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1. Introduction    

As a consequence of the great variability between sensors, the characteristics of remotely 
sensed data widely differ with respect to spectral and spatial resolutions. Additionally to  
their respective technical characteristics and peculiarities, sensors also have different 
temporal frequencies of acquisition. Coarser sensors (e.g. SPOT VEGETATION or TERRA 
MODIS) have generally close to daily acquisition rates while high spatial resolution sensors 
(e.g. SPOT HRVIR or IKONOS) have lower acquisition rates. Cloud-free high resolution 
imagery may therefore not be available at the required period unlike coarser resolution 
images. On top of this, high resolution images are sometimes so highly priced that updating 
past high resolution images with recent coarse images can be cost effective. For these 
reasons, there is a real need for a sound theoretical framework that aims at merging 
information coming from two or more different sensors while taking explicitly into account 
the spatial resolution discrepancies between images. Typically, for cost effective 
applications, this could involve predicting a high resolution image by updating a past one 
with more recent but coarser images.  
It is a common fact that remote sensors have different spatial resolution. This change of 
resolution is thus a typical issue in remote sensing applications. Depending on users’ needs 
and the heterogenity of the study areas, different algorithms of fusion were proposed for the 
spatial enhancement of remotely sensed images. These include Brovey method (Pohl & van 
Genderen, 1998), Intensity-Hue-Saturation (IHS; Harrison & Jupp, 1990), Principal 
Component Analysis (PCA; Pohl & van Genderen, 1998), wavelet-based Multi-Resolution 
Analyses (MRA; Zhou et al., 1998; Garzelli & Nencini, 2005; Ranchin et al., 2003), High-Pass 
Filter (HPF; Chavez et al., 1991), generalized Laplacian methods (Aiazzi et al., 2002) and 
downscaling cokriging (Pardo-Iguzquiza et al., 2006), just to quote a few of them. Detailed 
reviews of the numerous available algorithms can be found in (Pohl & van Genderen, 1998; 
Chavez et al., 1991; Wang et al., 2005; Ballester et al., 2006 or Laporterie et al., 2005). 
Unfortunetely, most of these methods are devoted to the case of spatial enhancement of 
remotely sensed images only in the case of simultaneous images. In other words, the images 
to be fused are assumed to be taken at the same time but with different spectral bands and O
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different spatial resolutions. It is therefore relevant to focus our attention on data fusion 
methods that typically enable us to account for several information sources in order to 
produce a single but improved image. Recently, a new Bayesian Data Fusion (BDF) 
framework was proposed in a general space-time prediction context by (Bogaert & 
Fasbender, 2007), with the aim of merging various kind of information sources that are all 
different but relevant for a same target variable. Though initially developed with stochastic 
space-time random fields applications in mind, the method proved to be efficient for 
remotely sensed applications as well (e.g. Fasbender et al., 2008b). 
This chapter shows how the BDF approach can be used for the update of high resolution 
images with coarser images. In order to illustrate the general principle of the method, a 
synthetic case study was created from SPOT VEGETATION composite images (1km 
resolution) available at different dates. Spatially degraded 10km and 100km images are 
generated and used as coarse images. From the whole time-series of coarser images and only 
few of the initial images over time, it is then shown how BDF allows  predicting the high 
resolution image at, say, date 2 by combining at the same time (i) the high-resolution image at 
a previous date 1, (ii) the coarser image at date 2, and (iii) the evolution of the coarser images 
between dates 1 and 2. Based on a quality assessment conducted by comparing the BDF-
predicted images with the corresponding original 1 km images, it is shown that the method is 
able to provide both consistent results and improved images. Built on sound theoretical 
grounds, easy to implement and computationally fast, this method opens new avenues in the 
field of cost effective and efficient data fusion techniques for remotely sensed data. 

