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1 introduction

This paper is a sequel to [15] on geometric fully nonlinear partial differential
equations associated to the Christoffel-Minkowski problem. In [15], we considered
the existence ofconvexsolutions of the following equation:

Sk(uij + uδij) = ϕ on Sn,(1.1)

whereSk is thek-th elementary symmetric function anduij the second order co-
variant derivatives ofu with respect to orthonormal frames onSn, and where a
functionu ∈ C2(Sn) is calledconvexif

(1.2) (uij + uδij) > 0, on Sn.

It is known that (e.g., see [24, 11])∀v ∈ C2(Sn),
∫

Sn
xmSk(vij(x) + v(x)δij)dx = 0, ∀m = 1, 2, ..., n + 1.

A necessary condition for equation (1.1) to have a solution is
∫

Sn
xiϕ(x)dx = 0, ∀i = 1, 2, ..., n + 1.(1.3)

Condition (1.3) is also sufficient for the Minkowski problem, which corre-
sponding tok = n in equation (1.1). In this case, equation (1.1) is the Monge-
Ampère equation corresponding to the Minkowski problem:

(1.4) det(uij + uδij) = ϕ on Sn.

The Minkowski problem has been settled completely by Nirenberg [21] and Pogorelov
[22] for in dimension2 and by Cheng-Yau [6] and Pogorelov [24] for general di-
mensions. From their work, for any positive functionϕ ∈ C2(Sn) satisfying the
necessary condition (1.3), Monge-Ampère equation (1.4) always has aconvexso-
lution.
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At the another endk = 1, equation (1.1) corresponds to the Christoffel problem
and it has the following simple form:

(1.5) ∆u + nu = ϕ on Sn,

where∆ is the Beltrami-Laplace operator of the round unit sphere. The operator
L = ∆+n is linear and self-adjoint. From the linear elliptic theory, equation (1.1)
is solvable if and only ifϕ is orthogonal to the kernel of the operatorL = ∆ + n.
Sincen is the second eigenvalue of the operator−∆, the kernel ofL is exactly
span{x1, ..., xn+1}. Therefore, condition (1.3) is necessary and sufficient for the
solvability of equation (1.5). In general, a solution to equation (1.5) is not neces-
saryconvex(this is the point Christoffel overlooked while he made the premature
claim in [8]). Alexandrov [1] constructed some positive analytic functionϕ sat-
isfying (1.3) such that equation (1.1) has noconvexsolution. The convexity of
solutionu to equation (1.1) is equivalent to a positive lower bound of the eigenval-
ues of spherical Hessian(uij + uδij) which in turn are exactly the principal radii
of convex hypersurface withu as its support function. Alexandrov’s examples in-
dicate that whenk < n, there exists no such bound. Equation (1.5) is linear onSn,
a necessary and sufficient condition for the existence ofconvexsolutions of (1.5)
was found by reading off from the explicit construction of the Green function by
Firey [9].

For the intermediate cases1 < k < n, the situation is much more delicate.
Let’s first define the admissible solutions for equation (1.1). LetS be the space
consisting alln× n symmetric matrices. For any symmetric matrixA ∈ S, Sk(A)
is defined to beSk(λ), whereλ = (λ1, ..., λn) are the eigenvalues ofA. Γk de-
fined in [10] can be written equivalently as the connected cone inS containing the
identity matrix determined by

(1.6) Γk = {A ∈ S : S1(A) > 0, ..., Sk(A) > 0}.
By the works of [4], [17] and [19],k-convex functions are the natural class of
functions where equation (1.1) is elliptic.

Definition 1.1. For 1 ≤ k ≤ n, let Γk as in (1.6). Ifu ∈ C2(Sn), we sayu is
k-convex ifW (x) = {uij(x)+u(x)δij} is in Γk for eachx ∈ Sn. We observe that
u is convexonSn if u is n-convex. Furthermore,u is called anadmissiblesolution
of (1.1) if u is k-convex and satisfies (1.1).

