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ABSTRACT 
Dynamic pressure type foil bearings are expected to serve 

as shaft bearings for Micro Gas Turbines (MGT). In this study, 
in order to establish design guidelines of radial foil bearings, 
dynamical modeling of multi wounded foil bearing was carried 
out employing leakage flow induced vibration theory. Taking 
frictional forces due to attached part of the foil and the 
protrusion, etc. into consideration, static and dynamic 
characteristics were analyzed to examine the performance and 
the stability of radial foil bearings. 
 

INTRODUCTION 
In recent years, MGT of 100kW or less are drawing close 

attention as power generators equipped with cogeneration 
features and more recently, new research trend to combine MGT 
with Solid Oxide Fuel Cell is being paid much attention. Under 
these circumstances, aerodynamic foil bearings are considered 
to be the best candidate for MGT due to its ease of maintenance. 
Although quite a number of papers [1-4,9,11] on radial foil 
bearings are published and such technology is actually used in 
auxiliary power units (APU) for aircraft, details of bearing 
design guidelines have not yet been clarified. In this study, 
firstly, we will introduce the detail of our experimental rotor 
system equipped with radial foil bearings and the rotor 
manufactured from a commercially available turbocharger. The 
diameter of the rotor is 20mm and the surface of the rotor is 
coated by ceramic. The radial bearing used here is composed of 
two elements; i.e. a housing and a multi wounded foil with 
projections of hemisphere on one side in the adequate interval.   

Then, the rotating shaft and the foil become bearing 
surfaces with the bearing action generated by forming a wedged 
1
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gas membrane between the bearing surfaces. The bearing radial 
clearance between the rotor surface and the foil is 20mm. In the 
experiment, we measured rotational speed and vibrations of the 
rotor in the radial and axial directions [8]. Secondly, multi body 
dynamics analyses were conducted based on leakage flow 
approximation [5,7] where we took inertial force of wedged gas 
membrane into account. In the analysis, the foil is considered as 
a combination of mass less beam elements, springs and discrete 
mass particles, where the mass of each particle and spring 
coefficients are calculated based on the beam model [10].  

Based on the proposed method, static characteristics of the 
radial foil bearing were calculated providing us the information 
on necessary parameters for design guidelines such as load 
capacity and bearing stiffness parameter. Subsequently, taking 
the frictional forces acting between the foil and the protrusions 
into consideration, equations of motion of the system are 
obtained by formulating fluid dynamic forces and moments 
acting on the rotor and the foil, yielding an eigenvalue problem.  

Finally, the stability diagram showing the relation between 
the bearing number and mass ratio is first obtained with a multi 
wounded radial foil bearing. 
 

EXPERIMENT 
 

Radial Foil Bearing 
The layout of the manufactured radial foil bearing is shown 

in Figure 1. This bearing is composed of two elements; i.e. a 
housing and a foil with projections of hemisphere on one side in 
the adequate interval. The foil is made from a phosphor bronze 
1 Copyright © 2006 by ASME 
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plate of 0.1mm in thickness, 20mm in width, 202mm in length 
with many hemispherical projections whose height is 0.2mm.   

This plate is manufactured by wet etching process and   
projections are made by specially designed jig. When installing 
the foil to the housing, the plate was bent at the position of 3mm 
measured from the edge of the plate. Then, the foil was 
wounded triply and fixed with the housing. Due to the rotation 
of the shaft, a wedge like space with high pressure is yielded 
between the shaft and the inner bearing surface, which levitates 
the rotating shaft. The bearing clearance is represented as C and 
is described by the equation as follows: 

 
( ) 2 2 3C D d h t= − − −                        (1) 

 
where C , D , d , h  and t  denotes radial clearance, inner 
diameter of housing, diameter of rotor, height of projections and 
thickness of the foil, respectively. The bearing radial clearance 
between axial surface and bearing surface is 20μm, because the 
foil is triply wounded. 

