The Christofel-Minkowski problem l1I:
existence and convexity of admissible solutions

Pengfei Guan
Department of Mathematics & Statistics, McGill University, QC H3A 2K6, Canada.

Xi-Nan Ma
Department of Mathematics, East China Normal University, Shanghai, 200062, China.

Feng Zhou
Department of Mathematics, East China Normal University, Shanghai, 200062, China.

1 introduction

This paper is a sequel to [15] on geometric fully nonlinear partial differential
equations associated to the Christoffel-Minkowski problem. In [15], we considered
the existence ofonvexsolutions of the following equation:

(1.2) S’k(um + uéw) =¢ on S§"

whereS), is thek-th elementary symmetric function angl; the second order co-
variant derivatives of:, with respect to orthonormal frames &ft, and where a
functionu € C?(S") is calledconvexf

(1.2) (uij +udij) >0, on S".
It is known that (e.g., see [24, 11}y € C?(S"),
/S" Sk (vij(x) + v(x)d;;)dx = 0, Ym=1,2,..,n+ 1.
A necessary condition for equation (1.1) to have a solution is
(1.3) /n zip(x)dr =0, Vi=1,2,...,n+1.

Condition (1.3) is also sufficient for the Minkowski problem, which corre-
sponding tok = n in equation (1.1). In this case, equation (1.1) is the Monge-
Ampere equation corresponding to the Minkowski problem:

(1.4) det(uij + uéw) =¢ on S".

The Minkowski problem has been settled completely by Nirenberg [21] and Pogorelov
[22] for in dimension2 and by Cheng-Yau [6] and Pogorelov [24] for general di-
mensions. From their work, for any positive functipne C?(S") satisfying the
necessary condition (1.3), Monge-Aame equation (1.4) always hazanvexso-

lution.
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Atthe another end = 1, equation (1.1) corresponds to the Christoffel problem
and it has the following simple form:

(1.5) Au+nu=¢ on S",

whereA is the Beltrami-Laplace operator of the round unit sphere. The operator
L = A+nislinear and self-adjoint. From the linear elliptic theory, equation (1.1)
is solvable if and only ifp is orthogonal to the kernel of the operafor= A + n.
Sincen is the second eigenvalue of the operatak, the kernel ofL is exactly
span{zi,...,zn+1}. Therefore, condition (1.3) is necessary and sufficient for the
solvability of equation (1.5). In general, a solution to equation (1.5) is not neces-
saryconvex(this is the point Christoffel overlooked while he made the premature
claim in [8]). Alexandrov [1] constructed some positive analytic functjosat-
isfying (1.3) such that equation (1.1) has canvexsolution. The convexity of
solutionu to equation (1.1) is equivalent to a positive lower bound of the eigenval-
ues of spherical Hessidm,;; + ud;;) which in turn are exactly the principal radii

of convex hypersurface with as its support function. Alexandrov’s examples in-
dicate that whelk < n, there exists no such bound. Equation (1.5) is lined®gn

a necessary and sufficient condition for the existenceoafexsolutions of (1.5)

was found by reading off from the explicit construction of the Green function by
Firey [9].

For the intermediate casés< k < n, the situation is much more delicate.
Let’s first define the admissible solutions for equation (1.1). £dte the space
consisting allz x » symmetric matrices. For any symmetric matixe S, S (A)
is defined to be5; (), wherel = ()4, ..., \,) are the eigenvalues of. T’ de-
fined in [10] can be written equivalently as the connected coitedantaining the
identity matrix determined by

(16) Iy = {A S S1(A) > 0, ,Sk(A) > 0}

By the works of [4], [17] and [19]k-convex functions are the natural class of
functions where equation (1.1) is elliptic.

Definition 1.1. For1 < k < n, letT'y as in (1.6). Ifu € C?(S"), we sayu is
k-convex ifW (z) = {u;j(z) +u(x)d;; } is inT';, for eachz € S™. We observe that
u is convexon S” if u is n-convex. Furthermore; is called aradmissiblesolution
of (1.1) if u is k-convex and satisfies (1.1).

Whenk # n, the class of admissible solutions of equation (1.1) is much larger
(e.g., [4]). We treated the intermediate Christoffel-Minkowski problem in [15] as
a convexity problem for fully nonlinear equations and a sufficient condition was
found there. The convexity is a fundamental problem in the theory of nonlinear
elliptic partial differential equations. Equation (1.1) is a special form of some
general fully nonlinear equations related to Weingarten curvature functions. One
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particular class of equations is the following,

Sk (uij + dgju) n
a.7) Sty + 03710) ¢ on S",
where0 < | < k < n. Itis known thatadmissiblesolutions of equation (1.7)
are exactlyk-convex functions. In the special cake= n, the equation is re-
lated to the problem of prescribingth Weingarten curvaturé/;(x) of a con-
vex hypersurfacé/ c R"*! proposed by Alexandrov [2] and Chern [7], where
W;(k) = Sj(k1,--+ ,kn) andx = (K1, - , ky) the principal curvatures af/.
Whenk = n, admissible solutions of (1.7) are exaatignvexfunctions, the prob-
lem was addressed in [11]. For gendrat [ < k& < n, equation (1.7) corresponds
to the problem of prescribing quotient of Weingarten curvatures on outer normals
of a convex hypersurface R . In this case, admissible solutions of (1.7) are not
necessargonvex As a first result of this paper, we establish a convexity criterion
for equation (1.7).

Theorem 1.2. (Full Rank Theorem) Suppose: is an admissible solution of (1.7)
—1 —1

such thatV = (u;; + 6;;u) is semi-definite o™, If {(¢*=1);; + @F=1d;;} is

semi-positive definite everywhere &h thenlV is positive definite of§™.