Whenk 6= n, the class of admissible solutions of equation (1.1) is much larger
(e.g., [4]). We treated the intermediate Christoffel-Minkowski problem in [15] as
a convexity problem for fully nonlinear equations and a sufficient condition was
found there. The convexity is a fundamental problem in the theory of nonlinear
elliptic partial differential equations. Equation (1.1) is a special form of some
general fully nonlinear equations related to Weingarten curvature functions. One
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particular class of equations is the following,

Sk(uij + δiju)
Sl(uij + δiju)

= ϕ on Sn,(1.7)

where0 ≤ l < k ≤ n. It is known thatadmissiblesolutions of equation (1.7)
are exactlyk-convex functions. In the special casek = n, the equation is re-
lated to the problem of prescribingj-th Weingarten curvatureWj(κ) of a con-
vex hypersurfaceM ⊂ Rn+1 proposed by Alexandrov [2] and Chern [7], where
Wj(κ) = Sj(κ1, · · · , κn) andκ = (κ1, · · · , κn) the principal curvatures ofM .
Whenk = n, admissible solutions of (1.7) are exactlyconvexfunctions, the prob-
lem was addressed in [11]. For general0 ≤ l < k ≤ n, equation (1.7) corresponds
to the problem of prescribing quotient of Weingarten curvatures on outer normals
of a convex hypersurface inRn+1. In this case, admissible solutions of (1.7) are not
necessaryconvex. As a first result of this paper, we establish a convexity criterion
for equation (1.7).

Theorem 1.2. (Full Rank Theorem) Supposeu is an admissible solution of (1.7)

such thatW = (uij + δiju) is semi-definite onSn. If {(ϕ −1
k−l )ij + ϕ

−1
k−l δij} is

semi-positive definite everywhere onSn, thenW is positive definite onSn.

Another objective of this paper is regarding the existence of admissible solu-
tions of equation (1.1). We note that whenk = 1, equation (1.1) is exactly (1.5).
(1.3) is the necessary and sufficient condition for (1.1) to be solvable. Whenk = n,
admissible solutions of (1.1) are exactlyconvexfunctions. The existence of admis-
sible solutions follows from the works of Nirenberg, Cheng-Yau and Pogorelov.
Though a sufficient condition for the existence ofconvexsolution of equation (1.1)
was given in [15], the general existence of admissible solution of equation (1.1)
was left open. Here, we prove that condition (1.3) is also the necessary and suffi-
cient condition for the existence of admissible solutions of equation (1.1).

Theorem 1.3. (Existence)Let ϕ(x) ∈ C1,1(Sn) be a positive function, suppose
ϕ satisfies (1.3), then equation (1.1) has a solution. More precisely, there exist
constantC depending only onn, α, minϕ, and ||ϕ||C1,1(Sn) and aC3,α (∀ 0 <
α < 1) k-convex solutionu of (1.1) such that:

||u||C3,α(Sn) ≤ C.(1.8)

Furthermore, ifϕ(x) ∈ C l,γ(Sn) (l ≥ 2, γ > 0), thenu is C2+l,γ . If ϕ is analytic,
u is analytic.

Alexandrov [2] and Pogorelov [23] studied some general form of fully nonlin-
ear geometric equations onSn under various structural conditions. They obtained
some regularity estimates under the assumption that solution isconvex. We will
extend their regularity estimates for admissible solutions in Proposition 2.7. We
will also prove a uniqueness result for admissible solutions in Proposition 3.1. The
uniqueness result, together with the regularity estimates, enable us to establish ex-
istence of admissible solutions under general structural conditions in section 3 via
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degree argument. One consequence of our existence results in section 3 together
with Theorem 1.2 is the following.

Theorem 1.4. Suppose there is an automorphic groupG of Sn which has no
fixed points. Supposeϕ ∈ C∞(Sn) is positive andG-invariant. If in addition

{(ϕ −1
k−l )ij + ϕ

−1
k−l δij} is semi-positive definite everywhere onSn, then equation

(1.7) has aG-invariant convex smooth solutionu. In particular, for suchϕ, there is
a strictly convex smooth hypersurfaceM ⊂ Rn+1 such that the quotient of Wein-
garten curvaturesWn−l(κ)

Wn−k(κ) on the outer normals ofM is exactlyϕ.