 

 
 

Figure 1 Schematic view and composition of radial foil bearing 
 

These types of multi wounded foil bearing have advantages 
of easy fabrication and assemble compared with usual air bear-
ing. In Figure 2, dimensions and compositions of the foil em-
ployed in the experiment are illustrated which has another ad-
vantage of changing bearing characteristics by just accommodat-
ing the density and distribution pattern of the projections. 
 

 
 

Figure 2 Radial foil with projections 
 

In Figure 3, enlarged sketch of a projection is shown. The 
 2
2
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thickness of the foil is 0.2mm and the height of a hemispherical 
projection formed by specially designed jig is 0.2mm. 
 
 

 
 

Figure 3 Enlarged projection 
 

Experimental Setup 
The composition of the rotor and rotor housing used in the 

experiment is shown in Figure 4. The rotating shaft, the weight 
of which is 0.5kg consists of the following four parts, the rotor 
with a turbine, a sleeve, a thrust disk and a nut for fixing the 
thrust disk to the rotor and the shaft is supported by two radial 
foil bearings and a spiral thrust bearing. The martensitic 
stainless steel was selected as a material of the sleeve, and the 
surface of the shaft is coated by ceramic. At the right end of the 
rotating shaft, a reverse thread was cut to fix the thrust disk and 
a through hole was drilled for measuring the rotational speed.  
The sleeve was inserted under pressure and fixed with the shaft.  
 

 
 

Figure 4 Experimental apparatus 
 

MODELING PROCUDURE 
 

Modeling of Radial Foil Bearing 
To make mathematical model of the foil bearing, we 

expanded the foil as Figure 5(a) where flow runs through the 
narrow passage between the surface of the inner foil and the 
surface of the rotating shaft due to the rotation of the shaft. 
Copyright © 2006 by ASME
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Then, we introduce the idea that the deformation of projections
on the expanded foil plays as a linear spring element as shown 
in Figure 5(b). 
 

 
 

Figure 5(a) Modeling radial foil with projections 

 
 

Figure 5(b) Modeling radial foil with projections 
 

For further simple modifications, we combine the spring 
element corresponding to the first and second wounded foil as 
single spring element as shown in Figure 5(c). 

 

 
Figure 5(c) Modeling radial foil with projections 

 
In what follows, we will make mathematical model with

the area surrounded by the dashed line in Figure 5(c) which 
means the target system is composed of a flexible cantilevered
plate supported by discrete linear springs with the flow running
on the upper surface of the plate.  
 

Mathematical modeling 
As a next step, we introduced the idea of multi body

dynamics that the flexible foil can be regarded as a discrete
beam model consisting of n mass particles, dampers and
rotational springs, where i  and iφ  denote respectively, the
length of a beam element  and rotational angle measured relative
to the x-axis, and we chose 1 2 2 /n R nπ= = = ⋅⋅⋅ = =
(constant) where R denotes average radius of the wounded foil.
Due to the rotation and the vibration of the shaft, the upper wall
in Figure 6 moves at the velocity of U and V.  
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Figure 6   Multi body dynamical modeling 
 

ANALYSIS OF STATIC CHRACTERISTICS 
 

Steady fluid force and foil deformation 
The flow in a passage of length  and height h shown in 

Figure 7 is discussed. The flow is assumed to be two 
dimensional, incompressible and viscous. Starting the continuity 
and Navier-Stokes equations for the flow, we will derive 
another type of governing equation as  
 

 

Figure 7 Leakage flow model 
 

0Q hU V
x x

∂ ∂
− + =

∂ ∂
           (2) 

2 12Q Q h P U
t x h x h

ν
ρ

⎛ ⎞∂ ∂ ∂
+ = − −⎜ ⎟∂ ∂ ∂⎝ ⎠

                    (3) 

          
where  Q, ρ , P, h, ν , U, V denote volumetric flow rate, 
density of fluid, pressure, passage height, kinematic viscosity of 
fluid, moving velocity of upper wall in x and z direction. 

By separating the foil into n elements, corresponding 
center angle of each sector is 2 / nπ  [ ]rad  and the passage 
height at i -th element is given by 

 
21 cosih c i
n
πκ⎧ ⎫⎛ ⎞+⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
          (4) 

 
where  c  and κ  denotes radial clearance and eccentricity, 
respectively. 

