
,y(n)

dn
) be the random action pairs induced by (σ̂ , τ )

in the nth block. Fix a realization hn−1 ∈ Atn−1 of (x(1)
1 ,y(1)

1 ), . . . , (x(n−1)
dn−1

,y(n−1)
dn−1

), i.e., until the end of the (n − 1)-th

block, and let (x̄(n), ȳ(n)) be a (A1 × A2)-valued random variable whose distribution is given by

P
((

x̄(n), ȳ(n)
) = (a, b)

) := 1

dn

dn∑
k=1

P
((

x(n)
k ,y(n)

k

) = (a, b)
∣∣hn−1

)
.

Then, from (8) and the definition of σ̂ , it easily follows that∑
a∈A1

∣∣P(
x̄(n) = a

) − αn(a)
∣∣ � |A1|

dn

< δn. (11)

In addition, by the same argument as in the proof of Theorem 3, it follows that

H
(
x̄(n)|ȳ(n)

)
> H(αn) − δn. (12)

Thus by Lemma 3 there is a function η : R+ → R+ with η(δ)−→
δ→0

0 such that

E

[
1

dn

dn∑
k=1

g
(
x(n)
k ,y(n)

k

) ∣∣∣hn−1

]
= E

[
g
(
x̄(n), ȳ(n)

) ∣∣hn−1
]
� U(γn) − η(δn).

Recall that minb∈A2 g(αn, b) = U(γn). As this holds for any τ , n, and hn−1, it follows that, for any N = 1,2, . . .,

min
τ∈Σ2

gtN (σ̂ , τ ) = 1

tN

N∑
n=1

E

[
dn∑

k=1

g
(
x(n)
k ,y(n)

k

)]
� 1

tN

N∑
n=1

dnU(γn) − 1

tN

N∑
n=1

dnη(δn).

15 Observe that (i) asserts that ψ1(t) � f (t) for all t which is satisfied, as these functions are nondecreasing, if ψ1(tN ) � f (tN−1) for each N .
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Since tN = ∑N
n=1 dn and η(δn) −→

n→∞ 0, the second term on the right side converges to 0 as N → ∞. In addition, recall

that dN

tN
−→

N→∞ 0. Hence, in order to show part (ii) of the theorem, it suffices to choose (γn)n so that

1

tN

N∑
n=1

dnU(γn) −→
N→∞(cavU)(γ ). (13)

We now exhibit a choice of (γn)n that satisfies (10) and (13). We distinguish two cases.

CASE 1: (cavU)(γ ) = U(γ ). From the assumption dn−1
dn

−→
n→∞ 1, it follows that dn−1

dn

log2 f (tn−1)

tn−1
−→
n→∞γ > 0. As

δn −→
n→∞ 0, there is an n̄ such that dn−1

dn

log2 f (tn−1)

tn−1
> δn for all n > n̄. For n � n̄, set γn = 0, and, for n > n̄, let

γn = dn−1
dn

log2 f (tn−1)

tn−1
− δn. With this choice of (γn)n it is easy to verify that (10), and hence (9), is satisfied. Since

γn −→
n→∞γ , the condition (13) is satisfied as well.

CASE 2: (cavU)(γ ) > U(γ ). In this case, the definitions of U and cavU imply the existence of γ−, γ+ with 0 �
γ− < γ < γ+ and α−, α+ ∈ Δ(A1) together with a p ∈ (0,1) such that

(a) γ = pγ− + (1 − p)γ+,
(b) (cavU)(γ ) = pU(γ−) + (1 − p)U(γ+),
(c) H(α−) = γ− and H(α+) = γ+,
(d) g(α−, b) � U(γ−) and g(α+, b) � U(γ+) for all b ∈ A2.

Choose n̄ large enough so that for n � n̄ we have dn−1
dn

log2 f (tn−2)

tn−2
− δn > γ−. Set γn = 0 for n � n̄ and, for n > n̄,

define γn by induction as follows:

γn =
{

γ+ if
∑n−1

	=1 1(γ	 > 0)d	(γ	 + δ	) + dn(γ+ + δn) � log2 f (tn−1),

γ− otherwise.