Another objective of this paper is regarding the existence of admissible solu-
tions of equation (1.1). We note that when= 1, equation (1.1) is exactly (1.5).
(1.3) is the necessary and sufficient condition for (1.1) to be solvable. When,
admissible solutions of (1.1) are exaatignvexfunctions. The existence of admis-
sible solutions follows from the works of Nirenberg, Cheng-Yau and Pogorelov.
Though a sufficient condition for the existencecohivexsolution of equation (1.1)
was given in [15], the general existence of admissible solution of equation (1.1)
was left open. Here, we prove that condition (1.3) is also the necessary and suffi-
cient condition for the existence of admissible solutions of equation (1.1).

Theorem 1.3. (Existence)Let o(z) € C1(S™) be a positive function, suppose

@ satisfies (1.3), then equation (1.1) has a solution. More precisely, there exist
constantC depending only om, ., min o, and ||¢||c1.1 (S*) and aC3® (V 0 <

a < 1) k-convex solution of (1.1) such that:

(1.8) [lullgs«(S™) < C.

Furthermore, ifo(z) € C*(S™) (I > 2,~ > 0), thenu is C**17. If ¢ is analytic,
u is analytic.

Alexandrov [2] and Pogorelov [23] studied some general form of fully nonlin-
ear geometric equations &t under various structural conditions. They obtained
some regularity estimates under the assumption that soluticonigex We will
extend their regularity estimates for admissible solutions in Proposition 2.7. We
will also prove a uniqueness result for admissible solutions in Proposition 3.1. The
uniqueness result, together with the regularity estimates, enable us to establish ex-
istence of admissible solutions under general structural conditions in section 3 via
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degree argument. One consequence of our existence results in section 3 together
with Theorem 1.2 is the following.

Theorem 1.4. Suppose there is an automorphic grodpof S™ which has no
fixed points. Supposg € C°°(S"™) is positive andG-invariant. If in addition
{(SO’CTIZ)?;J' + wrflléij} is semi-positive definite everywhere $h, then equation
(1.7) has aj-invariant convex smooth solutien In particular, for suchyp, there is
a strictly convex smooth hypersurfaté ¢ R"*! such that the quotient of Wein-
garten curvaturesi% on the outer normals o/ is exactlyyp.

We remark that the reason to impose group invariant condition in Theorem 1.4
is the same as in [11], since for# 0, equation (1.7) does not have variational
structure. For this reason, itis found in [11] that condition (1.8kgihersufficient,
nor necessary for the existence of admissible solutions of (1.7).

The organization of the paper is as follows. In the next section, we will establish
a priori estimates for general fully nonlinear equationsSbrunder some structure
conditions. In section 3, we prove a general existence result containing Theorem
1.3 as a special case. Theorem 1.4 will also be proved there. Finally, we prove
Theorem 1.2 in section 4.

2 Structural conditions and regularity estimates

We establish the a priori estimates for admissible solutions of equation (1.1)
in this section. We note that for any solutiofz) of (1.1), u(z) + I(z) is also a
solution of the equation for any linear functiéx) = Z?jf a;x;. We will confine

ourselves to solutions satisfying the following orthogonal condition
(2.1) / riudr =0, Vi=1,2,....,n+ 1.

Whenu is convey, it is a support function of some convex bédyCondition (2.1)
implies that the Steiner point 6t coincides with the origin.

In the case ok = 1, equation (1.1) is a linear, a priori estimates for solution
u satisfies (2.1) follows from standard linear elliptic theory. Whes n, equa-
tion (1.1) is the Monge-Amgre equation, the admissible solutions are exactly the
convex functions, the a priori estimates were obtained in [21, 6, 24]. For the inter-
mediate casé < k < n, the a priori estimates fazonvexsolutions of equation
(1.1) were proved in [15]. Here we establish a priori estimatesdionissibleso-
lutions. We note equation (1.1) will be uniformly elliptic onc& estimates are
established fok (see [4]). By the Evans-Krylov Theorem and the Schauder the-
ory, one may obtain higher derivative estimatesdoiherefore, we only need to
getC? estimates fot:.

In fact, the a priori estimates we will prove are valid for a general class of fully
nonlinear elliptic equations ds*. We consider the following equation:

(2.2) Q(UU + uém) =¢ on S".
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Following [4], we specify somstructure conditionso that (2.2) is elliptic. Let
I" be an open symmetric subsetli¥, that is, for\ € I and any permutation,
g A= (As1), " s Ao(n)) € I'. We assume

(2.3) I' is a convex cone and C I'q,

wherel'; = {A | 3774 A; > 0}. Itis clear that(1,1,--- ,1) € I. We assume
thatQ is aC?" function defined il" C I'; for some0 < v < 1, and satisfies the
following conditions inl:

(2.4) gg()\)>0forz'—1,2,...,n and A €T,
(2.5) Q@ is concave i,
and forM > 0, there isdy; > 0 such that for\ € I" with Q(\) < M,
2.6 A) > O
Set
I ={W| W isasymmetric matrix whose eigenvalues- (\1,--- ,\,) € '}

We note that sinc& c T'y, for W € T, the eigenvalues; of IV satisfieg|\;| <
(n — 1) A\pmaz, Whereh,,,, is the largest eigenvalug O . From a result in section
3in [4], Q is concave il impliesQ is concave i and condition (2.4) implies

(887%) is positive definite for allV’ = (W;;) € T'. If there is no confusion, we will

also simply writel’ for I in the rest of the paper.

1
Remark2.1 We note thatS;} and general quotient operato%’;)ﬁ 0<li<
k < n) satisfy thestructure condition$2.3)-(2.6) withI' = I, and one may take
oy = 1forall M > 0.

Definition 2.2. We say a functiom € C?(S") isT-admissible ifiW (z) = (u;;(z)+
diju(x)) € T" for all z € S". If u is I'-admissible and satisfies equation (2.2), we
call v an admissible solution of (2.2).

