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Abstract We investigated water use of an invasive riparian
reed species, Arundo donax (L.), along moisture gradients to
determine how extensively this plant might affect water
resources. On an approximately 250 m stretch of the
Lower Rio Grande in South Texas, we measured the gas
exchange of water vapor at the leaf scale and structural
characteristics, such as leaf area and shoot density, at the
stand scale. To assess the effect of water availability, we
used transects perpendicular to the edge of the river
along a potential moisture gradient. Stands of A. donax
used approximately 8.8±0.9 mm of water per day during
the peak of the 2008 growing season; this rate of water use
is at the high end of the spectrum for plants. Transpiration
and leaf area index varied with water availability, which
suggests this plant is sensitive to drought and declining
water tables. This provides a baseline for future studies
comparing water use between A. donax and other plant
species, especially native species considered in riparian
restoration efforts.
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Introduction

Invasive species have altered the structure and function of
numerous ecosystems (Vitousek 1990; Walker and Smith
1997; D’Antonio et al. 1999; Parker et al. 1999; Belnap et
al. 2005; Lau 2008). In water-limited river systems, there
are added pressures from riparian invasive species (Dukes
and Mooney 2004), which can not only alter the dynamics
between vegetation and geomorphology in riparian systems
(Rowntree 1991), but negatively affect hydrology if
increases in leaf transpiration rate, leaf area, and/or access
to previously unused sources of moisture lead to reductions
in soil moisture content (Walker and Smith 1997). Much
recent attention has been paid to the role of invasive
semiarid woody plants, such as saltcedar (Tamarix spp.)
and Russian olive (Elaeagnus angustifolia L.) (Devitt et al.
1998; Dahm et al. 2002; Katz and Shafroth 2003; Nagler et
al. 2003; Cleverly et al. 2006; Nagler et al. 2008) in the
water cycle because they may compete for water resources
aggressively (Wilcox and Thurow 2006). However, the
water regained by invasive plant removal is not easily
predictable in semiarid and arid landscapes (Wilcox 2002;
Huxman et al. 2005). Owens and Moore (2007) have
pointed out that, in some cases, predictions for water
savings from these efforts have been unrealistically high.

Although interactions between water sources and riparian
forests have been studied (Clinton et al. 2002; Wagner and
Bretschko 2003), little is known about the interactions
between nonwoody vegetation and saturated or vadose zones
of riparian corridors. Impacts of invasive grasses on water
resources in particular have been understudied (Milton
2004), largely due to the focus on highly problematic woody
invaders (Richardson and van Wilgen 2004).

Giant reed (Arundo donax L.) has been in the south-
western United States since at least the early 19th century
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(Dudley 2000) and is now found in the 25 southernmost
states (Bell 1997). This species covers approximately
4,800 ha of riparian area in the Rio Grande basin of
Mexico (Yang et al. 2009) and is targeted for control in
parts of its introduced range (Milton 2004). Quantifying
variation in the water use of A. donax is an important step
in understanding how its invasion affects the water cycle,
but as with many riparian plants (Tabacchi et al. 2000), this
basic information is lacking. Iverson (1998) reported its
water consumption at over 1,700 mm year-1 by assuming
that A. donax transpires the same quantity of water as rice.
This figure exceeds evapotranspiration values measured in
riparian woodland systems in the southwestern United
States, including dense, multi-story canopies, by 18–40%
(Devitt et al. 1998; Cleverly et al. 2002; Dahm et al. 2002).

Fluctuations in water supply increase variability in
transpiration, even in riparian ecosystems (Williams et al.
2006). For example, soil moisture in a temperate riparian
zone was spatially heterogeneous in both lateral gradients
away from the edge of open water and vertical gradients
away from the saturated zone (Dall’O’ et al. 2001). Some
nonphreatophytic riparian vegetation responds largely to
either recent rainfall or water from deeper in the soil profile
without using much or even any groundwater (Dawson and
Ehleringer 1991; Scott et al. 2000). Thus, as soil moisture
in riparian zones varies interannually and seasonally due to
precipitation fluctuations (Joris and Feyen 2003), transpi-
ration rates of riparian vegetation can be accordingly
dynamic (Williams et al. 2006).

