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Abstract: The objective of environmental observation with WSNs (wireless sensor networks) is to extract the 
synoptic structures (spatio-temporal sequence) of the phenomena of ROI (region of interest) in order to make 
effective predictive and analytical characterizations. Energy limitation is one of the main obstacles to the 
universal application of WSNs and therefore there are a large mass of researches on energy conservation for 
WSNs. Among them, adaptive sampling strategy is regarded as a promising method to improve energy 
efficiency in recent years, therefore, many researches are concerning to different kinds of energy efficient 
sampling scheme for WSNs. In this paper, we dedicate to investigating how to schedule sensor nodes in the 
spatial region domain by our adaptive sampling scheme so as to reduce energy consumption of sensor nodes. 
The key idea of this paper is to schedule sensor nodes to achieve the desired level of accuracy by activating 
sensor system only when necessary to acquire a new set of samples and then prepare to power it off immediately 
afterwards. By adaptively sampling the region of interest, fewer sensors are activated at the same time. 
Moreover, only the necessary communications are remaining with this algorithm, so as to achieve significant 
energy conservation than before. The algorithm proposed in this literature is named as Adaptive Spatial 
Sampling (ASS) algorithm in short. The simulation results verified that ASS algorithm can outperform 
traditional fixed sampling strategy. Copyright © 2014 IFSA Publishing, S. L. 
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1. Introduction 
 

WSNs [1] have received considerable academia 
research attention in present years. WSNs consist of a 
large number of tiny sensor nodes deployed in a 
geographical area, and each node is a low-power 
device that integrates computing, communication and 
sensing abilities. The key application of WSNs is 
monitoring physical phenomena and acquiring 
environment information. With the advancements in 
hardware miniaturization and integration, it is 
possible to produce tiny cheap sensor devices that 
combine sensing with computation, storage, and 
communication. Availability of such devices has 

made it possible to deploy them in a networked 
setting for applications, such as wildlife habitat 
monitoring [2], wild-fire prevention [3], and 
environmental monitoring [4], and so on. 

Typically, each sensor node collects raw sensory 
data from phenomenon which is needed to be 
delivered to the users through network 
interconnection for further analysis. The simplest 
way is to permit each sensor node to deliver its raw 
sensory data to the base station periodically, where 
the data can be assembled for subsequent analysis. 
However, this approach results in excessive 
communication and therefore the energy 
consumption of certain sensor nodes is very large. 
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Energy limitation is one of the main obstacles to the 
universal application of WSNs. In recent years, 
several energy management schemes have been 
proposed to reduce network power consumption in 
the literatures. A detailed survey can be found in [5], 
which assumes that data acquisition and processing 
have an energy consumption which is significantly 
lower than that of communication. 

Generally, data acquisition and processing 
consume energy that is significantly lower than that 
of communication. Therefore, traditional researches 
are concerned with how to conserve energy as much 
as possible by reducing transmission capability. 
Unfortunately, this assumption does not always  
hold in a number of practical applications because 
acquisition times are typically longer than 
transmission, and moreover there is unusual 
sophisticated signal process in some particular 
acquisition process such as multimedia  
sensor networks. 

In this paper, we dedicate to investigating how to 
schedule sensor nodes in spatial domain by adaptive 
sampling algorithm so as to reduce energy 
consumption of sensor nodes. The key idea of this 
paper is to schedule sensor nodes to achieve the 
desired level of accuracy by activating sensor system 
only for the time needed to acquire a new set of 
samples and then powering it off immediately 
afterwards, this is also called periodic sensing in 
some literals. In addition, with the proposed 
algorithm, we can activate more sensors in non-
smooth regions and fewer sensors in the smooth 
regions to improve accuracy, the same concepts 
named smooth and non-smooth regions are defined in 
[6]. By sampling the ROI adaptively, fewer sensors 
are activated at the same time than usually. 
Therefore, only necessary communications are 
remained, so as to achieve significant energy 
conservation. These fields where there are too many 
awaking sensor nodes than necessary are called as 
over-sampled region, while there are fewer awaking 
sensor nodes than necessary are called as under-
sampled regions. However, how to move sensor node 
from over-sampled regions to the under-sampled 
regions is another research topic and doesn’t mention 
in this paper. In this paper, we propose an energy 
effective adaptive sampling algorithm considering 
spatial correlation in each cluster for WSNs,  
which is named as Adaptive Spatial Sampling  
(ASS) algorithm. 

