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Summary

 

• Increases in atmospheric CO

 

2

 

 concentration have an impact on plant communities
by influencing plant growth and morphology, species interactions, and ecosystem
processes. These ecological effects may be accompanied by evolutionary change if
elevated CO

 

2

 

 (eCO

 

2

 

) alters patterns of natural selection or expression of genetic
variation.
• Here, a statistically powerful quantitative genetic experiment and manipulations
of CO

 

2

 

 concentrations in a field setting were used to investigate how eCO

 

2

 

 impacts
patterns of selection on ecologically important traits in 

 

Arabidopsis thaliana

 

; herit-
abilities, which influence the rate of response to selection; and genetic covariances
between traits, which may constrain responses to selection.
• CO

 

2

 

 had strong phenotypic effects; plants grown in eCO

 

2

 

 were taller and produced
more biomass and fruits. Also, significant directional selection was observed on
many traits and significant genetic variation was observed for all traits. However, no
evolutionary effect of eCO

 

2

 

 was detected; patterns of selection, heritabilities and
genetic correlations corresponded closely in ambient and elevated CO

 

2

 

 environments.
• The data suggest that patterns of natural selection and the quantitative genetic
parameters of this 

 

A. thaliana

 

 population are robust to increases in CO

 

2

 

 concentra-
tion and that responses to eCO

 

2

 

 will be primarily ecological.
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Introduction

 

Atmospheric concentrations of carbon dioxide (CO

 

2

 

) are rising
rapidly and are expected to be 

 

c.

 

 40% higher in 2050 than
they are today (Houghton 

 

et al

 

., 2001). Given that CO

 

2

 

 is the
raw material of photosynthesis, this historically unprecedented
rate of increase, along with accompanying changes in global
climate, is expected to have profound effects on plant physio-
logy and growth, community dynamics, species distributions,

and probabilities of extinction (Bazzaz, 1990; Davis & Shaw,
2001; Poorter & Navas, 2003; Niklaus & Körner, 2004;
Reich 

 

et al

 

., 2006). In particular, elevated CO

 

2

 

 (eCO

 

2

 

)
stimulates photosynthesis and can alter light compensation
points, often resulting in increased plant growth (Körner,
2006). The effects of CO

 

2

 

 concentration on plant physiology
and growth can impact ecological interactions in several
ways, including allowing plants to grow in deeper shade
(Körner, 2006), altering competitive interactions (Brooker,
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2006; Körner, 2006), and influencing interactions with her-
bivores, pathogens, and mutualists (Bazzaz, 1990; Bezemer &
Jones, 1998; Coviella & Trumble, 1999; Mitchell 

 

et al

 

., 2003;
Johnson 

 

et al

 

., 2005). As experimental evidence document-
ing these ecological consequences has accumulated, it has
stimulated interest in the potential for elevated CO

 

2

 

 (eCO

 

2

 

)
concentrations to alter the evolution of plant populations.

Rapid evolutionary responses may be important because
genetic changes within species could alter predicted ecological
responses to eCO

 

2

 

 and other types of environmental change
(Geber & Dawson, 1993; Bazzaz 

 

et al

 

., 1995; Curtis 

 

et al

 

.,
1996; Thomas & Jasienski, 1996; Yoshida 

 

et al

 

., 2003). While
evolution is often assumed to proceed slowly relative to eco-
logical change, evolutionary responses over a few decades have
been documented in response to heavy metal contamination
of soils (McNeilly & Bradshaw, 1968; Wu & Bradshaw, 1972)
and even over a few years in response to drought (Grant &
Grant, 2002) and predation (Reznick 

 

et al

 

., 1990; Arendt &
Reznick, 2005). Evidence of rapid evolutionary change in still
other contexts is accumulating steadily (e.g. global warming
(Reale 

 

et al

 

., 2003) and biological invasions (Strauss 

 

et al

 

.,
2006)). Understanding how the CO

 

2

 

 environment affects
evolutionary dynamics is necessary for a full understanding
of the biological impacts of increasing CO

 

2

 

 concentrations, as
well as for evaluating the robustness of ecological predictions.

Several lines of evidence suggest that atmospheric CO

 

2

 

concentrations influence the evolution of vascular plant
populations, although the importance of elevated CO

 

2

 

 as a
selective agent remains an open question. First, several studies
have documented that the effects of CO

 

2

 

 concentrations on
plant growth or fitness are genetically variable within species
(Table 1), indicating either that genotypes with highest fit-
ness in an eCO

 

2

 

 environment will be different from those
today or that patterns of selection will differ with CO

 

2

 

environment. Several studies, however, have failed to detect
genetic variation in responses to eCO

 

2

 

 (Table 1). Second,
surveys of herbaria specimens reveal correlated changes in CO

 

2

 

concentrations and traits putatively involved in CO

 

2

 

 uptake
(e.g. stomatal densities) over the past 150–300 yr (Woodward,
1987; Penuelas & Matamala, 1990; Radoglou & Jarvis, 1990,
but see Körner, 1988). The magnitude of change in herbaria
specimens is similar, however, to plastic responses to eCO

 

2

 

;
therefore, genetic changes need not be invoked to explain the
observed changes (Woodward, 1987, 1993). Third, plants
from populations growing near geothermal vents where con-
centrations of CO