This study represents a critical step (Baldocchi et al.
1996) in characterizing the dynamics of how A. donax
impacts water resources. First, we examined spatiotemporal
variability in transpiration by examining A. donax stand
structure, leaf gas exchange, and water use efficiency along
potential water supply gradients perpendicular to the Rio
Grande. We tested the hypotheses that (a) leaf area and leaf
level transpiration declined with distance away from the
river; (b) any seasonality in the above spatial trends was
driven by water availability gradients, i.e., a more pro-
nounced trend with distance would occur during warm
seasons with high evaporative demand; and (c) within-stand
spatial variability was more pronounced during drought.
Second, we used a bottom-up approach to scaling to
estimate stand level transpiration (Baldocchi et al. 1991)
based on observed spatial and temporal variance.

Methods

Study Site

This study was conducted adjacent to the Rio Grande (26°
01′53″ N, 97°43′41″ W, 15 ma.s.l.) in Cameron County,

Texas. Mean annual precipitation was 715 mm and monthly
average temperatures ranged from 9 to 21°C in January and
23 to 35°C in August and September (TAES 2007). Soils at
the site are characterized as loam or clay loam, which are a
part of the Rio Grande-Matamoros association (Williams et
al. 1977). This area consists of a historic gently sloping
floodplain 4.0 to 6.0 km wide, where flooding still
occasionally occurs as a result of rainfall, although dams
and levees have altered the historic flood regime (Lonard
and Judd 2002).

Twelve transects were established immediately adjacent
and perpendicular to the Rio Grande within a large
monoculture of A. donax. Few other plant species were
present at the site except a sparse ground cover layer
consisting largely of buffel grass, Pennisetum ciliare (L.)
Link. Transects were located perpendicular to the river in
continuous stands whose slope was sufficient to allow for
a potential gradient in plant available water from river
edge to upper bank. Arundo donax extended at least 1 m
beyond each transect, minimizing edge effects (Spencer
et al. 2005). Four 1.0-m2 plots were spaced evenly within
each transect. The relative proximity of these four plots
to the active channel (hereafter referred to as “distance
from the river”) was used to investigate differences in
leaf gas exchange, stand structure, and water use
efficiency.

Data Collection

In three transects, gas exchange measurements were taken
on 23 separate days between the period of 27 June 2007
through 22 July 2008 using a LI-6400 portable infrared gas
analyzer (LI-COR, Inc., Lincoln, NE, USA). Within each
plot, four stems were selected from within the subset of all
stems that both reached the top of the sunlit canopy and
retained the apical meristem (Peterson and Chesson 2002),
and the chosen stems did not appear to emerge from the
same rhizome (Decruyenaere and Holt 2005). For 18 of the
23 sampling days, measurements were taken at midday
(between 1000 and 1400 h CST) to capture peak rates of
physiological processes. Leaf transpiration rates (El), were
averaged for each stem for a single midday value. On the
remaining 5 days, diurnal changes in gas exchange were
measured on all stems within one of the three transects
every 2 h between 0700 and 1900 CST. Gas exchange
measurements were conducted on clear days whenever
possible, although the prevailing weather conditions were
partly cloudy, and small isolated showers were common.
Light level was always set to match ambient conditions
measured at the beginning of each measurement cycle
(adjusted every 2 h on days of diurnal samplings), and CO2

concentration was set to maintain 370 μmol mol−1 in the
sample chamber.
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To estimate seasonal leaf water use efficiency (Ehleringer
et al. 1993; Dawson et al. 2002), the same leaf tissue used for
diurnal measurements of gas exchange collected on 3 to 5
June 2008 was analyzed for total C, total N, and stable
carbon isotope ratios (δ13C) using an elemental analyzer
(Carlo Erba EA-1108, CE Elantech, Lakewood, NJ, USA)
interfaced with a Delta-plus mass spectrometer (ThermoFin-
nigan, San Jose, CA, USA). Also within the three transects
selected for leaf gas exchange, predawn and midday leaf
water potentials (Ypd and Ymd, respectively) were measured
on 10 days using a pressure chamber (PMS Instrument Co.,
Albany, OR, USA). On each day, 12 to 16 Ypd measure-
ments (n=3/plot) were completed before astronomic sunrise,
and at least an equivalent number of Ymd measurements
were taken on the same day between 1100 and 1400.