Steady pressure acting on i -th element is calculated by 
Eqs.(2) and (3) and are expressed as  

U
V

U
V

 U 
3
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( ) 3 2 3 2

12 66 3 1
2

i i
i i

i i i i

Q QU UP x x P
h h h h
μ μμ μ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + − + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
  

 (5) 
where  means steady component and μ  means viscosity of 
fluid. 

In the following, we will formulate the deformation of the 
foil. Steady fluid force acting on i -th element is calculated by 
integrating the steady pressure with x and is obtained as  
 

{ } ( ){ } ( ){ }
1 1
2 2
1 1
2 2

0 1 0
1 1

0 12 2
1 0 0

x x dx x x dx
− −

⎡ ⎤
⎢ ⎥

⎛ ⎞ ⎛ ⎞⎢ ⎥= + + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠
⎢ ⎥
⎣ ⎦

∫ ∫zf P P
 

 (6) 
 
The deformation of  i -th element is determined by the fol-

lowing equation 
 

{ }{ } { }′ Δ = zk h f              (7) 
 
where { }′k  and  { }Δh  denote stiffness due to  projections and 
the deformation of the beam at the corresponding point. 
 

Calculation procedure of static characteristics 
First, we calculate the case without deformation and figure 

out the amount of deformation by Eq.(4). Then, taking account 
of additional deformation calculated by Eq.(7) and 
superimposing, we recalculate the pressure by Eq.(5). We repeat 
such process until sufficient convergence will be obtained. 

Then, the steady fluid forces acting in the direction of 
eccentricity and one perpendicular to which are calculated by 
the following equations, 
 

( )
1
2
1

1 2

cos
n

X i i
i

F P x dx A
−=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∫             (8) 

( )
1
2
1

1 2

sin
n

Y i i
i

F P x dx A
−=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∫             (9) 

where (2 1)
i

iA
n

π −
= . 

 
The equilibrium relation between fluid force and the 

bearing load is given by  
 

cos 0Xmg Fθ + =            (10) 
sin 0.Ymg Fθ− + =            (11) 
 4
4
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Then, we can determine load capacity of the bearing W and 

the eccentric angleθ as follows, 
 

2 2
X YW F F= +                           (12) 

 arctan Y

X

F
F

θ =             (13) 

 

Calculated results 
As an example, calculated results of the rotor locus and the 

relation between load capacity and eccentricity ratio are shown 
in Figures 8 and 9, where total number of the elements is 20 and 
load capacity shown here is non-dimensionalized by the shaft 
weight. 

 

 
Figure 8   Rotor locus  

 
In Figure 8, the result in the case of cylindrical bearing is 

also shown as a reference where gravitational force acts 
downward. One can find that eccentricity ratio κ  becomes 
larger than unity in the case of foil bearing due to the 
deformation of the foil. 

In Figure 9, we can find that load capacity in the case of 
foil bearing changes moderately and is affected less by the 
eccentricity ratio change compared with cylindrical bearing. 
Increasing the eccentricity ratio induces higher pressure in the 
gap between the foil surface and rotating shaft surface and then 
leads to larger deformation of the foil.  
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Figure 9   Relationship between κ  and W 

 

ANALYSIS OF DYNAMIC CHRACTERISTICS 
 

Equation of motion for foil  
In Figure 6, rotational spring constant ki connecting the 

mass of ith element mi and two adjacent foil elements is 
formulated based on the beam theory. When the moment M is 
acting on both sides of a small element of length  , the radius 
of curvature of the beam r may be determined by  

 
1 .M
r EI

=           (14) 

 
Substituting r θ=   in Eq. (14) results in 
 

.M EI
θ

=            (15) 

 
Since the stiffness of the rotational spring is defined as k = 

M/θ , substituting it into Eq.(15) yields 
 

/ .k MI=
           

(16) 
 