With the above choice of the sequence (γn)n, the inequality (10) trivially holds for N � n̄. For N > n̄, inequality
(10) is proved by induction. Assume that

∑N−1
	=1 1(γ	 > 0)d	(γ	 + δ	) � log2 f (tN−2). Then,

N−1∑
	=1

1(γ	 > 0)d	(γ	 + δ	) + dN(γ− + δN) � log2 f (tN−2) + dN−1
log2 f (tN−2)

tN−2

� log2 f (tN−1)

where the first inequality holds by the induction hypothesis and since N > n̄, while the second inequality follows
from (6). Therefore, if γN = γ− then inequality (10) holds for N . Obviously, by the definition of γN , if γN = γ+ then
inequality (10) again holds for N . We conclude that inequality (10), hence (9), holds for all N > n̄.

From (b) above and since γn = γ− or γ+ for all n > n̄, in order to show (13), it suffices to verify that

1

tN

N∑
n=n̄+1

dn1(γn = γ−) −→
N→∞p. (14)

For each N let MN = max{n � N : γn = γ−}. Note that MN → ∞ as N → ∞ since γ+ > γ . Since log2 f (tn−1)

tn
=

(1 − dn

tn
)

log2 f (tn−1)

tn−1
−→
n→∞γ , we have, for every δ > 0, an N such that log2 f (tn−1)

tn
� γ − δ for all n � MN . Hence

N∑
n=1

1(γn > 0)dn(γn + δn)

=
MN∑

1(γn > 0)dn(γn + δn) +
N∑

1(γn > 0)dn(γn + δn)
n=1 n=MN+1
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� log2 f (tMN−1) − dMN
(γ+ − γ−) + (tN − tMN

)γ+
� tMN

(γ − δ) − dN(γ+ − γ−) + (tN − tMN
)γ

� tN (γ − δ) − dN(γ+ − γ−).

Since
∑N

n=1 1(γn > 0)dn(γn + δn) � logf (tN−1), δn −→
n→∞ 0, and dN

tN
−→

N→∞ 0, we conclude that 1
tN

∑N
n=1 dnγn −→

N→∞γ ,

which, together with a), implies (14).
Finally we verify that σ̂ has the property (iii). By the same argument as above, one can show that, for every τ ∈ Σ2,

N∑
n=1

Eσ̂ ,τ

[
dn∑

k=1

g
(
x(m+n)
k ,y(m+n)

k

) ∣∣∣hm

]
�

N∑
n=1

dm+nU(γm+n) −
N∑

n=1

dm+nη(δm+n)

holds for every m and hm ∈ Atm . The analysis of Case 1 and Case 2 above (performed conditional on hm) together
with a classical result in probability theory implies that, for any τ ∈ Σ2,

lim
N→∞

1

tN

N∑
n=1

dn∑
k=1

g
(
x(n)
k ,y(n)

k

)
� (cavU)(γ ) almost surely

from which (iii) readily follows. �
Remark 3.1. An additional property of ψ1 constructed in the above proof is that limt→∞ log2 ψ1(t)

t
= γ . Although this

can be verified by examining the details of the proof, an alternative derivation of it illuminates a connection between
the growth of strategy set and entropy.

On the one hand, the property (i) in Theorem 4 implies that limt→∞ log2 ψ1(t)

t
� γ . On the other hand, the

property (ii) and our previously published result on strategic entropy (Neyman and Okada, 2000a) imply that
limt→∞

log2 ψ1(t)

t
� γ . To see this, let us recall that the t-strategic entropy of player 1’s strategy σ is defined by

Ht(σ ) = maxτ∈Σ2 H(X1, . . . ,Xt ) where X1, . . . ,Xt is the random sequence of action profiles induced by (σ, τ ).
Lemma 2 in Section 3.2 then implies that HT (σ) � log2 ψ1(T ) for all σ ∈ Δ(Ψ1) and T . This, together with Theo-
rem 5.1 of Neyman and Okada (2000a), implies that

inf
τ∈Σ2

gT (σ, τ ) � (cavU)

(
log2 ψ1(T )

T

)

for all σ ∈ Δ(Ψ1) and T . Thus, if limt→∞
log2 ψ1(t)

t
< γ , then limT →∞(infτ∈Σ2 gT (σ, τ )

)
< (cavU)(γ ), contradicting

property (ii) of Theorem 4. Hence we conclude that limt→∞ log2 ψ1(t)

t
= γ .

4. Nonstationary bounded recall strategies

In this section, we study a concrete case of the game examined in the last section. Specifically, player 1’s feasible
strategy set is taken to be B1(κ) = {σ ∧ κ: σ ∈ Σ1}, the set of κ-recall strategies. Player 2 is assumed to have full
recall. Let G∗(κ) be the repeated game under consideration and let V(κ) be player 1’s minimax payoff in G∗(κ). The
results in this section characterize V (κ) in terms of asymptotic behavior of the recall function κ . We will also discuss
a folk theorem in repeated games with nonstationary bounded recall strategies at the end of the section.