The following paper is organized as follows. 
Section II introduces some related works. Section III 
presents ASS algorithm in details. Simulation 
environment and results are finally presented in 
Section IV. Section V is the conclusion of this paper. 

 
 

2. Related Works 
 
The problem of energy efficient transmission has 

been investigated with certain technology such as 
mathematical optimization in the current literatures 

[7-8]. However, most researches are concerned with 
energy efficient transmission, not energy efficient 
sampling. Unfortunately, data acquisition or sampling 
will consume much more energy than data 
transmission in a number of practical applications 
because acquisition times are typically longer than 
transmission, especially in some sophisticated 
acquisition process such as multimedia sensor 
networks. Therefore, some researchers have being 
investigated in energy efficient sampling scheme  
for WSNs. 

Temporal correlation was used in an adaptive 
sampling algorithm for minimizing the energy 
consumption of a snow sensor [9]. A similar 
approach has been suggested in [10], where the 
sampling rate is adapted based on the outcome of a 
Kalman filter. Adaptive sampling is also proposed in 
[11], in which a flood alerting system is presented. 
The system includes a flood predictor that is used to 
adjust the reporting rate of individual node. Other 
researches illustrated in [12-19] are discussed on how 
to perform energy efficient sensory data sampling. 

All the above energy efficient sampling 
algorithms are dedicated to conserving energy of 
sensor nodes. As a result, these schemes are named as 
adaptive sampling algorithms. Fig. 1 illustrates 
categories of current adaptive sampling algorithms, 
which are concluded in a lot of literatures by us. 

 
 

 
 

Fig. 1. Sampling category. 
 
 

Generally, adaptive sampling schemes can be 
divided in two categories: one is adaptive spatial 
sampling scheme and the other is adaptive temporal 
sampling scheme. Adaptive spatial sampling schemes 
assure monitor accuracy using region location 
adjustment or wake-up state scheduling. Adaptive 
temporal sampling schemes assure monitoring 
accuracy using sampling frequency adjustment or 
online model estimation of signal tendency. Certainly, 
there are a few mutational adaptive sampling schemes 
such as multi-scale adaptive sampling, which provides 
multi-resolution sensory information as possible as 
required. 

In this paper, we dedicate to studying adaptive 
spatial sampling by adaptively sampling ROI and 
propose a novel adaptive spatial sampling algorithm. 
By adaptively sampling the ROI, fewer sensors are 
activated at the same time. As a result, the total 
communication quantities are reduced and therefore 
it results in significant energy conservation for  
whole networks. 
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3. ASS Algorithm 
 
3.1 Network Model and Algorithm Overview 
 

It is assumed that a large number of energy 
constrained sensor nodes are employed in a rectangle 
area randomly in our network model of WSNs. 
Therefore, the discussed network topology of WSNs 
can be represented by an undirected simple graph 

( ( ), ( ))G V G E G=  in the plane, where 

1 2( ) { , ,..., }nV G v v v=  denotes the set of nodes and 

( )E G  denotes the set of edge links in WSNs.  

A unique ID is assigned to each sensor node, 
moreover, the area that each node covered is assumed 
to be a disk centered at the transmitter. The power 

needed to support a link uv is assumed to be uv
β

, 

where uv  denotes the Euclidean distance between u 

and v, and β  denotes a real constant between 2 and 

5 depending on transmission environment. 
In this paper, it is assumed that a higher node 

density in WSNs and the sensory data sets between 
sensor nodes close to each other are always strong 
correlative. Therefore, the practical spatial data 
correlation model described in [20] can be introduced 
into this paper, where sensor nodes can achieve 
various amounts of data aggregation based on their 
distance of separation. Let S  be a vector of n  
samples of the measured random field returned by n  

sensor nodes. Let S  be a representation of S  and 
( , )d S S  be a distortion measure. With the mean 

square error as the distortion measure 

  2

( , )d S S S S= −  and with the constraint, 

 