2. Bayesian data fusion 

Combining different sources of information into a single final result (i.e. data fusion) is a 
problem of general concern for a large panel of applications, that goes far beyond satellite 
imagery and encompasses a wide array of potential methods. Among them, Bayesian 
approaches have led to interesting applications with respect to various problems such as 
image surveillance (Jones et al. 2003), object recognition (Chung & Shen, 2000), object 
localization (Pinheiro & Lima, 2004), robotic (Moshiri et al., 2002), image processing (Rajan 
& Chaudhuri, 2002), classification of remote sensing images (Bruzzone et al., 2002) and  
environmental modelling (Wikle et al., 2001), just to quote few of them. The main advantage 
of a Bayesian approach is to set the problem of data fusion into a clear probabilistic 
framework. The present chapter relies on a general Bayesian Data Fusion approach in the 
context of spatial data (Bogaert & Fasbender, 2007). Its specific implementation will focus 
here on the problem of updating high resolution images with time series of coarser images. 

2.1 General formulation 
The basic concept of BDF as presented in (Bogaert & Fasbender, 2007) relies on the idea that 

variables of interest, denoted as vector 
1

( ,... ) 'nZ Z Z= , cannot be directly observed. 

Instead, they are linked to the observable variables 
,i jY  through an error-like model, with 

 
, , ,

( )
i j i j i i j
Y g Z E= +  (1) 

where gi,,j(.)’s are functionals and E is a vector of random errors that are stochastically 
independent from Z. Assuming that the Ei,,j's of the random vector E are stochastically 

www.intechopen.com



Updating Scarce High Resolution Images with Time Series of Coarser Images:  
a Bayesian Data Fusion Solution 

 

247 

independent, it is easy to obtain the conditional probability density function (pdf) of the 
vector of interest given the observed variables, with 

 
, , ,

1 1

( | ) ( ) ( ( ))
i

i j

pn

Z E i j i j i

i j

f z y f z f y g z
= =

∝ −∏∏  (2) 

where i corresponds to the channel number and pi is the number of secondary information 
corresponding to the same Zi (see Bogaert & Fasbender, 2007 for more details). 

Using Bayes theorem again for 
, , , ,

( ( )) ( | )
i jE i j i j i i j i

f y g z f y z− = , Eq. (2) becomes 

 
,

1 1

( | )
( | ) ( )

( )

ipn
i i j

Z

i j i

f z y
f z y f z

f z= =
∝ ∏∏  (3) 

where f(zi) is the a priori distribution of Zi. According to the information sources at hand, 

intermediate stages between Eq. (2) and Eq. (3) are possible as well (e.g. an expression 

mixing both 
,
(.)

i jE
f  and 

,
(. | )i jf y  distributions). 

It is worth noting that this BDF framework has interesting similarities with other multi-

sensor data fusion methods (see Mitchell, 2007 for more details). The advantage of the BDF 

framework over other existing multi-sensor data fusion methods is that it proposes a 

general formulation when accounting for several secondary information sources whatever 

the nature of these secondary information. Thanks to this, the range of applications that can 

be tackled by the BDF approach is wider and is far beyond the scope of the traditional multi-

sensor fusion issue. 

2.2 Specific assumptions 
The previous section presented the general BDF framework but it is important here to 

choose some specific assumptions in order to tackle the issue of updating high resolution 

images. In this context, there are three sources of information available at each location, 

namely the high resolution image at date 1, the coarser image at date 1 and the coarser 

image at date 2. In our implementation, the following notations will be used : 

• Z is the unknown multispectral reflectance values for the finer resolution pixel  at date 2 

• YH is the multispectral reflectance values for the finer resolution pixel at date 1 

• YL1 is the multispectral reflectance values for the coarser resolution pixel at date 1 

• YL2 is the multispectral reflectance values for the coarser resolution pixel at date 2 
Let us first assume that the finer and the coarser images share the same spectral bands. In 

these conditions, several predictions methods for the unknown pixel Z, all based on these 

information sources, can be used. In this application, only two methods will be evaluated. 