The condition (2.4) is a monotonicity condition which is natural for the ellip-
ticity of equation (2.2), as we will see that the concavity condition (2.5) is also
crucial forC? andC?“ estimates. The condition (2.6) appears artificial, but it fol-
lows from some natural conditions gh For example, in order that equation (2.2)
has an admissible solution for somewith sup ¢ = M, there must existV € T’
such thatQ (W) = M. By conditions (2.3)-(2.5), we have

2.7) Q(tol) > M, forsome ty > 0,

wherel is the identity matrix.
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Lemma 2.3. Suppose thaf) satisfies (2.3)-(2.5). SV (W) = (W) for W =
(Wi;) € T

(1) If @ satisfies (2.7) and
(2.8) limy—, 10 Q(tW) > —o0, forall W € T,

then there i99), > 0 depending o) andtg in (2.7) such that (2.6) is true.
(2) If @ satisfies

(2.9) limy 0o QW1 + Wa) > —o0, forall Wy, Wy €T,
theny>, ; QY (W)W > Oforall W e T.
We also refer [14] for related treatment of (2.3)-(2.5) and (2.7).
Proof. By the concavity condition (2.5),

(2.10) QUI) < Q(W +ZQ” — Wi).

The concavity condition (2.5) and (2.8) implies tI%Q(tW) >0forall W eT.
Thatis}_, ; QY (W)W;; > 0 forall W € T. By the monotonicity condition (2.4),
there exists > 0 such that)(2tpl) > M + e. SinceQ(W) < M, (2.6) follows
from (2.10) by letting: = 2t,.

We now prove the second statement in the lemma. Sihiseopen, for each
W e T, thereiss > 0 such thai¥’ = W — 67 e T. Inturn,tW + 61 e T for
all t > 0. Setg(t) = Q(tW + &I). By concavity ofQ and condition (2.9), we
haveg'(1) > 0, thatis,>>; ; Q”(W)W;; > 0. In turn, by condition (2.4) we get
20 @UWIWij = 652 Q"(W) > 0. O

We now switch our attention to a priori estimates of solutions of equation (2.2).
In [5], Caffarelli-Nirenberg-Spruck treated similar equations related to the pre-
scribing Weingarten curvature functions of hypersurfacé®’in The main differ-
ence here is there is no barrier assumption for equation (2.2), we need to work out
C" estimate. We follow the arguments in [11] to obtain an upper bound on the
largest eigenvalue of the matrix;; + 6;;u) first. We then come back to deal with
the C° bound.

Proposition 2.4. Supposé) satisfies the structural conditions (2.3)- (2.6), suppose
u € C*4(S") is an admissible solution of equation (2.2), then ther€is> 0
depending only o) (7) in (2.7),0 in (2.6) and||¢|| -2 such that

(2.11) 0 < Amax < C,

where\,.x is the largest eigenvalue of the matfix;; + d;;u). In particular, for
any eigenvalue\;(x) of (u;;(x) + d;u(x)),

(2.12) ()] < (n—1)C, Vo eSm
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1
Proof. When(@ = S} andu is convex this is the Pogorelov type estimates (e.g.,
[24]). Here we will deal with general admissible solutions(piunder the struc-
ture conditions. It seems that the moving frames method is more appropriate for
equation (2.2) o8". We setV = {u;; + d;;u}.

(2.12) follows from (2.11) and the faét C I';. Also the positivity of\pax
follows from the assumption th&t C T';. We need to estimate the upper bound of
Amax- Assume the maximum value &, is attained at a pointy € S™ and in the
directioney, so we can take,.x = W11 atxzg. We choose an orthonormal local
frameey, es, ..., e, Nearzy such thatu,;(zo) is diagonal, sd¥ is also diagonal at
Zo-

For the standard metric @f, we have the following commutator identity

Witii = Winn — Wi + Wiy
By the assumption,Q“) is positive definite. Sinc&/;1; < 0 atzo, , it follows
that at this point
(2.13) 0> Q"W = Q" W1 — Q" Wy + W1 Q™.
By concavity condition (2.5),
STQQUEW)Wy <D QW)+ QW) — Q1)
7 7

(2.14) =2 QW) + - QD).

Next we apply the twice differential in thg direction to equation (2.2), we obtain
QWiji1 = V1,
QUTSW;j1Wos1 + Q¥ Wiji1 = @11
By the concavity of), atzy we have
(2.15) Q"Wiin1 > @11
Combining (2.14), (2.15) and (2.13), we see that

0>¢n—> QU—¢+Win ) Q"+ Q).
i i=1
By assumptiong < M for someM > 0. From condition (2.6)>"" , Q" >
op > 0. It follows thatiV; < C. O

Corollary 2.5. If u € C*(S") is an admissible solution of equation (1.1) (so
W(x) = (uij(x) + u(x)dij) € T, Vo € S), then0 < maxgesn Amax(z) < C.

In order to obtain a2 bound, we need &° bound foru. In the case of the
Minkowski problem ¢ = n), such crucialC® bound was established by Cheng-
Yau in [6] and for generat with convexityassumption in [15]. The arguments rely
on theconvexityassumption. Here, we use the a priori bounds in Proposition 2.4
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to get aC® bound for general admissible solutions of equation (2.2). The similar
argument was also used in [11].

Lemma 2.6. For any I'-admissible function:, there is a constan’ depending
only onn, max,esn Amax () andmaxsn |u| such that,

(2.16) lulle= < C.

Proof. The bound on the second derivatives follows directly the &) =
(uij(z) + d;5u(x)) € T' C I'1. The bound on the first derivatives follows from
interpolation. g

Now we establish the’-estimate. The proof is based on a rescaling argument.

Proposition 2.7. Supposé) satisfies structure conditions (2.3)-(2.6)ulfs an ad-
missible solution of equation (2.2) amdsatisfies (2.1), then there exists a positive
constant”' depending only om, k, ||#||c2 and @ such that,

(2.17) llul|c2 < C.