We also looked for spatial trends in soil moisture by
taking volumetric water content (VWC) measurements in
the top 20 cm of soil in each of the four cardinal directions
within 1.0 m from the center of each gas exchange plot on 4
June 2008. Soil samples were also collected from 0 to 10
and 10 to 20 cm at 1.0−2.0 m distance laterally from the
plot’s center, and analyzed for total C, N, and P, as well as
pH, cation exchange capacity, and base saturation by the
Forest Science Laboratory at Texas A&M University
(Sparks et al. 1996). Daily weather data, including
reference evapotranspiration (ET0) and precipitation, were
obtained from the nearest weather station, the Texas
AgriLife Research Weslaco Center (26° 9′52″ N, 97°57′
25″ W).

Nine other transects ≥5 m away from (between or
outside) the gas exchange transects were allocated for
one-time destructive sampling and harvested at approxi-
mately two-month intervals from July 2007 through March
2008, and again in July 2008. Plots in these transects were
divided into three vertical sections—the upper (LAIU),
middle (LAIM), and lower (LAIL) portions of the canopy—
that were partitioned equally, relative to the height of the
tallest stems near each transect. The stem density, and
diameter and height of each stem, were recorded in each
plot. Total leaf area within 0.25-m2 subplots was quantified
using a LI-3100 C leaf area meter (LI-COR, Inc., Lincoln,
NE, USA) for five transects in order to develop Eq. 1. All
stems were then cut at ground level and oven-dried at 60°C
for biomass measurements. Leaf area index (LAI) for each
1.0-m2 plot was then estimated by the relationship,

Ls ¼ eð4:293�0:010Dþ0:853 lnMÞ ð1Þ

between leaf area (Ls, cm
2) and biomass (M, grams) of each

stem and its distance from the river (D, m). Values of Ls for
each stem harvested within the subplots were summed,
converted to m2, then multiplied by four to yield a value of
LAI for a 1.0-m2 plot. Equation 1 was derived from a

multiple regression model of leaf area (R2=0.912, N=90,
P≤0.05). For one transect from this site, specific leaf area
(SLA) was determined by weighing dry leaf material
separately from stem material for 5 random stems from
each plot before measuring leaf area.

Analysis

To compare between growing seasons, data were combined
into three groups: summer 2007 (June to July), winter
2007/2008 (November to February), and summer 2008
(May to July). We used a one-way analysis of variance
(ANOVA), followed by Fisher’s LSD pairwise comparisons
of plot means for all transects and sampling dates, to test
whether the following varied with distance from the river or
among transects: δ13C, El, LAI, leaf Ypd and Ymd, leaf C
and N, and soil VWC, C, N, P, pH, cation exchange
capacity, and base saturation. All statistical analyses were
conducted using SPSS 14.0.2 (SPSS Inc., Chicago, IL,
USA).

Season could not be included in the preceding analyses
because the same stems were used for gas exchange in the
winter and summer of 2008; inclusion would violate the
assumption of independence in ANOVA. Instead of
comparing all seasons, Student’s t-tests were used to
compare the gas exchange and precipitation data from
summer 2007 and summer 2008. Gas exchange data for this
comparison consisted of summer-long mean values for each
stem. Separately, a paired t-test was used to compare gas
exchange data from winter 2007/2008 to summer 2008.

Bottom-Up Approach to Estimate Stand Transpiration

An empirical model was constructed to estimate total daily
stand level transpiration as follows:

Estand ¼ EU � LAIUð Þ þ EM � LAIMð Þ
þ EL � LAILð Þ ð2Þ

Diurnal estimates for each day were based on peak
midday values and the shape of second-order polynomial
curves fit to gas exchange measurements conducted for an
entire diurnal cycle. To be conservative, we assumed that
transpiration was zero at night, increased linearly from
dawn until the first morning measurement at 0700, and
declined linearly to zero from the last evening measurement
at 1900 until twilight, which yielded curves similar to the
diurnal pattern in the mature stage of P. australis (Zhou and
Zhou 2009). The model partitioned measured transpiration
into the three vertical canopy layers using measured data in
the upper canopy (EU) and estimated data in the middle
(EM) and lower (EL) canopy layers based on the measured
light penetration in those sections of the canopy and
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corresponding transpiration values from light response
curves conducted on shaded leaves (Niinemets 2007). This
is the most conservative method in this type of scaling
(Dang et al. 1997). Instantaneous gas exchange values, in
mmol H20 m−2 s−1, were integrated for each day and
converted to mm day−1. This was done for each plot and
canopy layer, and using the LAI for each of the three
vertical sections, total daily transpiration per unit ground
area (Estand), expressed in mm day−1, was calculated
(Eq. 2).