We remark that the reason to impose group invariant condition in Theorem 1.4
is the same as in [11], since forl 6= 0, equation (1.7) does not have variational
structure. For this reason, it is found in [11] that condition (1.3) isneithersufficient,
nor necessary for the existence of admissible solutions of (1.7).

The organization of the paper is as follows. In the next section, we will establish
a priori estimates for general fully nonlinear equations onSn under some structure
conditions. In section 3, we prove a general existence result containing Theorem
1.3 as a special case. Theorem 1.4 will also be proved there. Finally, we prove
Theorem 1.2 in section 4.

2 Structural conditions and regularity estimates

We establish the a priori estimates for admissible solutions of equation (1.1)
in this section. We note that for any solutionu(x) of (1.1),u(x) + l(x) is also a
solution of the equation for any linear functionl(x) =

∑n+1
i=1 aixi. We will confine

ourselves to solutions satisfying the following orthogonal condition∫

Sn
xiu dx = 0, ∀i = 1, 2, ..., n + 1.(2.1)

Whenu is convex, it is a support function of some convex bodyΩ. Condition (2.1)
implies that the Steiner point ofΩ coincides with the origin.

In the case ofk = 1, equation (1.1) is a linear, a priori estimates for solution
u satisfies (2.1) follows from standard linear elliptic theory. Whenk = n, equa-
tion (1.1) is the Monge-Amp̀ere equation, the admissible solutions are exactly the
convex functions, the a priori estimates were obtained in [21, 6, 24]. For the inter-
mediate case1 < k < n, the a priori estimates forconvexsolutions of equation
(1.1) were proved in [15]. Here we establish a priori estimates foradmissibleso-
lutions. We note equation (1.1) will be uniformly elliptic onceC2 estimates are
established foru (see [4]). By the Evans-Krylov Theorem and the Schauder the-
ory, one may obtain higher derivative estimates foru. Therefore, we only need to
getC2 estimates foru.

In fact, the a priori estimates we will prove are valid for a general class of fully
nonlinear elliptic equations onSn. We consider the following equation:

(2.2) Q(uij + uδij) = ϕ̃ on Sn.
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Following [4], we specify somestructure conditionsso that (2.2) is elliptic. Let
Γ be an open symmetric subset inRn, that is, forλ ∈ Γ and any permutationσ,
σ · λ = (λσ(1), · · · , λσ(n)) ∈ Γ. We assume

(2.3) Γ is a convex cone andΓ ⊆ Γ1,

whereΓ1 = {λ | ∑n
j=1 λj > 0}. It is clear that(1, 1, · · · , 1) ∈ Γ. We assume

thatQ is aC2,γ function defined inΓ ⊆ Γ1 for some0 < γ < 1, and satisfies the
following conditions inΓ:

(2.4)
∂Q

∂λi
(λ) > 0 for i = 1, 2, . . . , n and λ ∈ Γ,

(2.5) Q is concave inΓ,

and forM > 0, there isδM > 0 such that forλ ∈ Γ with Q(λ) ≤ M ,

(2.6)
n∑

i=1

∂Q

∂λi
(λ) ≥ δM .

Set

Γ̃ = {W | W is a symmetric matrix whose eigenvaluesλ = (λ1, · · · , λn) ∈ Γ}.
We note that sinceΓ ⊂ Γ1, for W ∈ Γ̃, the eigenvaluesλi of W satisfies|λi| ≤
(n− 1)λmax, whereλmax is the largest eigenvalue ofW . From a result in section
3 in [4], Q is concave inΓ impliesQ is concave iñΓ and condition (2.4) implies
( ∂Q

∂Wij
) is positive definite for allW = (Wij) ∈ Γ̃. If there is no confusion, we will

also simply writeΓ for Γ̃ in the rest of the paper.

Remark2.1. We note thatS
1
k
k and general quotient operator(Sk

Sl
)

1
k−l (0 ≤ l <

k ≤ n) satisfy thestructure conditions(2.3)-(2.6) withΓ = Γk and one may take
δM = 1 for all M > 0.

Definition 2.2. We say a functionu ∈ C2(Sn) isΓ-admissible ifW (x) = (uij(x)+
δiju(x)) ∈ Γ for all x ∈ Sn. If u is Γ-admissible and satisfies equation (2.2), we
call u an admissible solution of (2.2).