Proof. We only need to get a bound dmuf|co. Suppose there is no such bound,
then3u!(l = 1,2, ...) satisfying (2.1), there is a constafitindependent of, and
Q(W') = ¢' (whereW! = (ul; + 6;;u')), with &' satisfies

1¢']lc> <€, sup@ <1, [l 2 1.

Letv! = W then

(2.18) 0! || = 1.

By Proposition 2.4, we have for any eigenvaluéiV!(x)) of W'(z),
(2.19) IN(WHz))] < (n — DAmax(W) < C,

whereAmax(Wl) is the maximum gf the largest eigenvaluesBf onS™ and the
constan(' is independent of. Let W' = (v}; + 6;;0") and from (2.19)/' satisfies
the following estimates

C

]| o<

(2.20) MW (@) < (n — 1) Amax (W) <

— 0.

In particular,Av! 4+ nv! — 0.
On the other hand, by Lemma 2.6, (2.18) and (2.20), we have

[0']|¢= < C.

Hence, there exists a subsequefice} and a functiorv € C*(S") satisfying
(2.1) such that

(2.21) i — v in CYS"), with |||z = 1.
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In the distribution sense we have
Av+nv=0 on S".

By linear elliptic theory,v is in fact smooth. Since satisfies (2.1), we conclude
that,u = 0 onS™. This is a contradiction to (2.21). 0

The higher regularity would follow from the Evans-Krylov Theorem and the
Schauder theory if we can ensure the uniform ellipticity for equation (2.2). That
can be guaranteed by the following condition,

(2.22) limyy_srQ(W) = 0.

Theorem 2.8. Suppose) satisfies the structure conditions (2.3)-(2.6) and condi-
tion (2.22), andp > 0 onS", then for eacl) < a < 1, there exists a constant
depending only om, o, min @, ||@|| 1.1 (S™) and @ such that

(2.23) ullsa(S™) < C,

for all admissible solutiom of (2.2) satisfying (2.1). Ifin additio@ € C' for some
[ > 2, then there exists a constafitdepending only on, [, o, min @, || @] ce.1 (S™)
and(@ such that

(2.24) |l | e (S™) < C.

In particular, the estimate (2.24) is true for any admissible solution of (1.1) and
(2.1) with = ¥ .

Proof. We verify that equation (2.2) is uniformly elliptic. By Proposition 2.7 and
condition (2.22), the sefW (z) € I'| Q(W(x)) = ¢(z),Vx € S"} is compact
inT. Since@ € C', equation (2.2) is uniformly elliptic by condition (2.4). O

3 Existence via degree theory

The main object of this section is to establish existence result for equation (1.1).
With the a priori estimates established in the previous section, one may wish to ap-
ply the continuity method to get the existence. This leads to study the linearized
operatorL of the Hessian operator in (1.1).is self-adjoint (e.g., [6] and [24]). In
the case& = 1, n, the kernel ofL is exactly the span of the linear coordinate func-
tionsxy,xs, ..., x,41. By the standard implicit function theorem, is surjective
to some appropriate function space modulpgn{z1, ..., z,+1}. The continuity
method yields the existence. For the case k < n, we are not able to verify that
the kernel ofL is span{z1, ..., x,+1}, though it containspan{z1, ..., xn41}.

We will use degree theory argument for the existence. In fact, the argument
applies to equation (2.2). In order to compute the degree, we need some uniqueness
result. The following uniqueness result is known as whegs a support function
of some convex body, e.g., by Alexandrov’s moving planes method. But we need
to treat the uniqueness problem for general admissible solutions. If equation (2.2)
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carries a variational structure, such uniqueness result can be proved by integral
formulas as in [7]. Here we use a simple a priori estimates argument to obtain a
general uniqueness result in this direction.

Proposition 3.1. Suppose that) satisfies condition (2.4) and (2.5). dfis an
admissible solution of equation of the following equation

(3.1) Q(uij + dj5u) = Q(I) on §",
thenu =1+ Z”“ a;x; for some constants;, - - - , an1.

Proof. By concavity, forlV = (W- ;) €T,

Q1) )+ ZQ” Wij)
(3:2) = QW)+ 3 QW) — 3 QU)W
7 i,j
Also by the symmetryQ' (1) = --- = Q" (1) = M

If « is an admissible solution of (3.1), we knawe C? by definition. Since
Q € C?7, by the Evans-Krylov Theorem and the Schauder thaokry,C*7. Let
W(z) = (uij(z) + diju(z)) andH (z) = traceW (z) = Au(z) + nu(z). Since

QI(I) = w,w, by concavity, for alk: € S™,
QW (x)) < Q)+ Z QY (I)(Wij(x) — bi5)

=+ Z5 8 W ) 3 gia,
=1
AS QW (x)) = QUI) and iy Q¥ (1) > 0, we get
(3.3) H(xz) >n, VzeS"

We want to showH () < n for all z € S™. Suppose that the maximum value
of H(x) is attained at a point, € S™. We choose an orthonormal local frame
e1, €2, ..., e, Nearzy such thatu;;(xo) is diagonal, sdV = {u;; + d;;u} is also
diagonal atry. For the standard metric &, we have the following commutator
identity
SinceQ(W (z)) = Q(I), itfollows from (3.2) thaf ", Q%(W) > >, Q¥(W)W,

As H;; <0 atxg,

0> i@“’(W)H
=1

(3.4)

Q"(W)AWi; —n Y  Q"(W)Wi+ HY Q" (W)

=1 =1

QU (W)AW;; — nZQ" )+ HY QW)

=1

I

N
Il
i

Y

@
Il
—
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Applying A to Q(W) = Q(I), and by the concavity af, we obtain atz,
(3.5) QU (W)AW;; > AQ(I) = 0.
It follows from (3.5) and (3.4),

nd) QW)= HY Q"W).
i=1 =1
SinceX"" , Q%(W) > 0, we getn > H (o). Combining (3.3), we conclude that
H(x) =n,Vx € S". Thereforeu — 1 € span{x1, - ,xnt1}. O

Fora > 0,1 > 0 integer, we set,
(3.6) ALY = [ f e 0b(SM) : f satisfying (2.1).
For R > 0 fixed, let
3.7) Or={we A" :wisT-admissible andw||cr.a(gny < R}.