 

2

 

 are naturally elevated have, in some
instances, expressed higher fitness when grown in eCO

 

2

 

 than
those from populations that grow in more typical conditions
(Woodward 

 

et al

 

., 1991; Woodward, 1993). These experiments,
however, have been conducted with limited replication,
making it difficult to disentangle the effects of CO

 

2

 

 from other
environmental variables, such as temperature and soil type,
that also differ among locations. Moreover, other studies fail
to detect adaptation to elevated CO

 

2

 

 (Collins & Bell, 2006)

or only demonstrate differences in growth between populations
at subambient CO

 

2

 

 concentrations (Ward & Strain, 1997).
Despite suggestive evidence that evolutionary responses

could occur, experiments that have artificially selected for
increased fitness in eCO

 

2

 

 environments have found no evidence
that plant populations will adapt to eCO

 

2

 

 (Maxon Smith,
1977; Potvin & Tousignant, 1996; Ward 

 

et al

 

., 2000; Collins
& Bell, 2004). That is, experimental populations selected
under eCO

 

2

 

 conditions do not have higher fitness than
populations selected under ambient CO

 

2

 

 (aCO

 

2

 

) conditions
when reared in eCO

 

2

 

 environments. Nevertheless, some of
these selection experiments have found that physiological and
phenological traits have evolved in response to artificial selection
in eCO

 

2

 

 environments; after 1000 generations of growth
under eCO

 

2

 

, the unicellar alga, 

 

Chlamydomonas reinhardtii,

 

showed changes suggestive of relaxed selection on photo-
synthetic efficiency (Collins & Bell, 2004), and five generations
of selection on 

 

Arabidopsis thaliana

 

 seed production in eCO

 

2

 

vs subambient CO

 

2

 

 environments resulted in differences in
flowering time (Ward 

 

et al

 

., 2000). Because such experiments
may impose stronger selection than populations typically
experience in nature and focus primarily on the outcome
of the evolutionary process, questions about the mechanisms
underlying adaptive responses to environmental change remain.
In the examples above, adaptation to eCO

 

2

 

 environments
could fail as a result of lack of genetic variation in CO

 

2

 

 respon-
siveness, similarity of the intensity and direction of selection
in aCO

 

2

 

 and eCO

 

2

 

 environments, or genetic constraints.
Here we report on the results of a large and statistically

powerful experiment designed to predict evolutionary changes
resulting from increased concentrations of atmospheric CO

 

2

 

.
We focus on ecologically important traits whose genetic basis
is complex. We therefore use a quantitative genetic approach
that allows us to predict the short-term evolutionary trajectory
of populations grown in aCO

 

2

 

 and eCO

 

2

 

 environments.
We consider all three components of evolution and use an
experimental population of the model annual plant 

 

A. thaliana

 

to estimate patterns of selection on growth, morphological,
and phenological traits; heritabilities, which influence the rate
of response to selection; and genetic covariances between
traits, which may constrain the rate and direction of responses
to selection. The advantage of this approach is that it allows
for explicitly examining the mechanisms underlying evolu-
tionary change and provides a basis for explaining why rising
CO

 

2

 

 concentrations may or may not affect evolution. Further,
we compare the genetic relationship between fitness in aCO

 

2

 

vs eCO

 

2

 

 treatments to assess directly differences in expected
response to natural selection in the two CO

 

2

 

 environments
(Antonovics 

 

et al

 

., 1988). To accomplish these objectives, we
collected data on traits of individual 

 

A. thaliana

 

 plants
growing outdoors in a free-air CO

 

2

 

 enrichment (FACE) facility.
Making use of FACE allowed us to examine the effects of
increased CO

 

2

 

 in relatively natural field conditions, including
natural amounts of light, rain, wind, and airborne pathogens.
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Materials and Methods

 

Experimental design

 

Seven to 18 individuals were grown from each of 162 eighth-
generation recombinant inbred lines (RILs), plus the two
parental accessions, of 

 

Arabidopsis thaliana

 

 (L.) Heynh. in
each of two atmospheric CO

 

2

 

 environments: ambient (aCO

 

2

 

,

 

c.

 

 368 µmol mol

 

–1

 

) or elevated (eCO

 

2

 

, 

 

c.

 

 560 µmol mol

 

–1

 

),
the predicted concentration of atmospheric CO

 

2

 

 in 2050

(Houghton 

 

et al.

 

, 2001). The RILs were generated from a
cross between two divergent 

 

A. thaliana

 

 accessions, Bay-0
(ARBC reference CS954) and Shahdara (CS929), collected
from fallow-land near Bayreuth, Germany, and from the
Pamiro-Alay mountains in Tadjikistan, respectively (Loudet

 

et al

 

., 2002). When, as in this case, the parental accessions are
genetically divergent, the recombination that occurs during
the production of RILs generates many genetic combinations
that differ from those of the parents. Thus, the range of
variation in quantitative traits can greatly exceed that of the

Table 1 Studies detecting or not detecting statistically significant genotype × CO2 environment interactions on plant biomass or fitness