Results and Discussion

Within-Stand Dynamics

Stable carbon isotope ratios (δ13C) of leaves collected
during the dry summer of 2008 provided a more time-
integrated perspective of leaf level water use efficiency (or
carbon gained per unit water lost) in stand moisture
gradients than in situ soil moisture or leaf water status
measurements. Results suggested that water use efficiency
was higher at greater distances away from the river. The
mean value of δ13C for plots nearest the river (Plot 1) was
the most negative; it was lower than those of Plots 3 and 4
by 0.54‰ and 0.76‰, respectively (Fig. 1). Plot 4, farthest
from the river, had the least negative values. Given that
these leaves varied in their water use efficiency, these
results suggest that plant available water decreased with
increasing distance from the river.

Soil fertility, and plant responses to it, can vary over
small spatial (Robertson et al. 1988; Jackson and Caldwell
1993) and temporal (Jackson et al. 1990) scales, and affect
leaf nutrient status. At our site, however, both leaf N and
several measures of soil fertility indicated no difference

with distance to the river, supporting water limitation as the
driver for differences in both LAI and El. There was no
significant relationship between relative distance from the
river and either % C or % N in leaves (Table 1). There was
no relationship between leaf N content and δ13C (adjusted
R2<0.001, not shown), further indicating that the variation
in δ13C values likely reflected differences in stomatal
conductance rather than leaf chemistry. Cation exchange,
base saturation, pH, soil C, soil N, and soil P content did
not vary with distance to the river in the top 20 cm of
soil (Table 2). We would expect differences in plant
available N to be reflected in A. donax growth or gas
exchange because it is known to respond to N enrichment
(Abissy and Mandi 1999).

The A. donax in this essentially monocultural stand was
highly productive for a graminoid species (Perdue 1958;
Sharma et al. 1998; Angelini et al. 2005; Papazoglou et al.
2005). Its mean LAI in our study site was 4.5 (Fig. 2). A
similar mean LAI of 4.1 was observed at another site over
240 km upstream (data not shown). Stands of Tamarix
ramosissima (Ledeb.), another common invasive species on
the Rio Grande, have lower LAI than A. donax, ranging
from 2.5 to 3.6 (Dahm et al. 2002). Phragmites australis,
which has very similar ecological and morphological
characteristics to A. donax, has been reported to have LAI
values of up to 8.9 in the peak of the growing season in
wetlands of semi-arid southeastern Spain (Moro et al.
2004); however, P. australis growing at our study location
was very sparse and limited to an approximately 1-m wide
band immediately adjacent to the river (Pers. obs.).
Maximum values of leaf transpiration were approximately
8 μmol m−2 s−1 compared with P. australis that can reach
nearly 10 μmol m−2 s−1 (Weis et al. 2002).

The P. australis stand in Spain (Moro et al. 2004)
exhibited a stronger seasonal trend than we observed for A.
donax. LAI of A. donax increased steadily throughout the
growing season and ranged from 3.3 in March 2008 to 5.5
in January 2008 (Fig. 2), with most leaf senescence and
abscission occurring after the coldest period in late January.
We did not observe the onset of leaf production due to
infrequent sampling.

Areas very near to the river tend to support a higher LAI
than those farther from the active channel and topograph-
ically upslope (Table 1). This pattern was observed in most
individual transects measured and throughout most sam-
pling periods. Greater light availability and reduced
intraspecific competition occurs at the most laterally distant
edge of stands, which allows for compensation in stem
growth (Urbanc-Bercic and Gaberšcik 1997).