The condition (2.4) is a monotonicity condition which is natural for the ellip-
ticity of equation (2.2), as we will see that the concavity condition (2.5) is also
crucial forC2 andC2,α estimates. The condition (2.6) appears artificial, but it fol-
lows from some natural conditions onQ. For example, in order that equation (2.2)
has an admissible solution for someϕ̃ with sup ϕ̃ = M , there must existW ∈ Γ
such thatQ(W ) = M . By conditions (2.3)-(2.5), we have

(2.7) Q(t0I) ≥ M, for some t0 > 0,

whereI is the identity matrix.
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Lemma 2.3. Suppose thatQ satisfies (2.3)-(2.5). SetQij(W ) = ∂Q(W )
∂Wij

for W =
(Wij) ∈ Γ.

(1) If Q satisfies (2.7) and

(2.8) limt→+∞Q(tW ) > −∞, for all W ∈ Γ,

then there isδM > 0 depending onQ andt0 in (2.7) such that (2.6) is true.
(2) If Q satisfies

(2.9) limt→+∞Q(tW1 + W2) > −∞, for all W1,W2 ∈ Γ,

then
∑

i,j Qij(W )Wij > 0 for all W ∈ Γ.

We also refer [14] for related treatment of (2.3)-(2.5) and (2.7).

Proof. By the concavity condition (2.5),

(2.10) Q(tI) ≤ Q(W ) +
∑

i,j

Qij(W )(tδij −Wij).

The concavity condition (2.5) and (2.8) implies thatd
dtQ(tW ) ≥ 0 for all W ∈ Γ.

That is
∑

i,j Qij(W )Wij ≥ 0 for all W ∈ Γ. By the monotonicity condition (2.4),
there existsε > 0 such thatQ(2t0I) ≥ M + ε. SinceQ(W ) ≤ M , (2.6) follows
from (2.10) by lettingt = 2t0.

We now prove the second statement in the lemma. SinceΓ is open, for each
W ∈ Γ, there isδ > 0 such thatW̃ = W − δI ∈ Γ. In turn, tW̃ + δI ∈ Γ for
all t > 0. Setg(t) = Q(tW̃ + δI). By concavity ofQ and condition (2.9), we
haveg

′
(1) ≥ 0, that is,

∑
i,j Qij(W )W̃ij ≥ 0. In turn, by condition (2.4) we get∑

i,j Qij(W )Wij ≥ δ
∑

i Q
ii(W ) > 0. ¤

We now switch our attention to a priori estimates of solutions of equation (2.2).
In [5], Caffarelli-Nirenberg-Spruck treated similar equations related to the pre-
scribing Weingarten curvature functions of hypersurfaces inRn. The main differ-
ence here is there is no barrier assumption for equation (2.2), we need to work out
C0 estimate. We follow the arguments in [11] to obtain an upper bound on the
largest eigenvalue of the matrix(uij + δiju) first. We then come back to deal with
theC0 bound.

Proposition 2.4. SupposeQ satisfies the structural conditions (2.3)- (2.6), suppose
u ∈ C4(Sn) is an admissible solution of equation (2.2), then there isC > 0
depending only onQ(I) in (2.7),δ in (2.6) and‖ϕ‖C2 such that

0 < λmax ≤ C,(2.11)

whereλmax is the largest eigenvalue of the matrix(uij + δiju). In particular, for
any eigenvalueλi(x) of (uij(x) + δiju(x)),

(2.12) |λi(x)| ≤ (n− 1)C, ∀x ∈ Sn.
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Proof. WhenQ = S
1
k
k andu is convex, this is the Pogorelov type estimates (e.g.,

[24]). Here we will deal with general admissible solutions ofQ under the struc-
ture conditions. It seems that the moving frames method is more appropriate for
equation (2.2) onSn. We setW = {uij + δiju}.

(2.12) follows from (2.11) and the factΓ ⊂ Γ1. Also the positivity ofλmax

follows from the assumption thatΓ ⊂ Γ1. We need to estimate the upper bound of
λmax. Assume the maximum value ofλmax is attained at a pointx0 ∈ Sn and in the
directione1, so we can takeλmax = W11 at x0. We choose an orthonormal local
framee1, e2, ..., en nearx0 such thatuij(x0) is diagonal, soW is also diagonal at
x0.