Species Trait Method
No. of 
genotypes Referencesb

Studies detecting genotype × CO2 environment interactions
Abutilon theophrasti Biomass, fruit biomass GC 3 1
Arabidopsis thaliana Biomass, fruit no., seed no. GC 3–5 2–4
Betula alleghaniensis Biomassa GH 3 5
Bromus erectus Biomass GC 7 6
Gentianella germanica Survival OC 30 7
Pinus ponderosa RGR GC 4 pop. 8
Plantago lanceolata Seed weight GC 4 9
Populus tremuloides Biomass, RGR GH 6 10
Prosopis glandulosa Biomass GH 14 11

Studies not detecting Genotype × CO2 environment interactions
Arabidopsis thaliana Biomass GC 2 12
Arrhenatherum elatius Biomass F 9–14 13
Bromus erectus Biomass GH 14 14,15
Carex flacca Biomass GH 9 15
Dactylis glomerata Biomass F, GH 9–14 13,14
Festuca ovina Biomass GC, OC 5,18 6
Festuca pratensis Biomass F 9–14 13
Holcus lanatus Biomass F 9–14 13
Lolium multiflorum Biomass F 9–14 13
Lolium perenne Biomass F 9–14 13
Phlox drummondii Biomass, seed no. GC 4 pop. 16
Pinus ponderosa Biomass GC 4 pop. 8
Plantago lanceolata Biomass GC, OC 6,18 17,18
Populus tremuloides Biomass OC 6 19
Ranunculus friesianus Biomass F 9–14 13
Rhaphanus raphanistrum Flower no., fruit no. OC 5,36 20,21
Rumex acetosa Biomass F 9–14 13
Rumex obtusifolius Biomass F 9–14 13
Salix myrsinifolia Biomass GC 3,4 22,23
Sanguisorba minor Biomass, fruit no. GH 77 24
Trifolium pratense Biomass F 9–14 13
Trifolium repens Biomass F 9–14 13
Trisetum flavescens Biomass F 9–14 13

Listed are study species, the fitness trait measured (relative growth rate, RGR), the method of CO2 manipulation (growth chambers, GC; 
glasshouse,GH; open top chambers in the field, OC; or field experiments, such as FACE, F), the number of genotypes, families, or populations 
included in the experiment, and the reference. Only studies comparing ambient vs elevated CO2 environments are included.
aG × E only detected under competition.
bReferences: 1, Bazzaz et al. (1995); 2, Norton et al. (1995); 3, Andalo et al. (2001); 4, Bidart-Bouzat et al. (2004); 5, Wayne & Bazzaz (1997); 
6, Leadley & Stocklin (1996); 7, Fischer et al. (1997); 8, Callaway et al. (1994); 9, Wulff & Alexander (1985); 10, Lindroth et al. (2001); 11, 
Polley et al. (2006); 12, Zhang & Lechowicz (1995); 13, Luscher et al. (1998); 14, Roumet et al. (2002); 15, Volk & Körner, 2001); 16, 
Garbutt & Bazzaz (1984); 17, Fajer et al. (1992); 18, Klus et al. (2001); 19, Zak et al. (2000); 20, Curtis et al. (1994); 21, Case et al. (1998); 
22, Julkunen-Tiitto et al. (1993); 23, Veteli et al. (2002); 24, Wieneke et al. (2004). 
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parents (transgressive segregation), and genetic variation in
the RIL population is high even for traits for which the
parental genotypes are phenotypically similar. Accordingly,
because the RILs were propagated without selection, the 164
lines used here are expected to represent a broader range of
genetic and phenotypic variation than would be present in a
highly selfing, natural population of A. thaliana. This high
amount of variation is evident in all traits studied, with
variation in genotypic means frequently spanning six standard
deviations, even when the two parental phenotypes are near
the mean of the distribution. This increased variation, as
well as the large size of the study (5260 plants), affords
considerable statistical power to detect genotypic effects in
response to the CO2 environments and to detect nonlinear
relationships between fitness and trait variation. For these
reasons, the use of an RIL population in estimating patterns
of selection and expected responses to selection does not suffer
from the limited allelic diversity present in an RIL population,
which can be a problem for identifying the loci that con-
tribute to phenotypic variation.

The CO2 treatments were part of an ongoing FACE
experiment at Cedar Creek Natural History Area, Minnesota,
USA (http://biocon.fr.umn.edu) (Reich et al., 2001). In this
experiment, the two CO2 treatments (elevated and ambient)
are applied to six 20-m-diameter open-air rings (three rings
per treatment). The eCO2 treatment is maintained by blowing
concentrated CO2 through vertically positioned pipes spaced
at approx. 2 m intervals around the perimeter of the ring. The
control rings (aCO2) are surrounded by the same pipe structure,
but the air blown through these pipes is not enriched in CO2.
The CO2 treatments were applied during daylight hours over
the course of the entire experiment, with CO2 concentrations
monitored and adjusted every 4 s. Manipulating atmospheric
CO2 concentrations in natural field environments in this way
has only minor effects on microclimate or light conditions
(Hendrey et al., 1993) and effectively maintains CO2 con-
centrations close to target values: 92% of 5 min averages in
the eCO2 rings deviated from the target concentration by < 5%
(D. Bahauddin, pers. comm.).