Recall that, with Ψ1 = B1(κ), we have log2 ψ1(t) � cmκ̄(t) for a constant c (e.g., c = m/(m − 1)) where
κ̄(t) = maxs�t κ(s). Suppose that, for every ε > 0, we have κ(t) < (1 − ε)

log2 t

log2 m
for sufficiently large t . Then

it follows that16 log2 ψ1(t)

t
−→
t→∞ 0. Hence, by Theorem 1 together with the fact that player 1 can always guarantee

w = maxa∈A1 mina2∈A2 g(a, a2) with a stationary bounded recall strategy of size 0, we obtain the following result.

16 For the conclusion it suffices to have κ(t) <
log2 t
log m

− c(t) where c(t) −→ ∞.

2 t→∞
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Theorem 5.

If lim
t→∞

κ(t)

log2 t
<

1

log2 m
, then V(κ) = w.

This suggests that, in order to gain any benefit from recalling the past (to get a payoff above w) against a player
with perfect recollection, one must remember at least some constant times log2 t stages back. It is thus natural to
ask,“How fast should κ grow (asymptotically) in order to guarantee the minimax payoff v against a player with full
recall?” This question will be answered in the next theorem. It asserts that, in order to secure v in the long run, it
suffices that player 1’s recall κ(t) grows at least as fast as K1 log2 t for some K1 > 0. (Of course, K1 � 1/ log2 m.) In
particular, player 1 can guarantee the minimax payoff in the long run by recalling a vanishing fraction of the history
even against a player with full recall.

In order to exhibit the constant K1 explicitly, let ζ(G) = maxα maxa∈A1 α(a) where α is taken over all mixed
actions of player 1 in the stage game G with minb∈A2 g(α, b) = v. For example, ζ(G) = 1 if the minimax payoff v

can be secured by a pure action. Define

K1(G) =
{

0 if ζ(G) = 1,
2

| log2 ζ(G)| if ζ(G) < 1.

For instance, in matching pennies, ζ(G) = 1/2 and so K1(G) = 2.

Theorem 6. If limt→∞
κ(t)

log2 t
> K1(G), then there is a σ̂ ∈ Δ(B1(κ)) with the following properties:

(i) lim
T →∞

(
min
τ∈Σ2

gT (σ̂ , τ )
)

� v,

(ii) inf
τ∈Σ2

Eσ̂ ,τ

[
lim

T →∞
1

T

T∑
t=1

g(at , bt )

]
� v.

In particular, if G is zero-sum, then the repeated game G∗(κ) has the value17 that coincides with the value of G.
Moreover, player 1 has an optimal strategy σ̂ ∈ Δ(B1(κ)).

Proof. Let α∗ ∈ Δ(A1) be such that minb∈A2 g(α∗, b) = v and maxa∈A1 α∗(a) = ζ(G). If α∗ is a pure action, then
the theorem is trivially true. So suppose that α∗ is not a pure action.

First, we recall the argument from Lehrer (1988) which yields a result about the value of the finitely repeated
game where player 1 has bounded recall. Let z = (z1, z2, . . . , ) be a sequence of A1-valued i.i.d. r.v.’s with zt ∼ α∗.
Note that for every k < s < s′ the probability that (zs−k, . . . , zs−1) = (zs′−k, . . . , zs′−1) is at most ζ(G)k . Therefore,
the probability that (zs−k, . . . , zs−1) = (zs′−k, . . . , zs′−1) for some k < s < s′ � T (where k < T − 1) is at most
ζ(G)k(T − k)2/2 which can be made arbitrarily close to 0 by choosing a large enough T and k > K1(G) log2 T .
Now, if z1, . . . , zT is a sequence in AT

1 such that (zs−k, . . . , zs−1) 
= (zs′−k, . . . , zs′−1) for every k < s < s′ � T , then
the oblivious strategy that plays this sequence is in B̄i (k), the set of stationary bounded recall strategies of size k.
Therefore, if we set κ(t) = min{t − 1, k}, then the value of GT (κ(t)) is close to the value of the stage game G. Note
that this argument relies on two properties of κ(t): κ(t) � K1(G) logT for t > k, and κ(t) = t − 1 for t � k. In
particular, if κ(t) > K1(G) logT for every t , the two properties above are satisfied with k = [K1 logT ] + 1.