The first one simply consists in using the coarser multispectral YL2 has a raw estimate of the 

unknown pixel Z. Of course, although the image composed by the pixels YL2 is smoother 

than the target high resolution image, the global fluctuations are accounted for in the 

smooth image. The unexplained part of the variabiliy is then the local fluctuations with a 

mean equal to zero for each of the spectral bands and a variance Σ1 that can be estimated 

from the difference YH - YL1 between high and coarser resolution images at date 1. 
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The second prediction considered here is based on the following High-Pass Filtering 
approach : 
1. the high resolution image at date 1 is first decomposed into a lower frequencies image 

and a higher frequencies image using a Gaussian filter. 
2. the higher frequencies image is then combined with the coarser image at date 2. 
The resulting image has thus the advantages that details are provided by the high resolution 
image at date 1 whereas the global fluctuations are provided by the coarser image at date 2. 
The mean of this image is thus expected to be the same as the objective image and its 
variance Σ2 can be estimated from the variance of  YL1 - YL2. 
Now, assuming mutivariate Gaussian distribution for both secondary information sources 
as well as a non-informative prior distribution (i.e. constant distribution over the domain), 
the fused distribution is also a multivariate Gaussian distribution with a mean vector μ and 
a covariance matrix Σ given by 
 

 

Fig. 1. Study site 

 
1 1 1

1 2

− − −Σ = Σ +Σ  (4) 

 
1 1

1 1 2 2
μ μ μ− −= Σ(Σ +Σ )  (5) 

where μ1 and μ2 are respectively the two predictions decribed above. The value μ is thus a 
relevant candidate for the predition of the unknown finer resolution pixel Z. 
Up to this point, it was assumed that finer and coarser images share the same spectral 
bands. However, this situation rarely occurs in real case applications. Fortunately, the 
generalization of the previous approaches is straightforward for non fully overlapping 

spectral bands. Indeed, one could easily generalize 
1L

Y Z E= +  into, e.g., 

1L
Y AZ b E= + +  with b∈R  and 

n n
A

×∈R (i.e. the spectral bands of the coarser image 

are linked to the spectral bands of the target image through a translation vector b and a 
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scaling matrix A). Thanks to this, it is now theoretically possible to update high resolution 
images from a first sensor like e.g. SPOT HRVIR or IKONOS with time series of coarser 
images from a second sensor like e.g. TERRA MODIS or SPOT VEGETATION. 

3. Demonstration case study 

3.1 Simulated data 
In this case study, coarser images were simulated from biweekly composite images based on 

real SPOT VEGETATION images with a spatial resolution of 1km. The original images were 

taken in the South-East Asia region (Fig. 1). Composite images were computed on a 

biweekly basis using the mean compositing method (Vancutsem et al., 2007).  The covered 

period is 2004-2005 so that 50 images were available for this study. Fig. 2 shows this 

evolution for the year 2005. After a clouds screening, each original image was degraded at 

10 km and 100km resolution by averaging all 1km pixels corresponding to the area. 

Resulting images were then resampled at 1km in order to match the original 1km spatial 

resolution (Fig. 3). 

 

 

Fig. 2. Evolution of the original biweekly images at 1km resolution. 

In the context of this chapter, original 1km images are assumed to be the finer images and 
blurry simulated ones are the coarser images. Furthermore, it is worth noting that spectral 
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bands of both the finer and the coarser images are the same so that the specific assumptions 
described in the previous section can be directly applied here without modifications. 
 
1km 

 

10km 

 

100km 

 

Fig. 3. Examples of original finer (1km) and corresponding simulated coarser  images (10km 
and 100km). 

3.2 Results 
Two different situations are considered in this application. In the first situation, one assumes 
that the finer resolution images are exhaustively known for the previous year. 
Consequently, one can choose the most relevant previous finer image. In the second 
situation, one assumes that there is only one previous finer resolution image, so that there 
may be a seasonal shift between the previous and the objective finer resolution images (see 
Fig. 2 for the differences between seasons). Both situations are described and compared 
hereafter in the next subsections. 