In addition to the structural conditions @hin the previous section, we need some
further conditions o) in (2.2) to ensure general existence result. We assume that
there is a smooth strictly monotonic positive functiBrdefined inR = (0, o),

such thatvu € C?(S™) with W = (u;; + ud;j) € 'y, Q satisfies the orthogonal
condition,

(3.8) A FQW(z)))xm =0,Ym=1,2....,n+ 1.

Proposition 3.2. Suppos&) satisfies thestructural conditiong2.3)-(2.6), (2.22)

and the orthogonal condition (3.8). Then for any positivec C-!(S") with

e(x) = F(p(x)) satisfies (2.1), equation (2.2) has an admissible solutios
A3 V0 < o < 1 satisfying

lullgs.a (8) < C,

whereC'is a constant depending only 6y «, min ¢, and||p||1.1(S™). Further-
more, ifQ € C* andp(x) € C(S) (I > 2,y > 0), thenu is C?+1,

Proof. For each fixed < ¢ € C°*°(S") with ¢ = F(p) satisfying (2.1), and for
0 <t <1, we define

(3.9) Ti(u) = F(Q({uij + udi;})) — to — (1 = )QI).

T, is a nonlinear differential operator which magét>< into A%, If R is suf-
ficiently large,Ti(u) = 0 has no solution o@Ox by the a priori estimates in
Theorem 2.8. Therefore, the degre€elpfs well-defined (e.g., [20]). As degree is
a homotopic invariant,

deqT07 O’R? O) = dequ ORv 0)
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At t = 0, by Proposition 3.1y = 1 is the unique solution of (2.2) i@r. We may
compute the degree using formula

ded Ty, Or,0) = Y (-1)%,
i >0

wherey; are the eigenvalues of the linearized operatdicdnd3; its multiplicity.
Since( is symmetric, it is easy to show that the linearized operatd@h@ftu = 1
is

L=v(A+n),
for some constant > 0. As the eigenvalues of the Beltrami-Laplace operator
A onS" are strictly less thar-n, except for the first two eigenvaluésand —n.
There is only one positive eigenvalue bfwith multiplicity 1, namelyy = nwv.
Therefore,

dGQ(Tl, Og, 0) = deg(To, Og, 0) = —1.

That is, there is an admissible solution of equation (2.2). The regularity and esti-
mates of the solution follows directly from Theorem 2.8. O

We now prove Theorem 1.3.

1
Proof. Theorem 1.3 follows from the above Proposition, siapél’) = S;° (W)
satisfies conditions (2.3)-(2.6) and (2.22). The orthogonal condition (3.8) follows
from (1.3). g

Remark3.3. Since theC? a priori bound in Proposition 2.7 is independent of the
lower bound ofp (we note it is used only for the’* estimate), Proposition 3.2
can be used to prove existencel®f! solutions to equation (2.2) in the degenerate
case. To be more precise(Jfsatisfies thetructural conditiong2.3)-(2.6), (2.22)
and the orthogonal condition (3.8). Then for any nonnegative C'!:1 (S™) with
o(r) = F(¢(z)) satisfies (2.1), equation (2.2) has a solutiog C11(S"). For
equation (1.1), we can do a little better. One can prove thatif0 satisfying (1.3)
and goﬁ € CY1, then equation (1.1) has@"! solution (see [13] and [12] for
the similar results for the degenerate Monge-Ampequation). For this, we only
need to rework Proposition 2.4. Instead, we estinthate Au+nu. Following the
same lines of proof of Proposition 2.4, the desired estimate can be obtained using

two facts: (1), forf = goﬁ, we haveV f(z)|? < Cf(x) for all z € S™, whereC
depending only o©'!:! norm of f; (2), fork > 1 andQ = Sk%, L QUW) >
%Sk_ﬁ(W)Sf%l(W) (for a proof, see Fact 3.5 on page 1429 in [16]).

The structural conditiong(2.3)-(2.6) and (2.22) are satisfied for the quotient
operatorQ (W) = (‘g’;((VVVV)))ﬁ with I" = I'y, for any0 < [ < k. Also, constant is
the unique solution of)(1W) = 1 in A%“ by Proposition 3.1. Unfortunately, the
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orthogonal condition (3.8) is not valid in general by some simple examples in [11].
Nevertheless, as in [11], we have the following existence result.

Proposition 3.4. Supposé) satisfies thetructural condition§2.3)-(2.6) and (2.22).
Assumep € CH1(S™) (I > 1) is a positive function. Suppose there is an automor-
phic groupgG of S™ which has no fixed points. [p is invariant underg, i.e.,
¢(g(z)) = ¢(x) forall g € G andz € S™. Then there exists @-invariant ad-
missible function, € C**22 (V0 < «a < 1), such thatu satisfies equation (2.2).
Moreover, there is a constardf depending only omy, min ¢, and ||@|qw1(S™),
such that

lullgr+1.2(8") < C.

In particular, for any positiveg-invariant positivep € C-!(S"), equation (1.7)
has ak-convexg-invariant solution.

Proof. We only sketch the main arguments of the proof. Since Gigvariant
function is orthogonal tepan{zi,...,x,4+1} by [11]. Thereforeu = 1 is the
uniqueg-invariant solution of (2.2) by Proposition 3.1. We again use degree theory.
This time, we consideg-invariant function spaces:

Abe = {f € C*(S™) : fis G-invariant,
and
Or = {wis k-convexw € A" : |Jwl| cragny < R}

One may compute that the degreeidfs not vanishing as in the proof of The-
orem 3.2 (see also [11]). O

We will prove Theorem 1.2 in the next section. Here will use it together with
Proposition 3.4 to prove Theorem 1.4.