With the above discussion in mind we proceed to the main part of the proof. Let a0, a1 ∈ A1 be two distinct actions
with α∗(a0) > 0 and α∗(a1) > 0. (Recall that α∗ is not a pure action.)

In order to define the strategy σ̂ , we introduce some notation. First, our condition on κ implies that there are
infinitely many stages t at which κ(t) 
= κ(s) for all s < t . We enumerate these stages as t1 < t2 < . . . < tn < · · ·.

17 The zero-sum game G∗(κ) has a value v if for every ε > 0 there are strategies σ∗
ε and τ∗

ε (ε-optimal strategies) such that for all sufficiently
large T and for all strategies σ and τ we have gT (σ∗

ε , τ ) � v − ε and gT (σ, τ∗
ε ) � v + ε. A strategy is optimal if it is ε-optimal for all ε > 0.
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For each sequence of player 1’s actions a = (a1, a2, . . .) ∈ A∞
1 and each positive integer n, define a sequence an =

(an
1 , an

2 , . . .) ∈ A∞
1 by

an
t =

⎧⎨
⎩

a0 if t < tn,

a1 if t = tn,

at if t > tn.

Thus, if player 1 is to play according to the oblivious strategy σ 〈an〉, he would take the action a0 in the first tn − 1
stages, then a1 at stage tn, and thereafter the actions appearing in the original sequence a.

Note that the sequence of actions an is induced by the κ-recall (oblivious) strategy σ 〈an〉 ∧ κ if, and only if

∀t, t ′ s.t. an
t 
= an

t ′ : (an
t ′−κ(t ′), . . . , a

n
t ′−1) 
= (an

t−κ(t), . . . , a
n
t−1). (15)

For t and t ′ with tn � t < t ′ and t ′ − κ(t ′) < tn, we have (an
t ′−κ(t ′), . . . , a

n
t ′−1) 
= (an

t−κ(t), . . . , a
n
t−1). In addition, since

κ(tn) 
= κ(t) for all t < tn, the condition (15) is implied by

∀t ′ s.t. t ′ − κ(t ′) > tn, ∀t < t ′: (at ′−κ(t ′), . . . , at ′−1) 
= (an
t−κ(t), . . . , a

n
t−1). (16)

Observe that, for any n, t , and k, (an
t−k, . . . , a

n
t−1) is one of at most k + 2 strings of length k: (a0, . . . , a0),

(a0, . . . , a0, a1), (a0, . . . , a0, a1, at−	, . . . , at−1) where 1 � 	 � k − 2, (a1, at−k+1, . . . , at−1), and (at−k, . . . , at−1).
Let us denote the subset of Ak

1 consisting of these strings by Z(at−k, . . . , at−1) so that (16), hence (15), is further
implied by

∀t ′ s.t. t ′ − κ(t ′) > tn, ∀t < t ′: (at ′−κ(t ′), . . . , at ′−1) /∈ Z(at−κ(t), . . . , at−1). (17)

To formally define the strategy σ̂ , let z = (z1, z2, . . . , ) be a sequence of A1-valued i.i.d. r.v.’s with zt ∼ α∗, and,
for each n, define a sequence of A1-valued r.v.’s zn = (zn

1, zn
2, . . .) by

zn
t =

⎧⎨
⎩

a0 if t < tn,

a1 if t = tn,

zt if t > tn.

Next define an N-valued r.v. ν by ν = n if n is the smallest positive integer with the property

∀t ′ s.t. t ′ − κ(t ′) > tn, ∀t < t ′: (zt ′−κ(t ′), . . . , zt ′−1) /∈ Z(zt−κ(t), . . . , zt−1). (18)

Then define σ̂ = σ 〈zν〉 ∧ κ . Below we show that ν < ∞ almost surely under the condition on κ(t) stated in the
theorem, and hence σ̂ is well defined as a mixture of strategies in {σ 〈an〉 ∧ κ: a ∈ A∞

1 , n = 1,2, . . .} ⊂ B1(κ).
To see this, observe that

E
[∣∣{(t, t ′): t < t ′, (zt ′−κ(t ′), . . . , zt ′−1) ∈ Z(zt−κ(t), . . . , zt−1)

}∣∣]
= E

[ ∞∑
k=1

∑
t<t ′

1
(
κ(t) = κ(t ′) = k

)
1
(
(zt ′−k, . . . , zt ′−1) ∈ Z(zt−k, . . . , zt−1)

)]

=
∞∑

k=1

∑
t<t ′

1
(
κ(t) = κ(t ′) = k

)
P
(
(zt ′−k, . . . , zt ′−1) ∈ Z(zt−k, . . . , zt−1)

)

�
∞∑

k=1

(k + 2)|Bk|2ζ(G)k (where Bk = {t : κ(t) = k})

� 2
∞∑
t=1

t
(
κ(t) + 2

)
ζ(G)κ(t).