The 36 individuals from each line were grown in two
blocks (three replicates per block), within each of the three
rings, within each of the two CO2 environments (final sample
sizes, seven to 18 individuals per line per CO2 treatment).
Individuals were randomly assigned to a location within each
block. Four to 10 seeds of the appropriate line were planted
into a 164 ml Conetainer™ (Ray Leach Conetainers, Stuewe
& Sons Inc., Corvallis, OR, USA) that had been filled with
relatively low nutrient potting mix (Sunshine Mix #5; Sun
Gro Horticulture Canada Ltd, Alberta, Canada) and bottom-
watered until saturated. Following planting, Conetainers were
placed in a dark 4°C cold-room for 4 d to synchronize germi-
nation and then moved to a glasshouse where they remained
until plants germinated. The germinants were thinned so that
only the centermost plant in each pot remained. All plants

were moved to the field on 22 May 2005, approx. 5–7 d after
germination, where they were exposed to natural conditions
(light, water, and nutrients were not manipulated). On 11
June, plants were sprayed with the generalist insecticide
Sevin to control an outbreak of the crucifer-specialist Plutella
xylostella (diamondback moth). All plants were harvested on
27–30 June when flowering had ceased, the majority of plants
had begun to senesce, and fruits were beginning to dehisce.

Plant measurements

Growth, phenological, and fitness traits, were measured, as
well as damage from herbivores. On 31 May, the number of
leaves were counted, rosette diameter was measured to the
nearest 1 mm, and the number of leaves with evidence of
Phyllotreta striolata (flea beetle) damage were recorded. On 8
June, when plants were just beginning to flower, we measured
rosette diameter and visually estimated the proportion of leaf
area damaged by Plutella xylostella. Plants began flowering on
6 June, and we assessed flowering every other day for the
remainder of the season. From half of the plants from each
line in each ring, we collected a single fully expanded leaf at
the time of flowering to estimate specific leaf area (SLA),
calculated as the area (cm2) of a fresh leaf (measured using
SCION image analysis software; Scion Corporation, Frederick,
MD, USA) divided by leaf dry weight (g). After harvest, we
recorded plant height, number of flowering stems, and silique
(fruit) number. Fruit number is highly correlated with seed
production and is a good estimate of lifetime fitness in this
species (Westerman & Lawrence, 1970; Mauricio & Rausher,
1997). The vast majority of plants survived to reproduction
(> 97%); those that did not survive were assigned zero values
for fruit production. The dry weights of the total above-
ground portion of each plant and of leaves used to calculate
SLA were obtained after drying tissue at 60°C.

Statistical analyses

Phenotypic effects, genetic variation, and genotype  ×××× environ-
ment interactions Separate mixed-model nested ANOVAs were
performed on each trait, using PROC MIXED (SAS Institute)
to test for significant effects of CO2 environment, variation
among RILs, and variation in RIL response to CO2 environ-
ment. In these analyses CO2, RIL, and their interaction were
included as fixed factors. Ring(CO2) and block(CO2 ring)
were included as random factors. Significant RIL terms were
interpreted as evidence for genetic variation, and the CO2 × RIL
term provides a test for a genotype × environment interac-
tion (i.e. genetically variable plasticity to CO2 environment).
Significance of random factors was determined with likelihood
ratio tests.

Because we measured several traits on each individual, we
corrected for multiple comparisons, using a table-wise sequential
Bonferroni method. Because harvesting a leaf may have

http://biocon.fr.umn.edu
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influenced later season growth and morphological traits, we
also included the leaf removal treatment as a fixed factor in the
analyses of height, stem number, biomass, and fruit number.
We included ‘counter’ in the fruit number analysis as a fixed
factor because researchers differed in fruit counts. While these
two factors explained substantial variation in response vari-
ables, removing leaf and counter from the analyses did not
qualitatively change any results. Late-flowering individuals
that did not fully complete their life cycle over the course of
the experiment were removed from the analyses of late season
growth and fitness traits.

Heritability and genetic covariance The genetic variance of
each trait and the genetic covariance between each pair of
traits within each environment were estimated using restricted
maximum likelihood (REML) as implemented in the *nf3*
program in Quercus (available from http://www.cbs.umn.edu/
eeb/events/quercus.shtml) (Shaw, 1987; Shaw & Shaw, 1994).
To test for differences in G-matrices between aCO2 and eCO2
treatments, log-likelihood ratio tests were used to compare
models where all parameters were free to vary with models
where genetic variance-covariance components were con-
strained to be equal across environments. We also used the
genetic and environmental variances obtained from Quercus
to calculate broad-sense heritabilities (H 2 = Vg/Vp, i.e. the
proportion of total phenotypic variation that results from
genetic variation) for each trait in each CO2 treatment. Broad-
sense heritabilities confound additive genetic effects with
dominance effects and are upper-bound estimates of the
amount of heritable variation (Falconer & Mackay, 1996;
Lynch & Walsh, 1998). However, for organisms with high
selfing rates, such as A. thaliana, broad-sense heritabilities
may be more relevant for predicting short-term evolutionary
change than narrow-sense heritabilities (Roughgarden, 1979).
The genetic design of the experiment also confounds maternal
effects with genetic effects, but this contribution is expected
to be minor because maternal effects tend to diminish by
adulthood (Roach & Wulff, 1987).