For the standard metric onSn, we have the following commutator identity

W11ii = Wii11 −Wii + W11.

By the assumption,(Qij) is positive definite. SinceW11ii ≤ 0 at x0, , it follows
that at this point

0 ≥ QiiW11ii = QiiWii11 −QiiWii + W11Q
ii.(2.13)

By concavity condition (2.5),
∑

i

Qii(W )Wii ≤
∑

i

Qii(W ) + Q(W )−Q(I)

=
∑

i

Qii(W ) + ϕ̃−Q(I).(2.14)

Next we apply the twice differential in thee1 direction to equation (2.2), we obtain

QijWijk1 = ∇1ϕ̃,

Qij,rsWij1Wrs1 + QijWij11 = ϕ̃11.

By the concavity ofQ, atx0 we have

QiiWii11 ≥ ϕ̃11.(2.15)

Combining (2.14), (2.15) and (2.13), we see that

0 ≥ ϕ̃11 −
∑

i

Qii − ϕ̃ + W11

n∑

i=1

Qii + Q(I).

By assumption,̃ϕ ≤ M for someM > 0. From condition (2.6),
∑n

i=1 Qii ≥
δM > 0. It follows thatW11 ≤ C. ¤
Corollary 2.5. If u ∈ C4(Sn) is an admissible solution of equation (1.1) (so
W (x) = (uij(x) + u(x)δij) ∈ Γk, ∀x ∈ Sn), then0 < maxx∈Sn λmax(x) ≤ C.

In order to obtain aC2 bound, we need aC0 bound foru. In the case of the
Minkowski problem (k = n), such crucialC0 bound was established by Cheng-
Yau in [6] and for generalk with convexityassumption in [15]. The arguments rely
on theconvexityassumption. Here, we use the a priori bounds in Proposition 2.4
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to get aC0 bound for general admissible solutions of equation (2.2). The similar
argument was also used in [11].

Lemma 2.6. For any Γ-admissible functionu, there is a constantC depending
only onn, maxx∈Sn λmax(x) andmaxSn |u| such that,

‖u‖C2 ≤ C.(2.16)

Proof. The bound on the second derivatives follows directly the factW (x) =
(uij(x) + δiju(x)) ∈ Γ ⊂ Γ1. The bound on the first derivatives follows from
interpolation. ¤

Now we establish theC0-estimate. The proof is based on a rescaling argument.

Proposition 2.7. SupposeQ satisfies structure conditions (2.3)-(2.6). Ifu is an ad-
missible solution of equation (2.2) andu satisfies (2.1), then there exists a positive
constantC depending only onn, k, ‖ϕ̃‖C2 andQ such that,

||u||C2 ≤ C.(2.17)

Proof. We only need to get a bound on‖u‖C0 . Suppose there is no such bound,
then∃ul(l = 1, 2, ...) satisfying (2.1), there is a constantC̃ independent ofl, and
Q(W l) = ϕ̃l (whereW l = (ul

ij + δiju
l)), with ϕ̃l satisfies

||ϕ̃l||C2 ≤ C̃, sup ϕ̃ ≤ 1, ||ul||L∞ ≥ l.

Let vl = ul

||ul||L∞ , then

||vl||L∞ = 1.(2.18)

By Proposition 2.4, we have for any eigenvalueλi(W l(x)) of W l(x),

|λi(W l(x))| ≤ (n− 1)λmax(W l) ≤ C,(2.19)

whereλmax(W l) is the maximum of the largest eigenvalues ofW l on Sn and the
constantC is independent ofl. Let W̃ l = (vl

ij + δijv
l) and from (2.19)vl satisfies

the following estimates

|λi(W̃ l(x))| ≤ (n− 1)λmax(W̃ l) ≤ C

||ul||L∞ −→ 0.(2.20)

In particular,∆vl + nvl → 0.

On the other hand, by Lemma 2.6, (2.18) and (2.20), we have

||vl||C2 ≤ C.