For the second-to-the-last inequality, we used the fact that |Z(zt−k, . . . , zt−1)| � k + 2, as observed above. The last
inequality follows from the inequality |Bk|2 < 2

∑
t∈Bk

t . Our condition on κ implies that there is an ε > 0 and
a t̂ such that κ(t) � (K1(G) + 2ε) log2 t for all t � t̂ . Therefore there is a 0 < θ < 1 and a t̃ � t̂ such that θκ(t) �
(K1(G)+ε) log2 t and (κ(t)+2)ζ(G)κ(t) < ζ(G)θκ(t) for all t � t̃ . As ζ(G) < 1, it follows that t (κ(t)+2)ζ(G)κ(t) �
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t−(1+ε| log2 ζ(G)|) for all t � t̃ . Hence
∑∞

t=1 t (κ(t) + 2)ζ(G)κ(t) < ∞. Therefore, with probability 1, there are only
finitely many pairs (t, t ′) with t < t ′ and (zt ′−κ(t ′), . . . , zt ′−1) ∈ Z(zt−κ(t), . . . , zt−1). Thus ν < ∞ almost surely.

Next we verify that σ̂ has the desired properties. Fix an arbitrary pure strategy τ ∈ Σ2 and a stage T . Let
(x1,y1), . . . , (xT ,yT ) be the random action pairs induced by (σ̂ , τ ). Let (x̄T , ȳT ) be a (A1 × A2)-valued random
variable such that P((x̄T , ȳT ) = (a, b)) = 1

T

∑T
t=1 P((xt ,yt ) = (a, b)). Then, as in the proof of Theorem 4, we have

H(x̄T |ȳT ) � 1

T

T∑
t=1

H(xt |yt ) � 1

T

T∑
t=1

H(xt |yt ,x1, . . . ,xt−1)

= 1

T

T∑
t=1

H(xt |x1, . . . ,xt−1)

� 1

T

T∑
t=1

H
(
xt |x1, . . . ,xt−1, tν ∧ (T + 1)

)
(19)

where the equality follows from yt being a deterministic function of x1, . . . ,xt−1.
Observe that zt ∈ A1 and thus a conditional entropy of zt is bounded by log2 |A1|, and, conditional on tν < t , we

have zt = zν
t = xt . Therefore, H(zt |z1, . . . , zt−1, tν ∧(T +1)) � H(xt |x1, . . . ,xt−1, tν ∧(T +1))+ log2 |A2|P(t � tν).

By rearranging the terms we have

H
(
xt |x1, . . . ,xt−1, tν ∧ (T + 1)

)
� H

(
zt |z1, . . . , zt−1, tν ∧ (T + 1)

) − log2 |A1|P(t � tν).

From the chain of inequalities beginning (19), and further applying the chain rule for entropy, and, using the fact that
tν ∧ (T + 1) takes at most T + 1 distinct values, we obtain

H(x̄T |ȳT ) � 1

T

T∑
t=1

H
(
zt |z1, . . . , zt−1, tν ∧ (T + 1)

) − 1

T

T∑
t=1

log2 |A1|P(t � tν)

= 1

T
H

(
z1, . . . , zT |tν ∧ (T + 1)

) − 1

T

T∑
t=1

log2 |A1|P(t � tν)

� 1

T
H(z1, . . . , zT

) − 1

T
log2(T + 1) − 1

T

T∑
t=1

log2 |A1|P(t � tν)

= H(α∗) − o(1) −→
T →∞H(α∗).