3.2.1 Situation 1: finer resolution images exhaustively known for the previous year 
The methodology of Section 2.2 was applied here in the case where finer resolution images 
are exhaustivelly known for the previous year and when using coarser resolution input 
images either at 10km or at 100km (Fig. 4). Using the finer resolution image one year before 
the target date (i.e. at the same biweekly composite number but at the previous year) is a 
relevant choice for the finer resolution input in the fusion method : in that case, the previous 
finer resolution image and the new objective image correspond to the same period. As a 
consequence, there will be less changes due to the seasonal shift between both finer images. 
Fig. 5 shows the evolution of the fused image for the year 2005 when using 100km coarser 
images. By comparison with the true evolution of the 1km images in Fig. 2, there is no 
significant color difference between the predicted images from the BDF method and the 
objective images. Futhermore, it is clear that the details from the finer resolution images are 
correctly accounted for in the fused images while the colors are updated by the coarser 
images (Fig. 6 illustrates this for the 21st biweekly composite image and with 100km coarser 
image). Results (not shown here) were also convincing with the 10km coarser input images. 
It is also worth noting that, although only one finer image was chosen in this application for 
sake of brevity, there is no theoretical limitation on the number of finer resolution images to 
be accounted for within the BDF framework. The methodology presented in Section 2.2 and 
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more specifically Eqs. 4 and 5 can easily be generalized to the case of multiple finer 
resolution input images with no additional theoretical development. It is thus possible to 
account for the entire time series of the finer resolution images (before and after the 
objective image) . This is left for further researches at this point. 
 

 

Fig. 4. Situation 1. Inputs for the fusion are the original 1km image at previous year and the 
coarser image (here 100km) at the target date. Fused images are then compared with the 
true original 1km images at the target date. 

3.2.2 Situation 2: finer resolution image known for only one previous date 
In the second situation, the finer resolution input image is assumed to be available at only 
one biweekly composite image. By doing this, the previous situation is thus generalized to 
the case where there is less available information at the finer resolution. The past finer image 
can be located anywhere in the current year (or even be related to a previous year) so that 
the seasonal effects are not necessarily seen in the finer image. Furthermore, the information 
relevance of the finer image with respect to the fused one is expected to drop along with the 
change of seasons (e.g. rainy season versus dry saison). As a consequence, the seasonal trend 
will only be included by the coarser image and details from the finer image will be included 
as long as the past and target biweekly images will correspond to the same season. In order 
to illustrate this situation, the only finer resolution image was assumed to be the first 1km 
biweekly image of the year 2005. Fig. 7 illustrates this situation in the case of 10km coarser 
images, although the methodology is of course the same for 100km. 
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Fig. 5. Evolution of the decadal fused images for year 2005 when using the biweekly 
composite high spatial resolution image of the previous year. The resolution of the coarser 
images is equal to 100km here. 

Similarly to the previous situation, the same methodology was applied for both spatial 
resolution for the coarser image (10km and 100km). Fig. 8 shows the temporal evolution of 
the fused images when using 10km coarser images. Again, a simple comparison between 
Figs. 2 and 8 shows that this temporal  evolutation is in good accordance with the temporal 
evolution of the target images at 1km resolution (it is worth noting that pixels that were 
covered by clouds in the finer input image were of course not updated in the fused images). 
Furthermore, Fig. 9 illustrates the effect of the inputs on the fused results. Indeed, one can 
clearly see that the change of colors between the first and the second dates is correctly 
accounted for thanks to the 10km coarser image while the details from the previous finer 
resolution image are well preserved. Results (not shown here) were also in good accordance 
when using the 100km coarser images. 

3.2.3  Quality assessment and comparison between both situations 
Several indices were chosen for the quality assessment of the fused images. As time series 
are complete for each of the three spatial resolution, it is straightforward to compare 
updated images with the true images at 1km at each of the 25 biweekly period of year 2005. 
More specifically, one can compute the Mean Error (ME), the Mean Absolute Error (MAE) 
and the Root Mean Squared Error (RMSE) with 
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Fig. 6. On the left : the 21st biweekly fused image when using (i) original 1km image at 
previous year (upper rectangle) and (ii) coarser 100km image at target date (lower 
rectangle). On the right : original 21st biweekly 1km image. 

 
Fig. 7. Situation 2. Inputs for the fusion are the first biweekly original 1km image of the year 
and the coarser image (here 10km) at the target date. Fused images are then compared with 
the true original 1km images at the target date. 
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where Ek is the difference between pixels values of the true and the fused images and N is 
the number of pixels in the images. It is worth noting that these indices were computed 
without cloud pixels (i.e. pixels that are detected as clouds at least once in the two images). 
Fig. 10 shows the evolution of the ME for Situations 1 and 2, both for the two coarser 
resolution (each curve corresponds to a different spectral band). It is clear from these results 
that using the finer image of the previous year and the 10km coarser image provides the 
best results regarding the ME, while the ME values have larger amplitudes in the other cases 
(especially in the case of only one finer image and 100km coarser image). However, these 
amplitudes are significantly small (reflectance values belong to [0,1] interval) in order to 
conclude that the method is unbiased. 
 