Patterns of selection Patterns of selection within each CO2
environment were characterized and tested for between-
environment differences at both phenotypic and genotypic
levels (Robertson, 1966; Price, 1970; Lande & Arnold, 1983).
In the phenotypic selection analysis, individual relative
fitness was the response variable, and the morphological traits
(above-ground biomass, stem number, rosette size, height,
and SLA), phenological traits (flowering date), and resistance
to herbivory were predictor variables. Because phenotypic
analyses can be biased by microenvironmental variation that
affects both fitness and the traits of interest (Mitchell-Olds
& Shaw, 1987; Rausher, 1992; Stinchcombe et al., 2002),
REML as implemented in Quercus (Shaw & Shaw, 1994) was
used to estimate the genetic covariance between relative
fitness and the traits. The REML analyses account for variance

around genotypic means and further differentiate between
genetic and environmental covariances by including all
individuals in the analysis and incorporating within-family
covariances into likelihood estimations (Shaw, 1987; Shaw &
Shaw, 1994).

For both analyses, selection differentials and selection
gradients were estimated. Selection differentials provide an
estimate of the net selection resulting from selection acting
directly on each trait plus any selection acting on correlated
traits and were estimated by performing separate univariate
analyses on each trait (Robertson, 1966; Price, 1970). Selection
gradients provide estimates of the strength of selection acting
directly on the trait while accounting for selection on cor-
related traits included in the analysis (Lande & Arnold, 1983).
Similar analyses were also performed on RIL best linear
unbiased predictions (BLUPs) (genotypic selection analysis,
Rausher, 1992). Results from the analyses using BLUPs were
qualitatively similar to those from the REML analysis and are
presented in Supplementary Material (Table S1).

Preliminary selection analyses revealed that quadratic terms
and interactions between predictor variables (nonlinear
selection) were small in magnitude relative to the directional
selection coefficients, were seldom significant, and improved
model fit only slightly. Preliminary analyses also revealed that
results were robust to the traits included in the multiple-
regression model (i.e. directional selection gradients obtained
from a model that included all traits were similar to those
obtained from a reduced model that included only biomass,
flowering date, rosette size, and SLA). For simplicity, only
linear selection differentials and gradients from the four-trait
model are presented (quadratic and interaction terms are
presented in Table S1).

For all analyses, relative fitness was calculated as individual
fruit production divided by mean fruit production in that
CO2 environment, and all predictor traits were standardized
by their standard deviations within the relevant CO2 environ-
ment to allow for comparison between CO2 environments and
between traits measured on different scales (Lande & Arnold,
1983; Arnold & Wade, 1984). In the phenotypic selection
analyses, CO2 treatment was included in the model as a fixed
factor; significant CO2 × trait interactions indicate that patterns
of selection differ between CO2 environments. Ring(CO2)
and block(ring CO2) were included as random factors. Fruit
counter was also included in the model as a fixed factor.

In the REML analysis, fruit counter and block were
included as fixed factors. Differences in patterns of selection
between CO2 environments were tested by comparing twice
the difference in log-likelihoods of a model with identical
selection gradients (or differentials) in both environments,
with a model that allowed these parameters to differ between
environments to a χ2 distribution (log-likelihood ratio tests).
Similarly, we tested whether selection differentials and gradients
were significantly different from zero by comparing the
likelihoods of models where the genetic covariances

http://www.cbs.umn.edu/
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between the traits and fitness were constrained to zero with
models in which these parameters were free to vary.

Results

Phenotypic effects, genetic variation, and 
genotype × environment interactions

Elevated CO2 significantly increased plant growth and
reproduction and tended to decrease the amount of herbivore
damage incurred by plants (Table 2). In addition, evidence
for significant genetic variation (significant RIL effects) was
detected for all measured traits (Table 3), indicating that
each of the traits may respond to selection. However, very few
genotype × environment interactions were detected; significant
CO2 × RIL effects only were detected for leaf number and
plant height (Table 3), and the cross-environment genetic
correlations of even these traits were high (leaf number
r = 0.85, height r = 0.98). The absence of CO2 × RIL inter-
actions for most traits suggests that genotypes exhibited
similar relative trait values in both environments. Furthermore,
no evidence was detected that the number of fruits produced
by the genotypes was affected differentially by CO2, suggest-
ing that genotypes had similar fitness ranks in the two CO2
environments and that increases in atmospheric CO2 con-
centrations will not change which genotypes are favored by
natural selection (Fig. 1). Also consistent with this was a
high across-environment genetic correlation in RIL fruit
production (r = 0.98).

Heritability and genetic covariance

While we detected genetic variation for all traits examined,
broad-sense heritabilities appeared to differ only slightly

between aCO2 and eCO2 environments (Table 4). Similarly,
genetic variance/covariance matrices (G matrices) did not
differ significantly across environments ( d.f. = 15, χ2 = 17.1,
P = 0.31), yielding no indication that CO2 environment
affected the expression of genetic variation or the covariances
among traits, which can limit or facilitate evolutionary
responses (Table 5). Therefore, changes in the rate at which
this population would respond to selection are not expected
with increasing CO2 concentrations.