Note that the o(1) function in the last line is independent of τ . To summarize, for every δ > 0, there is a T0 such that,
for every T � T0 and τ ∈ Σ2, the average empirical distribution of action pairs in the first T stages of the game (i.e.,
the distribution of (x̄T , ȳT )) obeys

H(x̄T |ȳT ) � H(α∗) − δ. (20)

Next we demonstrate that the distribution of x̄T is close to α∗. Since xt = zt whenever tν < t , we have, for each
a ∈ A1,

P(xt = a) � P(zt = a) − P(tν � t) = α∗(a) − P(tν � t)

and so
∑

a∈A |P(xt = a) − α∗(a)| � 2|A1|P(tν � t). Hence

∑
a∈A1

∣∣P(x̄T = a) − α∗(a)
∣∣ =

∑
a∈A1

∣∣∣∣∣ 1

T

T∑
t=1

P(xt = a) − α∗(a)

∣∣∣∣∣
� 2|A1| 1

T

T∑
P(tν � t) −→

T →∞ 0.
t=1
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Thus, for every δ > 0 there is a T0 such that for all T � T0 we have∑
a∈A1

∣∣P(x̄T = a) − α∗(a)
∣∣ < δ. (21)

Hence, by Lemma 3, the inequalities (20) and (21) imply that, for every ε > 0 there is a T0 such that for all T � T0,

gT (σ̂ , τ ) = 1

T

T∑
t=1

Eσ̂ ,τ

[
g(xt ,yt )

] = Eσ̂ ,τ

[
g(x̄T , ȳT )

]
� min

b∈A2
g(α∗, b) − ε = v − ε.

This completes the first part of the theorem.
In order to deduce the second part, observe that, by performing the same line of argument as above but conditional

on a history (x1,y1, . . . ,xs ,ys), we can show that for every ε > 0 there is a T0 such that for every strategy τ ∈ Σ2,
every positive integer s, and every T � T0, we have

Eσ̂ ,τ

[
1

T

s+T∑
t=s+1

g(xt ,yt )

∣∣∣x1,y1, . . . ,xs ,ys

]
� v − ε,

which, by the classical results in probability, implies that

lim
T →∞

1

T

T∑
t=1

g(xt ,yt ) � v − ε almost surely.

As this holds for every ε > 0 the second part of the theorem follows. �
Remark 4.1. The strategy σ̂ constructed in the above proof relies on the random variable ν which depends on the
values of the entire sequence (zt )t . (In particular, ν is not a stopping time.) A slightly weaker result can be derived as
follows.

Since ν < ∞ almost surely, we have P(ν � n) −→
n→∞ 1. Hence if we choose an n sufficiently large, the condition

(18) holds with a probability close to 1. Therefore, for every ε > 0, there is an n and a T0 such that for every τ ∈ Σ2
and T � T0, we have gT (σ 〈zn〉, τ ) > v − ε. In the case where G is a zero-sum game, this shows that, for every ε > 0,
the strategy σ 〈zn〉 is ε-optimal for a sufficiently large n.

To conclude this section we discuss an immediate implication of Theorem 6 for the set of equilibrium payoff
vectors. Consider the repeated game G∗(κ1, κ2) where player i’s set of feasible strategies is Bi (κi), i = 1,2. Define
K2(G) analogously to K1(G) above. If limt→∞

κi (t)
log2 t

> Ki(G) for i = 1,2, then Theorem 6, or the strategy con-
structed in its proof, provides the players with threats to one another which discourage them from deviating from a
path18 that yields xi � vi , i = 1,2. In order to state a version of the folk theorem in this context, let E∗(κ1, κ2) be the
set of equilibrium payoff vectors of G∗(κ1, κ2) and let F ∗ = {(x1, x2) ∈ co(g(A)): x1 � v1, x2 � v2}.

Theorem 7. There is a constant K∗(G) > 0 (that depends on the stage game) such that if

lim
t→∞

min
i=1,2

κi(t)

log2 t
> K∗(G), then E∗(κ1, κ2) = F ∗.

5. Remarks on finite automata with time-varying complexity

In the last section we examined a generalization of bounded recall strategy to accommodate time-varying memory.
Finite automaton is another useful representation of strategies in the literature on strategic complexity in repeated

18 Specifically, let ξ be a sequence of action pairs that yields an average payoff vector as close to (x1, x2) as one desires. Then we can let the
players play a constant action pair (ā, b̄) at each stage until their recall is long enough, and then start the cyclic play of ξ . Thus it can be ensured that
any deviation by one player from cooperative phase will be in the memory of the other player long enough to initiate and continue the punishment
strategy.
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games. The number of states of automaton is usually taken as a measure of complexity. Here the corresponding notion
would be called automata with “growing (or, more generally, time-varying) number of states.” A correct definition of
this concept, however, appears more delicate. One must take an appropriate care to preserve certain consistency of
transition among states (or subset of states). There may possibly be more than one reasonable definitions. This topic
deserves further investigation.