 
Fig. 8. Evolution of the biweekly fused images for the year 2005 when using the first 
biweekly finer image of the current year. The resolution of the coarser images was equal to 
10km here. 

www.intechopen.com



Updating Scarce High Resolution Images with Time Series of Coarser Images:  
a Bayesian Data Fusion Solution 

 

255 

   

Fig. 9. On the left : the 9th biweekly fused image when using (i) original 1km image at 
beginning of the year (upper rectangle) and (ii) coarser 10km image at target date (lower 
rectangle). On the right : original 9th biweekly 1km image. 

 

Fig. 10. Evolution of the Mean Error (reflectance) as a function of the time for Situations 1 (b 
and d) and 2 (a and c), both for the 10km (a and b) and the 100km (c and d) coarser resolutions. 
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Similarly, Figs. 11 and 12 show respectively the evolutions of the MAE and RMSE for the 

various cases. Again, it is clear from these results that it is preferable to use the finer 

resolution image of the previous year than to rely on a unique finer image at another season. 

However, the MAE and RMSE significantly increase between the 10th and the 20th biweekly 

composite numbers (i.e. the end of the dry season and the beginning of the rain season). 

Therefore, fused images are less precise for this period of the year. This is probably a 

consequence of both the intra and inter annual variation of the vegetation in the studied 

area.  

As there were two secondary information sources (i.e. the past finer image and the coarser 

one at target date), it is also interesting to focus on the influence of these sources on the 

fused images. For this, correlation coefficients were computed between corresponding 

spectral bands of the different images. Again, these coeficients were computed at each 

biweekly composite number, allowing us to see how they evolve over time. 

 
 

 
 
 

Fig. 11. Evolution of the Mean Absolute Error (reflectance) as a function of the time for 
Situations 1 (b and d) and 2 (a and c), both for the 10km (a and b) and the 100km (c and d) 
coarser resolutions. 

Correlation coefficients between the fused and the original 1km input images are 
represented in Fig. 13. It is worth noting that the influence of the  finer resolution image 
decreases rapidly at the end of the first quarter of the year (i.e. end of the dry season) when 
using the finer resolution image at the first biweekly compsite, whereas this influence 
remains rather constant when using the finer image of the previous year. This is of course  
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Fig. 12. Evolution of the Root Mean Squared Error (reflectance) as a function of the time for 
Situations 1 (b and d) and 2 (a and c), both for the 10km (a and b) and the 100km (c and d) 
coarser resolutions. 

 
Fig. 13. Evolution of the correlation coefficients between fused and original 1km input 
images as a function of  the time for Situations 1 (b and d) and 2 (a and c), both for the 10km 
(a and b) and the 100km (c and d) coarser resolutions. 
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mainly due to the fact that there is a significant seasonal shift of vegetation between the first 

biweekly composite of the year (i.e. beginning of the dry season) and the middle of the year 

(i.e. rainy season). Furthermore, the correlation coefficients increase significantly during the 

rainy season, i.e. when the vegetation starts to grow again. It is also worth noting that the 

influence of the finer input image on the fusion results is bigger when using 100km coarser 

image. This is simply because 10km images are more relevant for the prediction at 1km than 

100km ones. Thus, as 100km images are less informative, their influence on the fused images 

is smaller. 

Similarly, it is interesting to focus on the evolution of the coarser images’s influences on the 

fused results (Fig. 14). It is worth noting that this influence is rather constant when using the 

first biweekly finer image of the current year, while it drops in the middle of the year when 

using the finer image of the previous year. These behaviors are thus precisely opposite with 

those observed for the finer resolution images in Fig. 13. Again, it is mainly due to the fact 

that the finer images of the previous year correspond to the same season as the target 

unknown image, thus globally exhibiting the same vegetation conditions. As a consequence, 

fused images rely a little bit less on the coarser image for the update of the previous finer 

images (i.e. correlation coefficients are smaller). 