Natural selection on plant traits and effects of CO2 
on patterns of selection

In both CO2 environments, we detected evidence for
directional selection on many traits, with selection favoring
genotypes that were larger (i.e. more stems and greater above-
ground biomass), flowered earlier and had thinner leaves
(higher SLA) (Table 6, Fig. 2). Multiple regression analyses,
which measure the direct selection acting on each trait, also
revealed evidence for selection favoring early flowering
genotypes with larger above-ground biomass (Table 6). Few
significant quadratic or interactive selection gradients were
detected, and they were typically small in magnitude relative
to the directional selection coefficients (Table S1). Therefore,
selection is primarily directional across the range of phenotypic
variation included in this population, and selection on one
trait does not depend on the values of other traits.

While strong selection on many traits was detected, no
convincing evidence was found that the CO2 environment
altered patterns of selection. The genetic analyses via REML
detected no difference between CO2 environments in selection
gradients (P > 0.31), which measure direct selection on each
trait. While the more powerful phenotypic selection analysis

Table 2 Least-square means (± 1 SE) for each trait in ambient (aCO2) 
and elevated (eCO2) CO2 environments of Arabidopsis thaliana 
plants

Trait aCO2 eCO2

Leaf number 3.64 ± 0.19 3.79 ± 0.19
May rosette diameter (mm) 14.41 ± 0.45 15.63 ± 0.45
June rosette diameter (mm) 43.13 ±±±± 1.63 51.00 ±±±± 1.63
SLA (Specific leaf area, cm2 g–1) 181.81 ±±±± 2.6 156.25 ±±±± 1.9
Flowering date 

(days postgermination)
33.33 ± 0.21 33.12 ± 0.21

Phylotretta damage 0.09 ± 0.06 0.03 ± 0.04
Plutella leaf damage 0.60 ± 0.12 0.47 ± 0.12
Plant height (cm) 24.75 ± 0.64 28.96 ± 0.64
Stem number 6.25 ± 0.17 6.92 ± 0.17
Above-ground biomass (g) 0.28 ±±±± 0.01 0.40 ±±±± 0.01
Fruit number 115.79 ±±±± 4.27 139.03 ±±±± 4.27

Values shown in bold differ significantly (P < 0.05, post-Bonferroni 
correction) between CO2 environments.

Fig. 1 Relationship between relative fitness (fruit number) under 
ambient (aCO2) vs elevated (eCO2) CO2 conditions in Arabidopsis 
thaliana plants. Each data point is the best linear unbiased prediction 
for relative fitness for one recombinant inbred line. The black squares 
correspond to the two parental accessions.
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suggested that selection gradients for biomass (F1,2068 = 10.99,
P = 0.0009) and June rosette size (F1,2068 = 4.68, P = 0.03)
differed across CO2 treatments, selection gradients in the two
environments were similar in magnitude and never differed in
direction (Table 6). Phenotypic selection estimates must be
interpreted with caution because of the potential for environ-
mental covariances between traits to bias selection measures.

Selection differentials include selection acting directly on a
trait plus any selection acting on correlated traits. The REML
analyses revealed a significant difference between the magni-
tudes of the genetic selection differentials in aCO2 vs eCO2
treatments for May rosette size (d.f. = 1, χ2 = 3.95, P = 0.05)
and leaf number (d.f. = 1, χ2 = 8.0, P = 0.005); however,
these differences were not significant after a Bonferroni

Table 4 Broad-sense heritabilities (H2) for each Arabidopsis thaliana 
trait in ambient (aCO2) and elevated (eCO2) CO2 environments

Trait aCO2 eCO2

Fitness (fruit production) 0.29 0.31
Biomass 0.18 0.15
Flowering date 0.51 0.52
June rosette size 0.18 0.18
SLA 0.12 0.09
Height 0.39 0.44
Stem number 0.32 0.39
May rosette size 0.15 0.16
May leaf number 0.12 0.10
Phylostretta damage 0.02 0.03
Plutella damage 0.08 0.07

SLA, specific leaf area.
Heritabilities were calculated from the variance components 
estimated by restricted maximum likelihood (REML) (H2 = Vg/Vp).

Table 5 Additive genetic variance-covariance matrices (G) of 
populations of Arabidopsis thaliana plants reared under ambient and 
elevated CO2 environments (the two G matrices do not significantly 
differ at P > 0.31)

Fitness
Rosette 
size Biomass

Flowering 
date SLA

Ambient CO2
Fitness 0.039 0.014 0.045 –0.113 0.026
Rosette size 0.156 0.125 –0.047 –0.051
Biomass 0.163 –0.137 –0.010
Flowering date 0.531 –0.066
SLA 0.120

Elevated CO2
Fitness 0.040 0.010 0.044 –0.124 0.018
Rosette size 0.155 0.096 –0.044 –0.038
Biomass 0.133 –0.150 –0.010
Flowering date 0.549 –0.060
SLA 0.089

SLA, specific leaf area.
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correction was applied. No other significant differences in
selection between CO2 treatments were detected with the
REML analysis (all P > 0.18). Similarly, the more powerful
phenotypic selection analysis suggested that the magnitude
of selection on height (F1,4637 = 4.45, P = 0.03), leaf number
(F1,4640 = 4.94, P = 0.03), and May rosette size (F1,4641 =
4.38, P = 0.04) may differ between CO2 environments, but
these differences also were not significant after correcting
for multiple comparisons with a sequential Bonferroni

correction. Furthermore, in all analyses, the differences in the
estimates of selection between the two CO2 treatments were
small (< 0.03, Table 6), suggesting that CO2 has, at most,
very subtle effects on patterns of selection. Our capability of
detecting even very weak differences in selection between
CO2 treatments attests to the unusually powerful scale and
design of this study. The very close similarity in selection,
however, argues for strongly similar evolutionary responses in
aCO2 and eCO2 environments.