It is reasonable to anticipate that whatever the definition of an automaton with a growing number of states (namely
the number of states at stage t is m(t) with m(t) � m(t + 1)) is, the number ψi(t) of strategies induced in the first
t stages will be bounded by m(t)Cm(t) where C is a positive constant dependent on the stage game. Therefore, some
of the results, e.g., Theorem 1 and Theorem 2, that bound from above the value of the repeated game as a function of
the function ψi(t) will have implications to finite automata with a growing number of states independent of the exact
definition. An analog of Theorem 5 for automata would be “if m(t) logm(t) = o(t) then V(m) = w” where V(m)

is the minimax payoff to player 1 of the two-player repeated game in which player 1 uses growing automata whose
complexity grows according to m : N → N and player 2 is fully rational. Similarly, if we allow for the more general
time-varying number of states, the same comment applies where m(t) is replaced by maxs�t m(s).
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Appendix A

Here we prove a statement used in the proof of Theorem 4 and Theorem 6. Recall that the L1-distance between two
probabilities P and Q on a finite set Ω is ‖P − Q‖1 = ∑

x∈Ω |P(x) − Q(x)|. For a (A1 × A2)-valued random variable
(x,y), we write P(a, b) for P(x = a,y = b), and P1(a) (resp. P2(b)) for P(x = a) (resp. P(y = b)). Also, P1 ⊗ P2 is a
probability on A1 × A2 with (P1 ⊗ P2)(a, b) = P1(a)P2(b) for each (a, b) ∈ A1 × A2.

Lemma 3. There exists a function η : R+ → R+, which depends on the stage game, with the following properties:

(1) η(δ)−→
δ→0

0.

(2) For any α ∈ Δ(A1) and for any (A1 × A2)-valued random variable (x,y) satisfying (i) H(x|y) � H(α) − δ and
(ii) ‖P1 − α‖1 < δ, we have E[g(x,y)] � minb∈A2 g(α, b) − η(δ).

Proof. We will show that, for small δ > 0, (i) and (ii) imply that x and y are nearly independent, or, more precisely,
P is close to P1 ⊗ P2 in the L1-distance. As the expected payoff is continuous with respect to the L1-distance on
Δ(A1 × A2), the conclusion of the lemma follows.

So suppose that (i) and (ii) are satisfied for a δ > 0. Then, since conditioning reduces entropy, (i) implies that
H(x) � H(x|y) � H(α) − δ. Next, since H , as a function on Δ(A1), is uniformly continuous with respect to the
L1-norm, (ii) implies that H(x) � H(α) + θ(δ) where19 θ(δ) > 0 and θ(δ)−→

δ→0
0. Thus

H(x) − H(x|y) � θ(δ) + δ. (22)

Let us recall that the relative entropy between two probabilities P and Q on A1 × A2 is defined by D(P‖Q) =∑
a,b P(a, b) log2

P(a,b)
Q(a,b)

where, for any p,q > 0, we set 0 log2
0
q

≡ 0 and p log2
p
0 ≡ ∞. The relative entropy is

always nonnegative and equal to 0 if, and only if, P = Q. From this definition, it is easy to verify that D(P‖P1 ⊗ P2) =
H(x) − H(x|y). Observe that D(P‖P1 ⊗ P2) = 0 if, and only if, x and y are independent. It can be shown (Cover and
Thomas, 1991, p. 300) that D(P‖Q) � 1

2 ln 2‖P − Q‖2
1, and hence H(x) − H(x|y) � 1

2 ln 2‖P − P1 ⊗ P2‖2
1. It follows

from (22) that

‖P − P1 ⊗ P2‖1 =
∑
a,b

∣∣P(a, b) − P1(a)P2(b)
∣∣ �

√
2(θ(δ) + δ) ln 2. (23)

19 In fact, one can take θ(δ) = −δ log2
δ

|A | for δ � 1
2 . See Cover and Thomas (1991, p. 488).
1
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Thus, setting ξ(δ) = √
2(θ(δ) + δ) ln 2, we have

E
[
g(x,y)

] =
∑
a,b

P(a, b)g(a, b)

�
∑
a,b

P1(a)P2(b)g(a, b) − ‖g‖ξ(δ) by (23)

�
∑
a,b

α(a)P2(b)g(a, b) − ‖g‖δ − ‖g‖ξ(δ) by (ii)

� min
b

g(α, b) − ‖g‖(δ + ξ(δ)
)
.