Proof. For0 < t < 1, we definep; = (1 —t + tcpk;—ll)_k""l. Certainlyy; is G-

—1 -1
invariant and{ (p;*1);; + ¢ *10;;} is semi-positive definite everywhere 8A.
We consider equation

Sk

Applying degree theory as in the proof of Proposition 3.4, there exists admissible
solutionu! of equation (3.10) for each < ¢ < 1. Whent = 0, v = 1 is the
unique solution by Proposition 3.1 and it is convex. By the continuity of degree
argument and Theorem 1.2, is convex for all0 < ¢ < 1. O
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4 A convexity criterion for spherical quotient equations

Now we turn to the convexity of the solutions of equation (1.7). In order to
prove Full Rank Theorem 1.2, as in [15], we need to establish the following de-
formation lemma for the Hessian quotient equation (1.7). The proof below follows
lines in [15] by explore some special algebraic structural properties of the quotient
operator. The proof involves some direct but lengthy computations. In a forthcom-
ing article, we will deal with this type of convexity problem for general elliptic
concave fully nonlinear equations.

ForW = {u;; + d;ju}, we rewrite (1.7) in the following form
_ Sk(W)

4.1 F(W = on S
and let

OF 0*F
4.2 FoP = FOBrs = ——
(4.2) IMWos’ OWog0Wpg

We note that”"*? is positive definite foll € T'y,.

Lemma 4.1. (Deformation Lemma) LetO C S™ be an open subset, suppase
C*4(0) is a solution of (1.7) ir0, and that the matri¥V = {W;;} is semi-positive
definite. Suppose that there is a positive constant- 0, such that for a fixed inte-
ger(n—1)>m >k, S,,(W(z)) > Cpforall z € O. Letp(z) = Spr1(W(z))
and letr(x) be the largest eigenvalue {)L(gp‘ﬁ)ij(x) - ijgp‘ﬁ(m)}. Then
there are constant§’;, Cy depending only otu||cs, ||¢||c1.1, n and Cp, such
that the following differential inequality holds @,

(4.3)

kE—l41

zn:Faﬁ(w)%ﬁ(w) < (B=D(n—m)p = (2)Sm(W(x))7(2)
3

+ C1|Vo ()| + Cag(x),
whereF*? are defined by (4.2).

Proof. The proof will follow mainly the arguments in [15], which in turn were
motivated by Caffarelli-Friedman [3], Korevaar-Lewis [18].

For two functions defined in an open setC S, y € O, we say thah(y) <
k(y) provided there exist positive constantsandc, such that

(4.4) (h=E)(y) < (c1|V| + c20)(y)-

We also writeh(y) ~ k(y) if h(y) < k(y) andk(y) < h(y). Next, we writeh < k
if the above inequality holds i@, with the constant;, andc, depending only on
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l|ul|cs, [|¢l|lc2, n andCy (independent of andO). Finally, h ~ k if h < k and
k < h. We shall show that

(4.5) S FP0g S (k= 1)(n—m)p 7T Sp(W)r.

a,f=1
Foranyz € O, let\; > Xq... > \,, be the eigenvalues &V atz. SinceS,,, (W) >
Co > 0 andu € C3, for anyz € S, there is a positive constaét > 0 depending
only on||ul|cs, ||¢]|c2, n @andCy, such thaty; > Aa... > A, > C.

LetG = {1,2,...,m} andB = {m + 1,...,n} be the “good” and “bewared”
sets of indices. Defingy(W|i) = Si((W|i)) where(1W]i) means that the ma-
trix W excluding thei-column andi-row, and(W|ij) means that the matrik/
excluding thei, ;7 columns and, j rows. LetAg = (A1,..., \n) be the “good”
eigenvalues oV at z, for the simplicity of the notations, we also wrif¢ = Ag
if there is no confusion. In the following, all calculations are taken at the point
using the relation <", with the understanding that the constants in (4.4) are under
control.

For eachz € O fixed, we choose a local orthonormal frame ..., e,, SO that
W is diagonal at, andW;; = \;,Vi = 1, ...,n. Let

_ aSerl(W) gidirs — azstrl (W)
oWy OW;j0W,s

5

We note thatS¥ is diagonal at the point sincé is diagonal. Notice that
$a = > ; S Wija, we find that (a3V is diagonal at),

(4.6) 0~ ¢(2) ~ (D Wii)S(G) ~ > Wi, (s0Wy;~0, i€ B).
i€EB i€B
This relation yields thatyl < ¢t < m,
Si(Glj), ifjeaq,
Si(G), if j € B.
Si(Glij), ifi,je G,
Sy (Wlij) ~ § S¢(Glj), ifieB,jeG,
St(G)’ |f’L,]€B,Z§£],

4.7) St(W) ~ St(G)v St(WU) ~ {

Also,

(4.8) 0~ ¢o ~ Sn(G) Y Wiia ~ > Wiia.
icB i€B

According to [15],

(4.9) gii {Sm(G% ifi = j € B;

0, otherwise,
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B Sim—1(Wlir), ifi=j,r=si%#r;
(4.10) ST =8 =S (Wlij), ifi#j,r=4js=71;
0, otherwise.