Additionally, the discrete mass equal to the mass of beam 
element is defined as  

 
   mm ρ=            (17) 

 
where mρ denotes the density of the foil. 
 5
5
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Then, the discrete mass of ith element and the stiffness of 
the rotational spring are finally determined as 

 

( )1
1
2i m i im ρ += +           (18) 

1

2 .i
i i

EIk
+

=
+

           (19) 

 
It is assumed that the damping moment acting on ith 

element is proportional to the difference of angular velocities of 
tow adjoining elements: 

 

1( ).
ic i i iM c φ φ+= − −           (20) 

 
Furthermore, the position of ith particle is given from the 

geometrical relationship   
 

φ
=

= ∑
1

cos ,
i

i j j
j

x    
1

sin .
i

i j j
j

z φ
=

= ∑                      (21) 

 
Then, the Lagrangian for the system becomes 
 

 

1
2 2 2 2

1
1 0 1

1

( ) ( )
2 2 2

(1 cos ).

n n n
i i i

i i i i i
i i i

n

i i
i

m k k
L x z z

T

φ φ

φ

−

+
= = =

=

′
= + − − −

− −

∑ ∑ ∑

∑        (22)
 

                     
Substituting Eq.(22) into Lagrange’s equation and 

linearization, the following equation motion is obtained: 
 

( )[ ]{ } [ ]{ } [ ] [ ] { } { } { } { }.M MJ C K K ′ ′+ + + = + +z r rφ φ φ Q Q Q  
(23) 

where { }zQ ，{ }rQ  , denote generalized forces contributed by 
the pressure, shearing force from the fluid and { }′rQ denotes one 
from the structural damping force with frictional force due to the 
Column friction between the projections and a foil. 

Unsteady pressure acting on the wall 
In this paper, it is assumed that the motion of a discrete 

beam element consists of small amplitude translational and 
rotational motion as shown in Figure 10 under the situation that 
the velocity profile of the leakage  flow  is affected by the 
running speed of upper wall U.   

Assuming that the height h, rotation angle θ , pressure P, 
and flow rate Q change with angular frequency Ω  , then h, P 
and Q can be described as 

 

0( , ) ( ) i th x t h h x eθ Ω= + Δ + Δ                     (26) 
Copyright © 2006 by ASME
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( , ) ( ) ( ) i tP x t P x P x e Ω= + Δ                  (27) 
( , ) ( ) .i tQ x t Q Q x e Ω= + Δ                                 (28) 

 

Figure 10 Translational and rotational vibration model 
 

Substituting Eqs.(26)-(28) into Eqs.(2) and (3), linearlized 
unsteady pressure is formulated as a non-dimenasional form as 

 
λ λω ω ωη

λ λω ω ξ

λ λξ η ω ξ

⎧ ⎫⎪ ⎪= − + − + + + +⎨ ⎬
⎪ ⎪⎩ ⎭

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪+ + − + Θ + − + Θ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
⎛ ⎞ ⎧ ⎫⎪ ⎪+ − − + + + Θ +⎜ ⎟ ⎨ ⎬⎜ ⎟ ⎪ ⎪⎝ ⎠ ⎩ ⎭

2

3
2 2

2

1( ) 2( ) ( ) 4 ( )( )
22 2

3( )( ) 2 ( ) 2
3 42 4

3 2 ( )( ) Re
4 4 32 2

i i i
i i

i i
i i

i
i i i

i i

p X i q X X i X X i
h h

X Xi X i X X
h h

hX XX i X C
h h

 

(29) 
where 

λ λω ξ ω ω

ξ λ λξ ξ ξ η

λ λω ωη ω ξ

⎧ ⎫⎪ ⎪= − + + − − + + Θ⎨ ⎬
⎪ ⎪⎩ ⎭

+ + − − Θ + − +

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪+ + + − + + Θ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

1 1 1( 2 ) ( ) ( )
2 2 122 2

3 3(1 ) ( 2 2 )
4 16 4

1 1 12 ( ) ( ) Re .
4 16 2 32 2

i in i i
i i

in i in i
i i

i i
i i

C i q i i
h h

h h
hi i i

h h

 

 
In these equations, no-dimensional quantities are defined as 

 

λ η
ν

= = = = Δ = Δ
48 ,Re , / , / , /
Re

Q X x q Q Q h h

νξ θ
ρ

Δ
= Θ = Δ =02 2

2

12 ( ), ,

2

U P xp
hQ Q

h

 

inξ ：inlet pressure loss coefficient. 
 