Hence, there exists a subsequence{vli} and a functionv ∈ C1,α(Sn) satisfying
(2.1) such that

vli −→ v in C1,α(Sn), with ||v||L∞ = 1.(2.21)
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In the distribution sense we have

∆v + nv = 0 on Sn.

By linear elliptic theory,v is in fact smooth. Sincev satisfies (2.1), we conclude
that,v ≡ 0 onSn. This is a contradiction to (2.21). ¤

The higher regularity would follow from the Evans-Krylov Theorem and the
Schauder theory if we can ensure the uniform ellipticity for equation (2.2). That
can be guaranteed by the following condition,

(2.22) limW→∂ΓQ(W ) = 0.

Theorem 2.8. SupposeQ satisfies the structure conditions (2.3)-(2.6) and condi-
tion (2.22), andϕ̃ > 0 onSn, then for each0 < α < 1, there exists a constantC
depending only onn, α,min ϕ̃, ‖ϕ̃‖C1,1(Sn) andQ such that

||u||C3,α(Sn) ≤ C,(2.23)

for all admissible solutionu of (2.2) satisfying (2.1). If in additionQ ∈ C l for some
l ≥ 2, then there exists a constantC depending only onn, l, α,min ϕ̃, ‖ϕ̃‖Cl,1(Sn)
andQ such that

||u||Cl+1,α(Sn) ≤ C.(2.24)

In particular, the estimate (2.24) is true for any admissible solution of (1.1) and
(2.1) withϕ̃ = ϕ

1
k .

Proof. We verify that equation (2.2) is uniformly elliptic. By Proposition 2.7 and
condition (2.22), the set{W (x) ∈ Γ| Q(W (x)) = ϕ̃(x),∀x ∈ Sn} is compact
in Γ. SinceQ ∈ C1, equation (2.2) is uniformly elliptic by condition (2.4). ¤

3 Existence via degree theory

The main object of this section is to establish existence result for equation (1.1).
With the a priori estimates established in the previous section, one may wish to ap-
ply the continuity method to get the existence. This leads to study the linearized
operatorL of the Hessian operator in (1.1).L is self-adjoint (e.g., [6] and [24]). In
the casesk = 1, n, the kernel ofL is exactly the span of the linear coordinate func-
tions x1, x2, ..., xn+1. By the standard implicit function theorem,L is surjective
to some appropriate function space modulusspan{x1, ..., xn+1}. The continuity
method yields the existence. For the case1 < k < n, we are not able to verify that
the kernel ofL is span{x1, ..., xn+1}, though it containsspan{x1, ..., xn+1}.

We will use degree theory argument for the existence. In fact, the argument
applies to equation (2.2). In order to compute the degree, we need some uniqueness
result. The following uniqueness result is known as whenu is a support function
of some convex body, e.g., by Alexandrov’s moving planes method. But we need
to treat the uniqueness problem for general admissible solutions. If equation (2.2)
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carries a variational structure, such uniqueness result can be proved by integral
formulas as in [7]. Here we use a simple a priori estimates argument to obtain a
general uniqueness result in this direction.

Proposition 3.1. Suppose thatQ satisfies condition (2.4) and (2.5). Ifu is an
admissible solution of equation of the following equation

Q(uij + δiju) = Q(I) on Sn,(3.1)

thenu = 1 +
∑n+1

j=1 ajxj for some constantsa1, · · · , an+1.

Proof. By concavity, forW = (Wij) ∈ Γ,

Q(I) ≤ Q(W ) +
∑

i,j

Qij(W )(δij −Wij)

= Q(W ) +
n∑

i

Qii(W )−
n∑

i,j

Qij(W )Wij .(3.2)

Also by the symmetry,Q11(I) = · · · = Qnn(I) =
∑n

i=1
Qii(I)

n .
If u is an admissible solution of (3.1), we knowu ∈ C2 by definition. Since

Q ∈ C2,γ , by the Evans-Krylov Theorem and the Schauder theory,u ∈ C4,γ . Let
W (x) = (uij(x) + δiju(x)) andH(x) = traceW (x) = ∆u(x) + nu(x). Since

Qjj(I) =
∑n

i=1
Qii(I)

n , ∀j, by concavity, for allx ∈ Sn,

Q(W (x)) ≤ Q(I) +
∑

i,j

Qij(I)(Wij(x)− δij)

= Q(I) +
∑n

i=1 Qii(I)
n

H(x)−
n∑

i=1

Qii(I).