Mean El also varied with distance to the river in both
summers, and followed the same trend as LAI, having the
highest values near the channel (Fig. 3). The two summers
differed greatly in precipitation, with 6.37 mm day−1 and

Fig. 1 The relative water use efficiency of young leaves of giant reed
as measured by carbon isotope discrimination (δ13C) in parts per
thousand (N=3). Plot 1 is closest to the river channel; plot 4 is at the
greatest distance. Letters indicate significance of post hoc pairwise
comparisons (Fisher’s LSD) between plots’ means (P≤0.05)
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2.42 mm day−1 in 2007 and 2008, respectively. El was
higher in the wetter summer of 2007 than the drier summer
of 2008 (t-statistic=7.958, P<.001, d.f.=19.003), and El

was higher in the drier summer than in winter 2007/2008
(t-statistic=2.224, P<0.05, d.f.=11). In summer 2007, the
lowest El rates were observed in plots farthest from the
river. In summer 2008, El in Plot 3 was 68% lower than
Plot 1. During the cool winter season, El did not differ
within the stand likely because of reduced evaporative
demand (Franks et al. 2007).

As mentioned above, water supply fluctuations within
the stand were likely a driving factor for the observed
spatial and temporal dynamics, and the most pronounced
differences with distance to the river occurred during
periods of high moisture stress. The magnitude of differ-
ence in El between the highest and lowest plots was greater
during the relatively dry summer of 2008 than the very wet
summer of 2007, signifying that proximity to the river is
even more important when there is less precipitation during
the growing season. Interestingly, the specific leaf area
(SLA) of A. donax (Table 1) suggests that it is poorly
adapted to frequent or prolonged submerged conditions
(Mommer et al. 2006), which may indicate why this species
has proliferated in areas with relatively stable water level
(e.g., near dams).

Soil moisture content in the top 20 cm on 4 June 2008
did not differ with increasing distance to the river (Table 2).

However, A. donax has functional rhizomes at depths that
can exceed 1 m (Boose and Holt 1999), and fine roots may
extend even lower in the soil profile, giving this species
access to soil moisture at depth (Kemp et al. 1997) in
systems where doing so provides a benefit (Kleinhenz and
Midmore 2001). Likewise, we did not detect a gradient in leaf
water potential with distance over ten combined sampling
dates (Table 1). However, Ypd did differ laterally on 29
February, 1 June, and 22 July 2008, and each of these days
occurred amidst a dry period of at least 14 days with <4 mm
precipitation. The trends in both Ypd and Ymd, mirrored the
pattern in El from summer 2008, in that plants were least
water stressed (i.e., least negative Ypd and Ymd) adjacent to
the channel.

Stand Transpiration

The observed spatial and temporal variation in LAI and El

described above were incorporated into a scaling model for
stand transpiration (Estand) which resulted in an overall
estimate of 9.1±1.1 mm day−1, averaged over all 23 sample
dates (Fig. 4), although it should be noted that the vast
majority of sampling dates were during the summer. An
example of the measured and modeled diurnal patterns is
given in Fig. 5. The derived diurnal trend in El resembles
that of the driving variables for transpiration: humidity,
light, and temperature (Fig. 5). Large differences in Estand

Table 1 Comparisons between plots in a stand of A. donax. Shown
are characteristics of stand structure [leaf area index (LAI, m2 m−2,
N=10) and specific leaf area (SLA, m2 kg−1, N=1)], leaf water stress
[pre-dawn (Ypd, N=3) and midday (Ymd, N=3) water potential (kPa)],

and leaf chemistry [nitrogen and carbon (N and C, %, N=3)]. Of all
the listed characteristics, only LAI differed between plots, as indicated
by letters from post hoc pairwise comparisons (Fisher’s LSD, P≤0.05)

Plot Stand structure Leaf water status Leaf chemistry

LAI SLA Ypd Ymd C N

1 6.1±1.1 a 12.3±0.8 −0.6±0.1 −2.1±0.1 42.0±0.3 2.3±0.1

2 4.6±0.3 ab 9.5±1.9 −0.8±0.1 −2.3±0.1 42.0±0.4 2.2±0.1

3 3.4±0.4 b 13.5±0.6 −0.9±0.1 −2.5±0.2 42.4±0.3 2.3±0.1

4 4.0±0.7 b 12.5±1.7 −0.8±0.1 −2.2±0.1 43.1±0.3 2.4±0.1

Table 2 Comparisons between plots in a stand of A. donax. Shown
are the soil properties volumetric water content (VWC, %), total
nitrogen (N, ppt), total carbon (C, ppt), total phosphorus (P, ppm),
total potassium (K, ppm), cation exchange capacity (CEC, meq

100 g−1), and base saturation (Base Sat., %). All data are reported as
mean ± S.E.M. Post hoc pairwise comparisons yielded no differences
between plots for any soil property (N=6 for all except VWC, where
N=12)

Plot Soil properties

VWC C N P pH CEC Base Sat.