Sincepaa = Y.; j[S7 " WrsaWija+S5"” Wijaa], combining (4.6), (4.8) and (4.10),
it follows that for anya € {1,2,...,n},

baa = Y Sm-1(Wij)WiiaWija — Y Sm-1(Wij) W5, +st .
i#£] i£]

Z+Z+ Z + Z m—1 W‘ZJ WuaWj]a

i€G  i€B  ijeEB i,jeG
JEB  JEG  ij  i#
(4 11) - Z+Z+ Z + Z m—1 W|Z] l]a+zs Wuaa
i€G i€B ijeEB i,jeG
JEB  jeG  ai#j  i#j

From (4.8) and (4.7), we have

(412) Z Sm—l(W‘ij)WiiaWjja ~ |:Z Sm 1 G|J ]]oa] Z I/szoz ~

i€B jeq €B
JEG
Similarly,
(4.13) Y Smo1(Wif)WiiaWjja ~ 0.
i€G
jEB

By (4.8),Vi € B fixed andva,

zza Z Wjja

jEB
J#i
Then, (4.7) yields,
(414) Z Sm 1 W‘Z]) uaWjja ~ Z ’L’LON
7]€B i€EB
1#]
and
(415) Z Sm 1<W‘Z.7 z]a ~ Z Sm 1 G‘] z]a
j€GiEB 1€EB,JEG
Inserting (4.7), (4.12)-(4.15) into (4.11), we obtain as in [15],
(416) qboga ~ Z SiiWiiO&a 2 Z Sm 1 G|j) z]a - Z z]a
i i€B i,jJEB

jeG
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So we have

n
ZFaﬁ¢aB = Z Faa¢aa ~ Z Z Few, Wiiaa

a,B a=1 a=1ieB
n
4.17) =2) "> S a1 (Gl F* W, — Z > Fewl,.
a:lieg a=1ijEB
JE

SinceF is homogeneous of ordér—1[, >~ , F**W, = (k—1)e. Commuting the
covariant derivatives, it follows that

Z Z FaaI/Vnoza = Z Z Faa aazz + Wu Waa)

a=1ieB a=1ieB

(4.18) ~ zn: Y FWaaii — (n—m)(k = D).

a=1ieB

Now we compute_,,_; F*“W,q; for i € B. Differentiating the equation (4.1),
we have

i = FWeasi, @i= Y. FO"WagiWesi+ > F*"Wopi.
7ﬁ a,ﬂ,’]",S a76

So for any; € B, we get

ZF(M it =it — 3 [Sk—2(W|Oéﬁ) o Sk 1(W]e)Si—1(W]B)

2
a8 St Si
SiSi_o(W|af3) SkSl 1 (W) Si—1(W|B)
- 52 +2 SS Waaiwﬁﬁi
Sec1 (W) S (Wla) — SkSE(Wla)
+ 2 Z |: SZ S3 :|W0210n
l
(4.19) s Skp—2(Wap) SkSlf2(;/V‘045) Wo%ﬂi'
a#f Si Sl
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By (4.6)-(4.10), we regroup it as

n
> F**Waaii ~

a=1

Sk 2 W|Olﬁ) SkSl_Q(W|Oéﬁ)
~ Pi + Z [ (G) S?(G) ‘| Wo%ﬁi

Sk 2 51 @S-1(G)  SHG)S1-2(C)
SH(@) SHG)

+ 2

aeB

2
Waaz -

+ 2

Sk (G)Szl(G)] B
SI(G) S2(G)

SHE) by

a,BEG
_ S(G)Si-2(GlaBh) |, Sk(G)Si-1(Gla)Si-1(G10)
SHG) SPHG)
[Sk 1 W|a)Sl 1(We) Sk(G)S?A(W’a)} 2
(G) Slg(G) aas”

] Waai Wﬂﬁi

vy

a=1

It follows that

Z Faa¢aa ~ Z Pii — n - (k - Z)S (G)(p

i€B
Sp—2(G)  Sk(G)S1—2(G)
ZGZBL;B{ SZQ(G) } aaz
B Sk—2(Glap) Sk—l(G|Oé)SZ—1(G|5)
a%{ sa SO
a,BeG
Sk(G)Si—2(GlaB) |, Sk(G)Si-1(Gla)Si-1(G[B)
- 52(G) +2 53(G) }WaaiWﬁﬂi
Sk 1 G!a Sl 1(G‘ ) Sk(G)S? 1 G‘Oz
+ 20%2;{ (G) 53( ) } ozaz
Sp—2(WlapB)  Sp(G)Si—2(WlaB) ;2
* azﬁ{ 5(C) s e
(4.20) -2 Z Z Smfl(GU FaaWz%a - Z Z Few, zga
a=1ieB a=14,j€B
jeG

We first treat the following three terms in the above formula.

S [Sk_Q(GMﬂ) o k=1 (G|) i1 (GB)
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Set
Sk—o(W|ap)
A= ZZ k2 |)ﬂ BZ_QZZSmlG‘]FaaWzia
1€EB a#p a=1i€B
JEG
Sk(G)Si—o(W]«
4.21) - Sn(@) Y at l(“’G) | ﬂ)wgw.
1€B a#p3

We want to show that

S Si(G)S1—2(G
AS 5@ 3 [“) “S;(g;< )]Wim

i€B a#l
o,feEB
Sm—1(G|a)Skp—1(Gla)  Sk(G)Sm-1(Gla)Si—1(Gla) | 9
4.22) -2 _ -
( ) lezg [ SI(G) S?(G) aai-
aeG
Indeed, since
(4.23) goa _ SiiWla) S (W)Si-1(Wla)

SiI(@) SE(G) ’
by the definition ofA, we have

SFHG)A = S, (G Z( oo+ Y +2Z>[ G)Sk—2(WlaB)

€B #0 #0B €B
' acfﬁec ofBGB Bea

- sk(G)s”(Waﬁ)} W2

2y (X 4 T+ X ) [SUCSna(Gl9)Sa(Wa)

i€EB a#f3 a=peG a€B
a,BeG BEG

_ Sk(G)Sm_l(G\ﬂ)Sll(Wa)} W2

Now we should prove that the two terms, g ZaeB and) ;cp> axp IN
a,BeG
the right hand side of previous equality are non- posmve More preC|ser, we prove

that

2.2

i€B aEB
peG

(4.24) —5(G)Sm-1(G|B)Sk-1(G) + Sk(G)Sm-1(G|B)S1-1(G) [Wis; S 0.