This completes the proof. �
Appendix B

We present an alternative proof of Theorem 4 that does not make use of Lemma 3. The construction of the strategy
set Ψ1 is similar to that presented in the main text and we avoid duplicating detailed descriptions of the notations used.

Construction of Ψ1: The set Fn is now defined by means of two sequences of nonnegative reals, (γn)n with γn � γ̄

and (ηn)n where ηn � |A1|
dn

and ηn −→
n→∞ 0. As before, if γn = 0, then we set Fn to be a singleton. For n with γn > 0,

we let

Fn =
{
(a1, . . . , adn) ∈ A

dn

1 :
∑
a∈A1

∣∣∣∣∣ 1

dn

dn∑
k=1

1(ak = a) − αn(a)

∣∣∣∣∣ � ηn

}
. (24)

The condition ηn � |A1|
dn

ensures that Fn 
= ∅ in this case.
The sequence (ηn)n is chosen to satisfy, in addition, the following property. Let x = (x1,x2, . . .) be a sequence of

independent A1-valued random variables where xt is distributed according to αn whenever t is in the nth block, i.e.
tn−1 + 1 � t � tn. Then we require20

∞∑
n=1

P(x[n] = (xtn−1+1, . . . ,xtn ) /∈ Fn) < ∞. (25)

As before, we define F = {a = (a1, a2, . . .) ∈ A∞
1 : a[n] = (atn−1+1, . . . , atn) ∈ Fn} and then Ψ1 = {σ 〈a〉: a ∈ F }.

Construction of σ̂ ∈ Δ(Ψ1): Define a sequence of A1-valued random variables x̂ = (x̂1, x̂2, . . .) by

x̂[n] = (x̂tn−1+1, . . . , x̂tn ) =
{

x[n] if x[n] ∈ Fn,

ā[n] otherwise.

Let σ̂ = σ 〈x̂〉. Note that σ̂ is indeed a mixture of strategies in Ψ1.

20 For n with γn = 0, it is obvious that P(x[n] /∈ Fn) = 0. For n with γn > 0, note that x[n] /∈ Fn implies that | 1
dn

∑dn
k=1 1(xtn−1+k = a)−αn(a)| >

ηn|A1| for some a ∈ A1. For each a ∈ A1 and k = 1, . . . , dn, the random variable 1(xtn−1+k = a) takes values 0 and 1, and has mean αn(a). Hence
by a large deviation inequality due to Hoeffding (1963) we have

P

(∣∣∣∣∣ 1

dn

dn∑
k=1

1(xtn−1+k = a) − αn(a)

∣∣∣∣∣ >
ηn

|A1|

)
� 2 exp

(
−2dn

η2
n

|A1|2
)

,

and so

P
(
x[n] /∈ Fn

)
� 2|A1| exp

(
−2dn

η2
n

|A1|2
)

.

Take, for example, ηn = |A1|/d1/4
n (> |A1|/dn). Then the exponential term on the right side of the above inequality is exp(−2

√
dn) and (25)

holds.
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Verification of the theorem: As before, in order to verify that Ψ1 has the property (i) of the theorem, it is enough to
ensure (9). By estimating |Fn| in a manner analogous to the proof in the main text, one sees that it suffices to ensure
(10).

To derive a sufficient condition to be verified in order to show that σ̂ has the property (ii), observe that the L1-
distance between the conditional distributions of x[n] and x̂[n] given x[1], . . . ,x[n − 1] is at most 2P(x[n] /∈ Fn), that
is, ∑

an∈A
dn
1

∣∣P(
x[n] = an

) − P
(
x̂[n] = an

)∣∣ � 2P
(
x[n] /∈ Fn

)
.

It follows that, in the nth block, we have

min
τ∈Σ2

Eσ̂ ,τ

[
tn∑

t=tn−1+1

g(at , bt )

]
� dnU(γn) − 2‖g‖P

(
x[n] /∈ Fn

)
and hence, for each N = 1,2, . . .,

min
τ∈Σ2

Eσ̂ ,τ

[
tN∑
t=1

g(at , bt )

]
�

N∑
n=1

dnU(γn) − 2‖g‖
N∑

n=1

P
(
x[n] /∈ Fn

)
.

Thus, by virtue of (25), in order to show part (ii) of the theorem it suffices to choose (γn)n so that (13) holds.
The part of the proof that exhibits a choice of (γn)n that satisfy (10) and (13) as well as the verification of (iii) is

identical to the one in the main text and thus is omitted.
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