Table 6 Selection differentials and selection 
gradients in elevated (eCO2) vs ambient 
(aCO2) CO2 environments, calculated using 
phenotypic (PSA) and the restricted 
maximum likelihood (REML) analyses

Trait

Selection differentials Gradients

PSA REML PSA REML

aCO2 eCO2 aCO2 eCO2 aCO2 eCO2 aCO2 eCO2

Biomass 0.25 0.25 0.04 0.04 0.30 0.24 0.05 0.04
Flowering date –0.21 –0.21 –0.12 –0.13 –0.11 –0.12 –0.11 –0.12
June rosette size 0.16 0.15 0.01 0.01 –0.12 –0.08 0.01 0.01
SLA 0.00 0.00 0.03 0.02 0.01 0.01 0.03 0.02
Height 0.09 0.07 –0.00 0.00
Stem number 0.15 0.14 0.06 0.07
May rosette size 0.15 0.12 0.02 0.00
Leaf number 0.15 0.13 0.01 –0.01
Phylotreta damage –0.03 –0.01 –0.00 0.00
Plutella damage 0.02 0.00 0.02 0.02

Selection differentials and gradients that significantly differ from 0 (P < 0.05, after Bonferroni 
correction) are indicated in bold.
SLA, specific leaf area.

Fig. 2 Relationship in Arabidopsis thaliana 
between relative fitness and standardized 
values of (a) biomass, (b) flowering date, 
(c) rosette size, and (d) specific leaf area (SLA) 
under ambient (aCO2, open circles, dashed 
lines) and elevated (eCO2, filled circles, solid 
line) conditions. Each data point is the fitness 
and trait best linear unbiased prediction for 
one recombinant inbred line.
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Interestingly, for eight of the 10 traits, the point estimates
of the selection differentials obtained from the phenotypic
selection analyses were substantially greater than those
obtained from the REML analyses (Table 6). These differences
likely result from high environmental covariances between
many traits and fitness, causing biased selection estimates in
the phenotypic analysis.

Discussion

Increasing atmospheric CO2 concentrations and related
changes in global temperature and precipitation patterns
are expected to impact plant growth, community dynamics,
and ecosystem function. If increasing CO2 concentrations
also alter patterns of natural selection or other components of
the evolutionary process, then the effects of eCO2 on plant
communities may be ameliorated or exacerbated by genetic
changes that occur within plant populations (Geber & Dawson,
1993; Bazzaz et al., 1995; Curtis et al., 1996; Thomas &
Jasienski, 1996; Yoshida et al., 2003). In a statistically powerful
experiment using the model vascular plant A. thaliana
grown in a relatively natural environment, little evidence was
detected that increasing CO2 concentrations will alter the
short-term evolutionary trajectories of ecologically important
traits. In particular, we detected no significant differences
between aCO2 and eCO2 treatments in the magnitude or
direction of selection gradients, heritabilities, or genetic
covariances between traits. Selection differentials were also
very similar across CO2 treatments and did not differ signifi-
cantly, with two exceptions: both the phenotypic selection
analyses and the REML analyses indicated that eCO2 may
affect selection on leaf number and May rosette size. Although
these results may be indicative of changes in selection regimes
between CO2 environments, selection on both of these traits
was very weak and the differences in the magnitude of
selection were slight (0.02); therefore, the change in selection
with increasing CO2 concentration would result in only minor
differences in plant phenotypes. For example, the smaller
selection differential for May rosette size under eCO2 would
result in only a 0.1 mm difference in rosette size, after 10
generations of selection. These results reinforce those obtained
in other studies measuring intensities of selection under
aCO2 and eCO2 environments: both Steinger et al. (2007) and
Bazzaz et al. (1995) show only minor differences in selection
on biomass between eCO2 and aCO2 treatments.

We also detected little evidence for genetic variation in
plastic responses to CO2. Considering fitness, in particular,
we found that the same genotypes favored under current CO2
concentrations were favored under eCO2 conditions, as
indicated by the cross-environment genetic correlation for
fitness approaching 1 (r = 0.98). The G matrix also remained
remarkably constant across environments, indicating that
trade-offs that may contribute to genotypic differences
in fitness will persist with rising CO2 concentrations. In short,

evidence for eCO2 to alter predicted evolutionary trajectories
was lacking despite highly significant estimates of selection,
heritability, and genetic covariance within each of the separate
CO2 environments.

While our results suggest that eCO2 will have little impact
on the evolution of a variety of ecologically important traits,
we did not measure selection on all traits thought to be
important to CO2 responsiveness (e.g. stomatal density or
photosynthetic rates). However, the genotype × CO2 environ-
ment interaction for fitness, the most direct assessment of
difference in selection between environments, was not detect-
able, despite the large scale of the experiment. Thus it does not
support the inference that rising CO2 concentrations will alter
which genotypes are favored by natural selection. Therefore,
it is not expected that selection on unmeasured traits will dif-
fer across CO2 conditions, unless under the unlikely scenario
where genotypes differ in plasticity and patterns of selection
differ between CO2 environments in a manner that exactly
counteracts these differences so as not to result in a genotype
× environment interaction on fitness.