 2

( )E S S D− <  (1) 

 

For the purpose of illustration, S  is denoted as a 
spatially correlated random Gaussian vector in this 

paper. In general case for traditional WSNs, S  and 
S  denote sensory data of neighbor sensor nodes 
respectively. Because of strong relevance of sensory 
data, the distortion measure between neighbor sensor 
nodes is very small. Therefore, there is a lot of data 
redundancy with traditional sampling scheme. For 
this reason the proposed ASS algorithm is 
investigated. The preliminary approach of adaptive 
spatial sampling is described with an example in 
Fig. 2. There are only 7 sensor nodes with ID 1 to 7 
in the square ROI. There are two unique and 
independent collections {Node 1, Node 2, Node 3, 
Node 4} and {Node 5, Node 6, Node7}, which can 
cover the whole square ROI. The preliminary 
approach schedules the two collections one by one to 
conserve energy while guaranteeing sampling range 
and precision. In the proposed ASS approach, we use 
a different selection criterion to decide sampler  
and non-sampler. 

 
 

Fig. 2. Over sampling in spatial region. 
 
 

There are three major procedures that form our 
ASS approach. The first component is in charge of 
constructing clusters within the networks and the 
adaptive spatial sampling is operated within each 
cluster and thus leads to a distributed manner. The 
second component of ASS is facilitating the selection 
of the nodes to serve as distinct sampler which is 
defined as spatial-correlation based sampler collection 
selection. The final component of ASS is sampler and 
non-sampler scheduling, which is used to collect 
sensory data and perform collection switching.  
 
 

3.2. Cluster Construction 
 

In the first phase, sensor nodes establish different 
clusters autonomously and elect CH in a fully 
distributed fashion. Our design proposes a simple 
distributed sensory correlated clustering algorithm to 
establish one-hop clusters, which is described in 
below. First of all, the probability value of sensor 
node to elect CHs is defined as: 

 

( )

( )
i

i
i

j N

E i N
p

E j
ω

∈

×
=


, 

(2) 

 

where ( )E i  and ( )E j  denote the residual energy of 

sensor node i and j respectively, iN  denotes its one-

hop sensor node degree including itself and (0,1]p ∈  

denotes the percent of cluster heads. It is obvious that 
the probability value is positive correlation with node 
residual energy. More specially, sensor nodes with 
more residual energy within all the neighbor nodes 
should be chosen to be cluster heads with higher 
probability, thus implementing maximum energy first 
principle. Each sensor node is elected randomly to be 
cluster head by itself with probability iω . After 

cluster heads election, each cluster member sensor 
node will select the nearest CH and join in that 
cluster. It is required that the distance between each 
cluster member and its nearest CH must be smaller 
than maximal transmission power radius maxR . The 

detailed clustering algorithm is described in Fig. 3. 
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Fig. 3. Pseudo-code of sensory correlated  

clustering algorithm. 
 
 

The first system-wide parameter p  is the percent 

value of cluster heads and the practical value in the 
range (0, 0.2] and defines the average probability to 
be elected as cluster heads. Generally, any region-
based clustering algorithms are appropriate for ASS 
approach, the above cluster construction is a typical 
one of them. The detailed constitutions of these 
interactive messages are omitted for simpleness. 

 
 

3.3. Sampler Collection Selection 
 

The above cluster formation follows two metrics: 
sensor nodes that are similar to each other in terms of 
sensory data should be clustered into together and 
sensor nodes that are close to each other should be 
clustered into together. Moreover, the remaining 
important phase is to construct distinct sampling 
collections within each cluster. The goal of further 
dividing each cluster into sub-clusters is to facilitate 
the election strategy of the sensor nodes to serve as 
samplers and non-samplers. As we known, higher 
correlations among sensor nodes within a cluster 
typically lead to higher sampling accuracy and 
quality. However, this will lead to low efficiency at 
aspect of energy at the same time. In this paper, we 
assume the spatial region is almost over-sampling 
and the ROI is covered by at least two distinct 
collections, therefore, sampler collection selection 
algorithm will be introduced in ASS. 