1 24.5±2.4 36.3±5.2 1.5±0.4 17.9±7.0 7.24±0.04 18.2±2.2 92.3±1.6

2 25.2±1.5 33.6±3.0 1.3±0.2 12.6±5.5 7.34±0.03 16.9±1.2 94.5±1.3

3 26.0±0.9 33.9±1.8 1.3±0.2 11.6±4.4 7.29±0.04 16.6±0.4 93.9±0.6

4 25.4±1.5 38.4±4.6 1.6±0.3 11.4±4.5 7.25±0.04 17.5±1.2 90.7±1.4
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were evident within short time periods (Fig. 4); e.g., in only
a week (29 May–5 June, 2008), Estand varied from 4.7 mm
to 10.9 mm. This was likely a result of physiological
responses to differences in weather conditions on those
measurement days (Herbst and Kappen 1999; Lissner et al.
1999). Differences between the peak growing season and a
much less active winter season are also clear (Fig. 4). The
model estimated that mean daily Estand was 17.8 mm in the
summer of 2007, 4.8 mm during the following winter, and
8.8 mm during the summer of 2008.

These Estand values exceed most reported values in the
literature on evapotranspiration in riparian ecosystems. For
example, Estand based on eddy-covariance from a site
dominated by T. ramosissima reached up to 7 mm day−1

(Cleverly et al. 2002). In a similar study, Estand from sites
dominated by mixtures of native and invasive woody
species reached peak values of approximately 9 mm day−1

(Dahm et al. 2002). Reeds, such as Phragmites australis,
are known to have higher transpiration than other vegeta-
tion types, particularly during the peak of the growing
season (Batty et al. 2006). Estand in a pond lined by P.
australis (Cav.) Trin. ex Steud. in Nebraska, USA was
estimated at 6.5 mm day−1 at the peak of the growing
season in a stand that had a maximum LAI of 2.6 (Burba et
al. 1999a, b). Estand in P. australis in Germany is estimated
at 10 to 16 mm day−1 in stands with summertime LAI of
about 5 (Herbst and Kappen 1999). P. australis in semiarid
Spain has been shown to have average midsummer Estand

values of about 23 mm day−1 in a stand with simultaneous
LAI values of 8.9 (Moro et al. 2004). Keeping transpiration
rates constant, this last value would equate to approximately
9.6 mm day−1 if LAI were equivalent to that of A. donax in
this study, which is very similar to our modeled mean for the
summer of 2008.

Additionally, the ratio of Estand to reference evapotranspi-
ration (ET0) for reed systems can range from 0.75 to 3.4. Our
data show that A. donax had Estand:ET0 ratios ranging from
1.4 in the summer of 2008 to 3.7 in the summer of 2007. One
of the strongest controlling factors in these systems is the
horizontal advective component that supplies additional
energy to drive evaporative demand (Devitt et al. 1998;
Burba et al. 1999b; Herbst and Kappen 1999; Fermor et al.
2001; Moro et al. 2004; Peacock and Hess 2004). Soil
evaporation is unlikely a significant contributor to total
evapotranspiration (Goulden et al. 2007), largely because of
the substantial mulch layer and the general lack of exposed
soil (Pers. obs.).

Our Estand estimates may be reasonable for similar A.
donax stands throughout the Rio Grande Valley, but water

Fig. 4 Total daily stand scale transpiration (Estand, closed symbols)
and daily reference evapotranspiration (ET0, open symbols) in mm d−1

for all sampling days in 2007 (circles) and 2008 (triangles)

Fig. 3 Leaf scale transpiration (El) in mmol H20 m−2 s−1 for each
sampling period and standard error bars for: a summer 2007 (N=
4 days); b winter 2007/2008 (N=7 days); and c summer 2008 (N=
12 days). Plot 1 is closest to the river channel. Individual bars indicate
the three randomly located transects. Asterisks denote differences
between transects (P≤0.05) within a season. Letters denote differences
between plots from post hoc pairwise comparisons (Fisher’s LSD)
(P≤0.05) within a season