Fluid force acting on a foil element 
In what follows, we discuss the formulation of fluid forces 

from the pressure. As is shown in Figure 11, when single foil 
element undergoes both translational and rotational oscillation 
with the point c, the height of the upper passage is given by 
Eq.(26). 

 

U
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Figure 11 Motion analysis of single element 

 
Non-dimensional pressure is describe as 

 
( ) ( ) ( ) .i t

i i iX p X p X e Ω= +P                         (30) 
 

Summation of the normalized pressure acting on ith 
element produces normalized forces if + and if − acting on both 
end of the element, which are 
 

1
2
1
2

1( )( )
2i if X X dX+ −

= +∫ P                             (31) 

1
2
1
2

1( )( ) .
2i if X X dX−

−
= −∫ P                              (32) 

 
Substituting Eq.(30) into Eqs.(31) and (32), then, fluid 

force is obtained as a non-dimensional form as 
 

{ } { } (

)

{ }
{ }

{ }
{ }

ω

ω

Ω

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦
⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪⎡ ⎤ ⎨ ⎬⎣ ⎦
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

= +

+

+
−

2
11 12

11 12 13

11 12 13 14

0 0 ( )

0 ( )

( 1/2)

f f

f f f

i t
f f f f

J J i

C C C i

K K K K e

fz fzf f

Θ
η

q

C

 

(33) 
 
where { }fzf , { }Θ , { }η , { }−( 1/ 2)q , { }C are the vectors 

denoting the fluid force vector, rotation angle vector, parallel 
displacement vector, fluctuating flow vector and integration 
constant vector, respectively. From Eq.(33), we can finally 
derive generalized fluid force as a dimensional vector as 

{ } [ ]{ }
2

2
22 .

2
Q L
h

ρ
= ⋅z fzQ f                        (34) 

As in the same manner, we can formulate the effect of 
shear stress acting on the surface of the foil as 
 

{ } [ ]{ }2
1Lτ=rQ φ                                                    (35) 

 
where 26 / 2 /Q h U hτ μ μ= − . 
6
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Structural and frictional force  
It is not easy to formulate structural and frictional force due 

to the friction between the projections and a foil properly. There-
fore, in this paper, the effect is taken into account as an equiva-
lent linear damping proportional to the velocity in the radial 
direction which gives us the form as 
 

{ } { }frC′ ⎡ ⎤= ⎣ ⎦rQ φ                                                       (36) 
 

Equation of motion of a foil 
Combining Eqs.(33)-(36) together with Eq.(23), we may 

write the equation motion of a foil as  
 

 
(37) 

Equation of motion of a rotating shaft 
If we write small amplitude vibration of a rotating shaft 

around the equilibrium point as  
 

e aex
i t= Ω , e bey

i t= Ω                                           (38) 
 

We may write the equation of motion for the rotating shaft 
as  

m
d e
dt

fx
x

2

2 0− =                                                    (39) 

m
d e

dt
fy

y

2

2 0− =                                                    (40) 

 
where fx and fy denote fluid force acting in the direction of 
eccentricity and the one of perpendicular direction and m 
denotes mass of a rotating shaft. 