The lack of genotype × CO2 interaction in our study contrasts
with results from four of the five other studies investigating
G × CO2 interactions in A. thaliana (Table 1). While four
studies detected significant G × CO2 interactions on fitness
components, in one case, the interaction resulted entirely
from a strong response of only one accession (Norton et al.,
1995), and in a second example, the G × E interaction appeared
to be driven primarily by a subambient CO2 treatment
rather than the elevated CO2 treatment (Ward & Strain, 1997).
Additionally, most studies were performed in growth chambers,
often with limited replication. In the field, increased environ-
mental variation may overwhelm any genotypic effects that
are minor in magnitude.

Finding similar patterns of selection, genetic variance,
and genetic covariance in aCO2 and eCO2 environments is
surprising for at least two reasons. First, several previous
studies have suggested that evolutionary responses to rising
CO2 concentrations are likely (reviewed in Ward & Kelly,
2004). However, only 11 out of 39 experiments testing for
genotypic effects of eCO2 on growth or fitness have detected
genotypic variation in response to eCO2 (Table 1). Therefore,
the preponderance of evidence appears consistent with the
results from this study in suggesting that eCO2 will not
directly alter which genotypes are favored by natural selection.
The second reason that the negligible effect of eCO2 on plant
evolution is surprising is that eCO2 had large phenotypic
effects. Elevated CO2 increased biomass by 40%, increased
fruit production by 20%, and reduced specific leaf area by
15%. Even if CO2 per se does not alter patterns of selection,
these large phenotypic effects might be expected to influence
resource allocation and plant development, potentially chang-
ing patterns of selection, genetic variation, or evolutionary
constraints. Instead, our data suggest that selection acting on
a multitude of growth traits is linear across a wide range of
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phenotypic variation and that the genetic constraints that
influence evolutionary responses to selection appear to be little
affected by either CO2 or the growth differences that occur
when plants are reared under eCO2 vs aCO2. Together these
results suggest that selective surfaces may be constrained
across a large range of phenotypic trait values and demonstrate
that environmental changes that have dramatic impacts on
plant growth and morphology, community dynamics, and
ecosystem functioning will not necessarily influence evolu-
tionary trajectories.

Because our study population was composed of RILs
generated from crosses between genetically diverged natural
populations, we expected to maximize the opportunity to
detect genetic variation in response to CO2. Yet, we detected
genetic variation in all traits measured, with the notable
exception of CO2 responsiveness. The low amount of genetic
variation in CO2 responsiveness may reflect historically low
amounts of variation in atmospheric CO2 concentrations
across natural environments. There is little spatial variation in
CO2 concentrations at fine or coarse scales, and atmospheric
CO2 concentrations fluctuated temporally only over very
long timescales before the industrial age. Temporal and
spatial variation in selection, combined with genotype ×
environment interactions (i.e. different genotypes favored in
different environments), may contribute to the maintenance
of genetic variation in natural populations (Gillespie &
Turelli, 1989; Turelli & Barton, 2004). Although few other
environmental variables are either as spatially uniform or as
temporally predictable as atmospheric CO2 concentrations,
genetic variation in fitness responses to other entirely novel
environmental conditions, such as insecticide or heavy metal
contamination (Bradshaw, 1991; Alhiyaly et al., 1993; Macnair,
1997), is present in some populations and lacking in others
(reviewed in Blows & Hoffmann, 2005).

While we employed FACE technology to grow plants
under more natural environmental conditions than most
previous studies investigating the potential for evolutionary
responses to eCO2, this experiment was conducted in a less
complex environment than plants experience in nature. If
many of the effects of eCO2 on plant evolution are indirect
(Thomas & Jasienski, 1996), increased concentrations of
atmospheric CO2 may impact evolutionary trajectories when
plants experience competition, greater herbivore damage,
natural soil environments, or abiotic stress (e.g. drought or
heat stress). For example, Bazzaz et al. (1995) showed that
genetic variation, and thus the predicted evolutionary response,
of Abutilon theophrasti biomass production was threefold
higher under eCO2 than under aCO2, but only when plants
were grown in competitive environments. Similarly, other
studies have documented significant shifts in genotypic ranks
in growth or fitness only when plants were grown at high density
(Bazzaz et al., 1995); however, other studies have demon-
strated the opposite pattern, only observing genetic variation
in responsiveness to CO2 in the absence of competition

(Steinger et al., 1997). Interestingly, more pronounced evolu-
tionary impacts of eCO2 in complex than in simple ecological
environments would be the opposite of the phenotypic effects
of eCO2 on plant growth and fitness, which tend to be greater in
simple environments (reviewed in Ainsworth & Long, 2005).

Regardless of environmental complexity, the results of this
study indicate that patterns of natural selection and quantita-
tive genetic parameters are robust to large increases in CO2
concentration and that eCO2 itself will have minimal impact
on the evolutionary trajectory of this A. thaliana population.
Our study therefore suggests that the biotic changes that
occur in response to eCO2 will be primarily, if not entirely,
ecological. It remains to be determined, however, whether this
finding generalizes to other plant populations growing in
biotically more realistic environments.
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