Fig. 2 Mean leaf area index (LAI) estimates in m2 m−2 throughout the
study period. Standard error bars are indicated (N=4 in all cases
except October 2007, where N=8)
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use patterns across larger-scale moisture gradients cannot
be determined from our results. The observed heterogeneity
in stand structure and transpiration rate of A. donax further
underlines the importance of recognizing spatial variation at
the population scale (Levin 1992). On an annual basis, the
estimation of approximately 1,700 mm year−1 made by
Iverson (1998) may be reasonable for A. donax stands in
the Rio Grande watershed (Yang et al. 2009). However,
Iverson’s (1998) discussion was of A. donax in California,

which experiences drier summer growing seasons than
typical at our site.

To have precise scaling from leaf to stand, our model
utilizes detailed horizontal and vertical measurements and
replicated on-site measures of LAI (Spencer et al. 2006)
that are reliable for highly diverse locations (Spencer et al.
2008). It is possible for leaf gas exchange to overestimate
Estand, as is known to occur in Stipa tenacissima (L.) by
71% (Ramírez et al. 2006). Leaf age accounted for over a
third of that difference (Ramírez et al. 2006), and the basal
sprouting growth form of S. tenacissima creates a complex
vertical light environment that was explicitly considered in
their scaling model. Our model accounted for shading and
carefully controlled the light environment during gas
exchange measurements to best isolate effects of moisture
gradients.

When the canopy is strongly decoupled from the bulk
atmosphere, as is the case at low wind speeds, scaling
transpiration from leaf to stand requires estimates of both
leaf stomatal conductance and canopy boundary layer
conductance (Meinzer et al. 1995). Typically, decoupling
occurs in crops with large leaves such as sugarcane
(Meinzer and Grantz 1989), or in large continuous stands
because of high aerodynamic resistance (Tolk et al. 2006).
This could lead to overestimates in transpiration based on
leaf conductance alone. However, at high wind speeds,
canopies are well coupled to the bulk air (Jarvis 1981).
High wind speeds well in excess of 6 m s−1 (more than
double what was observed in Meinzer’s sugarcane fields)
were prevalent near our study site (WBAN Station 12919)
on all measurement dates (http://www.ncdc.noaa.gov/oa/
ncdc.html), and A. donax is commonly found in areas with
high wind speeds (Speck 2003; Speck and Spatz 2004).
Moreover, these A. donax stands had a high degree of edge
relative to their total size, which would further increase the
importance of wind turbulence and mixing (Tolk et al.
2006). While we cannot rule out potential for overestimated
transpiration in this study, given the high winds this site
experienced, we predict such overestimates are modest.

In conclusion, our evidence suggests that A. donax
transpires at high rates similar to other riparian reeds (Weis
et al. 2002), which combined with high leaf area results in
high stand-level estimates of water use. In situ comparisons
of water use between A. donax and other plant species,
especially native species considered in restoration efforts,
would be needed to determine how this invasive species
may have impacted site water balance. We found that rates
of transpiration varied with water availability, which
suggests this plant is sensitive to water gradients across
the floodplain and may not transpire as much during dry
periods or with declining water tables. The higher leaf areas
observed closer to the river further demonstrate that
resources were constrained by distance to the river.

Fig. 5 Diurnal observations from 3 June, 2008. Shown are: a vapor
pressure deficit (VPD, kPa); b leaf temperature (Tleaf, °C); c
photosynthetic photon flux density (PPFD, μmol m−2 s−1); d carbon
assimilation rate (A, μmol m−2 s−1); and e transpiration rate (E, mmol
m−2 s−1) collected at approximately 2 h intervals throughout the
daylight hours. Closed symbols indicate leaves from the upper canopy
layer; open symbols indicate leaves from the middle canopy layer.
Means and standard error bars are given for each point (N=16 stems).
For open symbols in panel C, circles represent Plot 1, downward-
pointing triangles represent Plot 2, upward-pointing triangles represent
Plot 3, and squares represent Plot 4. In panels d and e, shaded regions
are time-integrated predicted values for the upper and middle canopy
layers using the diurnal model described in “Methods”

Wetlands
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