First of all, we create a correlation matrix  
for each twin collection i and collection j such that, 
for any two nodes u and v in the collection,  

ijC  is equal to the correlation between the series uD  

and vD . Formally, 

 

[ ( )] [ ( )]

( ) ( )

T
u u v v

ij

u v

D E D D E D
C

L Var D Var D

− × −
=

× ×
, (3) 

where L  denotes the length of the series and the 
symbol T represents matrix transpose. The correlation 
values are always in the range [0, 1]. Therefore, 

1ijC = implies that two series are strong correlated 

and 0ijC = implies that two series are not correlated. 

Each cluster head uses sampled sensory data for all 
the nodes within its cluster to capture the temporal 
and spatial correlations using the above correlation 
matrix and calculate sub-clusters so that the nodes 
whose sensory data highly correlated are put into 
different sub-clusters. Therefore, the sensory data of 
two sub-clusters are strong similar so as to can be 
reconstruct with each other. The objective of sampler 
collection selection is defined as such optimal 
problem in Fig. 4. As we can see in the Fig. 4, the 
key idea is to elect two collections from collection set 
which is satisfied with ROI coverage minimal 
correlation, thus lead to higher energy efficiency 
while guaranteeing monitor accuracy. 
 
 

Given a set of Collections { , , 1,2,..., }

Correlation Matrix :

[ ( )] [ ( )]

( ) ( )

Minimize  ( )

Subject to:

Collection  and Collection  Statisfied ROI Coverage 

T
u u v v

ij

u v

ij

i j i j N

C

D E D D E D
C

L Var D Var D

C

i j

∈

− × −
=

× ×
 

 
Fig. 4. Optimal objective of sampler collection selection. 

 
 

Once the sampler nodes are determined, only 
these nodes delivery sensory reading to the base node 
and the values of the non-sampler nodes will be 
predicted at the cluster head by using numerical 
prediction model such as AR model. Two-stage AR 
prediction model of sensory data is illustrated: 

 

1 1 1( ) ( )i i i iX X X X X eα β+ − += − + − + , (4) 
 

where α  and β  denote coefficients of AR 

prediction model respectively, 1ie +  denotes predictive 

error value, X  denotes the mean value of historical 
sensory data. The coefficients of AR prediction 
model can be calculated with such formulations: 
 

2
1 2 2 1

2 2
1 1

(1 )
  

1 1

ρ ρ ρ ρα β
ρ ρ

− −
= =

− −
 (5) 

1
1

2

1

( )( )

( )

N k

i i
i

k N

i
i

X X X X

X X
ρ

−

+
=

=

− −
=

−




 (6) 

 

In fact, these above operations are executed 
within each cluster in a distributed manner. The CH 
maintains AR prediction model and divides non-CH 
nodes into sampler nodes and non-sampler nodes. 
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Besides, the above two distinct sub-clusters can 
extend to multiple sub-clusters with sub-cluster 
granularity. Therefore, the second system-wide γ  

parameter is sub-cluster granularity which defines the 
average size of the sub-clusters. Intuitively, larger 
values of γ  may decrease the prediction quality 

because it will result in larger sub-cluster with 
potentially low overall correlation between its 
members. On the other hand, values that are too small 
will decrease the prediction quality since the 
opportunity to exploit the spatial correlations fully 
will the missed with very small γ . In this paper, we 

defined γ  as half nodes of each cluster, that is to say, 

each cluster is divided into two sub-clusters. 
Therefore, the key idea is to select optimal sub-
clusters by each CH, thus lead to higher energy 
efficiency while guaranteeing sampling accuracy.  