Integrating the pressure described by Eq.(29) with enter 
surface of the rotating shaft, we may obtain fx and fy. Inserting 
these into Eq.(39) and (40), we finally obtain the equation of a 
rotating shaft as follows, 
 

{ }
{ }
{ }

{ }

11 12 11 12 11 122

21 22 21 22 21 22

0 0 0 0 0 0
( ) ( ) 0.0 0 0 0 0 0

( 1/ 2)

a

R R R R R R b

R R R R R R

J J C C K K
i iJ J C C K Kω ω

⎧ ⎫
⎪ ⎪⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎪ ⎪+ + =⎜ ⎟ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎪ ⎪⎝ ⎠
⎪ ⎪−⎩ ⎭

m
m
Θ

q

 
(41) 

 

Stability analysis 
To start with, we have to combine the equation of motion 

for the foil and a rotating shaft which yields  
 

{ }
{ }

31 31 32 31 322

21 21 22 21 22

0
( ) ( ) 00 ( 1/ 2)

w w w w w

w w w w w

J C C K K
i iJ C C K Kω ω

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎧ ⎫⎪ ⎪+ + =⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎨ ⎬⎜ ⎟ −⎪ ⎪⎩ ⎭⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

Θ
q

 7
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(42) 

 
Rewriting the vectors as 

{ } { }( )iω=ma aκ m , { } { }( )iω=mb bκ m , { } { }( )iω=Φκ Θ ,then, 
we have an expression of the conventional form of the 
dynamical problems as 
 

[ ] [ ]( )

{ }
{ }
{ }
{ }
{ }
{ }

{ }

ω

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪

− =⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪−⎩ ⎭

( ) 0 .

( 1/ 2)

a aM i K

ma

mb

Φ

a

b

κ
κ
κ
m
m
Θ

q

                            (43) 

 
where 
 

[ ] [ ]11 12 11 12 11 12

21 22 21 22 21 22

31 31 32 31 32

21 21 22 21

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0,
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

R R R R R Ra a

R R R R R R

w w w w w

w w w w

I I
I I

I I
J J C C K KM K

J J C C K K
J C C K K
J C C K K

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ − −= =⎢ ⎥
⎢ ⎥ − −
⎢ ⎥

− −⎢ ⎥
⎢ ⎥ − −⎢ ⎥⎣ ⎦ 22w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
In the following, we performed stability analysis based on 

complex eigen value analysis. 
 

Calculated results for stability analysis 
In Figure 12, results of stability analysis is summarized as a 

stability diagram where M and Λ denote non-dimensional mass 
parameter and bearing number defined as   

 
 
 
 
 
 
 
 

 
where , , , , , aR c b pμ ω  denote viscosity of the working fluid, 
rotational angular velocity of the shaft, inner radius of the 
bearing, clearance between the foil and the surface of the 
rotating shaft, bearing width and the surrounding pressure, 
respectively. 

{ }
{ }
{ }

{ }

11 12 11 12 11 12

21 22 21 22 21 222

31 31 32 31 32

21 21 22 21 22

0 0 0 0 0 0
0 0 0 0 0 0

( ) ( )0 0 0 0 0 0 0
0 0 0 0 0 0 0 ( 1/ 2)

R R R R R R a

R R R R R R b

w w w w w

w w w w w
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Figure 12  Stability diagram 

 
Major parameters and calculation conditions are shown in 

Table 1. 
 

Table 1   Bearing specification 

 
From Figure 12, we can find that unstable area decreases at 

larger eccenticity ratio and lighter shaft weight which seems to 
be reasonable. 
 

CONCLUSION 
In this study, as a first step to establish design guideline of 

foil bearings, static and dynamic analyses employing leakage 
induced vibration theory and discretized beam element method 
was done and the following results are obtained: 

 
(1) In the static analysis, rotor locus and relationship between 

eccentricity ratio and load capacity was obtained which 
explains actually observed tendency that eccentricity may 
become larger than unity under large deformation of a foil. 

 
(2) In the dynamic analysis, stability diagram was obtained as a 

function of mass parameter and bearing number which 
shows that stability can be realized under the condition that 
light weight, low rotational speed and large initial 
eccentricity ratio. 

Material of foil phospher bronze 
Thickness ( )st m  42 10−×  
Young’s modulus ( )E Pa  111.10 10×  
Density 3( / )kg mρ  38.78 10×  
Diameter of foil bearing ( )R m  0.02  

Width of foil bearing ( )b m  0.02  

Radial clearance ( )c m  620 10−×  
Stiffness of projection  k' (N/μm) 0.2 

Stable

Unstable

0.3κ =

0.5κ =

1.0κ =
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