(G)Sk—2(GB) — Sm(G)Sk(G)Si-2(G5)

As usual, we only need to prove that for edach B, the term is non-positive.
Since fors € G, S;(G) = S (G|B)+Si—1(G|B)Wsg wheret € {I,1-1,k, k—1}.
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By the Newton-MacLaurin inequality, we have

Wi5pSi1(G)Sk—2(G|B) — WppSk(G)Si—2(G|B)
= S1(G)Sk-1(G) + Sk(G)S1-1(G)
= Wis[Si(GIB) + WisSi-1(G18)] Sk—2(G15)
— Wis|S(G1B) + WapSk-1(G18)| Si-2(G15)
— [S1(G18) + WS- 1(G18)] [Sk-1(G1B) + WapSia(G19)|
+ [Sk(G\ﬁ) + WﬂﬁSk—l(GW)] [Sz—l(GW) + W,BBSZ—z(G!ﬁ)]
= Sk(GIB)S1-1(G|B) — Si(G|B)Sk-1(G|B)
4.25)< 0.

We now treat the tern)_ ;.5 > o3 . We shall prove that it is also non-
a,B3eG
positive. In fact, for any € B, we have

2 agB [SI(G)Sm(G)Sk—z(G\aﬁ) — Sm(G)Sk(G)S1-2(Glap)

o,feG
— 251(G)Sin-1(G8)Sk-1(Ga) + 251(G) S-1(G18)Si-1(Ga)

= gﬁsm_mm[z{sk( )51-1(Gla) = 51(G)Sk-1(Glaf)}
o,peG
+ Ws{Sk(G)Si-2(GlaB) — Si(G)Sk-2(GlaB)}]

= ;ﬁ (28 1(GI8){SK(GlaB) Si1(GlaB) — SU(GlaB)Sk-1(GlaB)}
o,BeG

+ S (G){Sk(GlaB)Si—2(Glap) — Si(Glaf)Sk—a(Glap)}
+ Sm(G)(Waa — Wep){[Sk—2(GlaB)Si1-1(Glap) — Sl—z(G!aﬂ)Sk—l(Glaﬁ)}}

= 2 ) S a(GIA)[Sk(GlaB)Si1(GlaB) — Si(GlaB)Sk1(Glag)]

a?géeﬁG
+Sm(G) > [Sk(GlaB)Si-a(GlaB) - Si(GlaB)Sk-2(Glag)]
a?géeﬁG
< o

Here we have used again the Newton-MacLaurin inequality. So (4.22) follows.
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Combining (4.20) and (4.22), we have

(4 26)2F0€a¢aa ~ (G)Z l@zz_w(f—(k—l)(p + I + 1o,
ieB
where
_ Sr-2(G) e 5 Sk(G)5i1-2(G) 0
Il — ZEX; [O%:B G) aaz O;B SlQ(G) Waa1:|
_ G)Z > FWl,
a=114,j7€B
Sp—2(G)  Sp(G)S1-2(G) | 11,2
Z%[ R ]Wﬁ“
a,0eB
_ 1 7 Sp—2(GlaB) Sk-1(Gla)S1-1(G|B)
L= i%jg{(uk_l)sm(a) o~ Su(@) C;ﬁ [ IR 0
a,BeEG
Sk(G)S1-2(Glap) . Sk(G)Si-1(Gla)S1-1(G6)
T o®e SHG) |WeaiFa
Se 1(Gla)Si1(Gla)  Sk(G)SE(Gla)
+ 2Sm(G) O%:G |: SQ(G) - Slgl(Gl,) :|W§o¢z
'm—1(G|a)Sk—1(G|a) Sk(G)Sm_1(G|a)SZ_1(G|a)
2 % [P SAG) W)

acG
Claim. I; < 0andl> < 0.

If the Claim is true, it follows from (4.26) that

S k—1+1¢?
@27) Y F5 S Sn(@) Y [pii — T8 (k—1)p| .
=1 i€B k=1 ¢

Thus (4.5) follows from (4.27).

Proof of the Claim. First by induction and Newton-MacLaurin inequality we
have the following inequality

Sm(G)S1(G)Sk—2(G) — Sim—1(G)Sk-1(G)S;(G)
(4.28) — S (G)Sk(G)S1-2(G) + Sk(G)S1-1(G) Sp—1(G) < 0.
On the other hand, it is clear that by (4.23),
- S, Sk(G)S_1(G
(429) Z Z FaoévVZQja > Z Z |: k (1G) k(Sl)((;>;( ) WZB@

a=1ij€B i€B a,feEB
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If we put (4.29) intol; and using (4.28), we obtain
SHAL S [SUG)SHE)Sk-2(G) = Si-1(G)Sk-1(G)Si(G) = Sn(G)SH(G)S-2(G)
+ SK(G)Sm1(G)S1-1(G)] 30 S0 W

i€B a,fEB
< 0.

To treatl,, it follows from (4.7) and (4.8),

(4.30) pi~ Y F*Waai foric B.
aeG

Using (4.23), we need only to verify the following inequality for each B,
2

> {W [SH(@)SK(G)Sk-1(Gla) = SHG)SUG)S1-1(Gla) | W,

aeG oo

+%Sl(G)Sk(G)Sk; 1(Ga)Si—1(Gla) Wy

+[(1 — ﬁ)s}j(c:)sf,l(ma) —(1+ ﬁ)sf(G)Sk 1(G|oz)] am}

+ 3 [SHE)SK(E)Sk-2(Glad) — SI(G)SH(G)S1-2(Glaf)

s
a,BeG

H1— 1) SU@)SA(Cl) i1 (619)

+%Sl(G)Sk(G)Sk_1(G|Oé)Sl—1(G|B)

—(1+

- Z)Sz (G)Sk—l(G|O‘)Sk—1(G|ﬁ)}Waaiwﬂﬁz’

> 0.
This follows from the fact that the matrixf” + Qﬁéaﬁ) is semi-positive definite

(e.g. [25]) forf(A) = —(2)7F F1(\) when A = (A1, Aa, ..., ) Where each

Ai (1 <4 <'m)is positive number O

5
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