 
 

3.4 Sampler and Non-sampler Scheduling 
 

In the section of sampler collection scheduling, 
two distinct and completed sensor node sets are 
elected to establish sampling nodes alternative. Two 
sampler sets switch from one to the other following 
with the traditional TDM (Time Division 
Multiplexing) scheme. The paper divides the whole 
working process into different rounds. One set of 
sampler nodes transmit sensory data to the sensor 
head and afterwards turn off to the idle state, and the 
other set of sampler nodes wake up to perform 
monitoring at each round. The sensory data of 
sleeping nodes set are approach by awaking nodes set 
with CH by the proposed AR prediction model. The 
error between measured value and predictive value 
can be controlled because of minimal relevance 
between two sub-clusters. In a word, the monitoring 
coverage and accuracy can be guaranteed at the  
same time. 

 
 

4. Performance Evaluation 
 

The sensory data used in this paper is derived 
from Intel Berkeley Research lab [21]. There are 54 
sensor nodes deployed in the lab between February 
28th and April 5th, 2004, and each location labeled 
sensor ID value is illustrated in Fig. 5. Four 
parameters including temperature, humidity, light and 
voltage are monitored. Nevertheless, only single 
temperature value is used in our simulations because 
there are similar trends between different properties 
including temperature, humidity and light. The Fig. 6 
describes the clear correlations between  
three properties. 

We assumed that each sensor node has the same 
initial energy 10J and energy consumption model is 
described in Ref. [21]: 

 
2( ) ;  tx t rx r

i i amp i iE e d m E e mε= + × × = ×  (7) 

 
250 nJ/bit   100 pJ/(bit m )t r

i i ampe e ε= = = ⋅  (8) 
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Fig. 5. Sensor locations of Intel Berkeley research lab. 
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Fig. 6. The correlations between different properties. 
 
 

Simulation parameters are listed in below: percent 
value of cluster heads p  value in the range {0.05, 0.1, 

0.15, 0.2}, and the sub-cluster granularity γ  is the 

integer value of such equation (54 / 2)p× , thus 

ensure at least two sub-clusters in each cluster. The 
simulation process will operate on 100 rounds to 
obtain the average results.  
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The simulation results are illustrated in below: the 
clustering results of different cluster head percent are 
described in Fig. 7. Moreover, similarity comparison 
of sensory tendency between different days is 
illustrated in Fig. 8, and we can find that they have 
almost same tendency, thus verify the temporal 
correlation. In the spatial correlation domain, the 
correlation values between Sensor 1 and Sensor 2 
(strong correlation coefficient is 0.9393 at W=100), 
Sensor 1 and Sensor 16 (weak correlation coefficient 
is 0.7199 at W=100) at different window size are 
described in Fig. 9. It is obvious that the strong 
spatial and temporal correlation of sensory data from 
these results.  

Moreover, considering spatial correlation between 
sensor nodes, the energy conservation rate improves 
with our proposed algorithm because fewer sampler 
nodes are selected. The energy conservation ratio 
approaches to 0.5 because only half sensor nodes are 
working at same time approximately. However, this 
result does not take additional costs into account, 
such as extra communication cost when clustering, 
extra AR model processing cost by each CH and etc. 
The sensory data of non-sampler nodes will be 
substituted and reconstruct with that of sampler 
nodes, and the prediction error of mote 17 at Feb. 28 
can be guaranteed with the proposed ASS algorithm  
in Fig. 10. 
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Fig. 7. Clustering results of different cluster head percents. 

 
 

 
Fig. 8. Similarity comparison of tendency between different days. 
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Fig. 9. Correlation values between Sensor 1 and Sensor 2, Sensor 1 and Sensor 16 at different window size. 
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Fig. 10. Prediction error. 
 
 
 

5. Conclusions 
 

In this paper, we proposed an energy efficient 
adaptive sampling algorithm which schedules sensor 
nodes in spatial region so as to reduce energy 
consumption. With adaptive spatial sampling in each 
cluster of region of interest (ROI), fewer sensors are 
activated at the same time. Moreover, the required 
communications are reduced, so as to achieve 
significant energy conservation. The simulation 
results of this paper verified the efficiency of ASS 
approach. As we known, this is a novel trail for 
energy conservation for WSNs. In our future work, 
we will discuss multi-dimensional adaptive spatial 
sampling scheme. 
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