 
 

 

 

 

Fig. 14. Evolution of the correlation coefficients between fused and coarser input images as a 
function of the time for Situations 1 (b and d) and 2 (a and c), both for the 10km (a and b) 
and the 100km (c and d) coarser resolutions. 
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4. Conclusion 

In this chapter, a Bayesian data fusion (BDF; Bogaert & Fasbender, 2007) framework was 

applied for the update of scare high resolution images with time series of coarser images. 

This BDF framework aims at reconciling various secondary information sources into a 

unique prediction. Although initially proposed in a spatial prediction context, a 

generalization of this BDF approach was presented here for space-time predictions. It is 

worth noting that, as information are known exhaustively over space, the use of 

remotely sensed images is a singular case of secondary information sources so that 

interpolation (or spatial predictions) is not even needed here. Other applications using 

this BDF framework can be found in (Fasbender et al., 2008a; Fasbender et al., 2008b; 

Fasbender et al., 2008c). 

After a brief general description of the BDF framework, several specific hypotheses were 

assumed in order to account for the three available information sources (the coarser 

images at date 1 and 2 and the finer image at date 1). Based on these three images, two 

methods were considered for the prediction of the target image (i.e. the finer image at 

date 2). The first method was to consider the coarser image at date 2 as a raw estimation 

of the target image. The second method was based on a High-Pass Filter (HPF) approach 

for which the lower frequencies of the finer image at date 1 are substituted by the coarser 

image at date 2. Consequently, details are provided by the high resolution image at date 1 

whereas the global fluctuations are provided by the coarser image at date 2. The final 

prediction is eventually based on the combination of both methods within the BDF 

framework. 

In this chapter, the proposed methodology was applied to a synthetic case study. Coarser 

images were simulated from biweekly composite images based on real 1km SPOT 

VEGETATION images in the South-East Asia region. Two coarser resolutions were tested 

here : 10km and 100km (even if the ratio between finer and coarser resolution images is 

expected to be smaller for real case applications). Moreover, two situations differing with 

respect to the amount of information sources at finer resolution were considered in this 

illustration. In Situation 1, finer resolution images were assumed to be available for the 

whole previous year, whereas only one finer image was available in Situation 2 (here, the 

first biweekly image of year 2005). Results showed that the method correctly accounted 

for the important seasonal trend due to the dry and rain seasons whatever the resolution 

of the coarser images (10km or 100km) or the amount of available finer images (only one 

or the whole previous year). Although visual interpretations were clearly in favor of BDF 

predictions, a validation was also performed using the true 1km images. Mean Error 

(ME), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were computed 

for each spectral band, both situations and both coarser resolutions, as a function of the 

time. Although the ME values fluctuate around zero (showing the accuracy of the 

method), the MAE and the RMSE values increase during the dry season (showing thus 

that there is a drop of precision for the method in this period of the year). This effect is 

most probably due to local changes of vegetation that are not observable at the coarser 

resolutions. However, results showed that using the finer image of previous year and 

10km coarser images led to the most efficient updates (i.e. smaller ME, MAE and RMSE 

amplitudes).  
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As there were two methods of prediction to be merged within the BDF framework, it is also 

intersting to focus on their respective influences on the fused images. Results showed that 

the influence of the finer input images is rather constant in Situation 1, while this influence 

drops during the dry season in Situation 2. This is of course mainly due to the fact that, in 

Situation 1, finer input images and target ones are assumed to correspond to the same 

season, exhibiting thus the same stage of vegetation. Conversly, the influence of the coarser 

images on the fused images drops during the dry season in Situation 1, while being rather 

constant in Situation 2. Again, this inversion is probably due to the fact that the finer input 

and the target images are more similar in Situation 1 than in Situation 2, thus relying less on 

the coarser input image in Situation 1. 

Although we only applied it here to a synthetic case study, generalizations of this BDF 

method are possible in order to tackle real case applications. As examples, using finer and 

coarser images with different spectral bands and using more than one past finer images for 

the prediction are just two possibilities for future researches. It thus opens new avenues in 

the context of updating high resolution images with coarser images. 
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