As Q(W (x)) = Q(I) and
∑n

i=1 Qii(I) > 0, we get

(3.3) H(x) ≥ n, ∀x ∈ Sn.

We want to showH(x) ≤ n for all x ∈ Sn. Suppose that the maximum value
of H(x) is attained at a pointx0 ∈ Sn. We choose an orthonormal local frame
e1, e2, ..., en nearx0 such thatuij(x0) is diagonal, soW = {uij + δiju} is also
diagonal atx0. For the standard metric onSn, we have the following commutator
identity

Hii = ∆Wii − nWii + H.

SinceQ(W (x)) = Q(I), it follows from (3.2) that
∑n

i=1 Qii(W ) ≥ ∑n
i=1 Qii(W )Wii.

As Hii ≤ 0 atx0,

0 ≥
n∑

i=1

Qii(W )Hii =
n∑

i=1

Qii(W )∆Wii − n
n∑

i=1

Qii(W )Wii + H
n∑

i=1

Qii(W )

≥
n∑

i=1

Qii(W )∆Wii − n
n∑

i=1

Qii(W ) + H
n∑

i=1

Qii(W ).(3.4)
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Applying ∆ to Q(W ) = Q(I), and by the concavity ofQ, we obtain atx0,

Qii(W )∆Wii ≥ ∆Q(I) = 0.(3.5)

It follows from (3.5) and (3.4),

n
n∑

i=1

Qii(W ) ≥ H
n∑

i=1

Qii(W ).

Since
∑n

i=1 Qii(W ) > 0, we getn ≥ H(x0). Combining (3.3), we conclude that
H(x) = n,∀x ∈ Sn. Therefore,u− 1 ∈ span{x1, · · · , xn+1}. ¤

Forα > 0, l ≥ 0 integer, we set,

Al,α = {f ∈ C l,α(Sn) : f satisfying (2.1)}.(3.6)

ForR > 0 fixed, let

OR = {w ∈ Al,α : w is Γ-admissible and‖w‖Cl,α(Sn) < R}.(3.7)

In addition to the structural conditions onQ in the previous section, we need some
further conditions onQ in (2.2) to ensure general existence result. We assume that
there is a smooth strictly monotonic positive functionF defined inR+ = (0,∞),
such that∀u ∈ C2(Sn) with W = (uij + uδij) ∈ Γk, Q satisfies the orthogonal
condition,

(3.8)
∫

Sn
F (Q(W (x)))xm = 0, ∀m = 1, 2..., n + 1.

Proposition 3.2. SupposeQ satisfies thestructural conditions(2.3)-(2.6), (2.22)
and the orthogonal condition (3.8). Then for any positiveϕ̃ ∈ C1,1(Sn) with
ϕ(x) = F (ϕ̃(x)) satisfies (2.1), equation (2.2) has an admissible solutionu ∈
A3,α,∀0 < α < 1 satisfying

||u||C3,α(Sn) ≤ C,

whereC is a constant depending only onQ, α, minϕ, and||ϕ||C1,1(Sn). Further-
more, ifQ ∈ C l,γ andϕ(x) ∈ C l,γ(Sn) (l ≥ 2, γ > 0), thenu is C2+l,γ .

Proof. For each fixed0 < ϕ̃ ∈ C∞(Sn) with ϕ = F (ϕ̃) satisfying (2.1), and for
0 ≤ t ≤ 1, we define

Tt(u) = F (Q({uij + uδij}))− tϕ− (1− t)Q(I).(3.9)

Tt is a nonlinear differential operator which mapsAl+2,α into Al,α. If R is suf-
ficiently large,Tt(u) = 0 has no solution on∂OR by the a priori estimates in
Theorem 2.8. Therefore, the degree ofTt is well-defined (e.g., [20]). As degree is
a homotopic invariant,

deg(T0,OR, 0) = deg(T1,OR, 0).
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At t = 0, by Proposition 3.1,u = 1 is the unique solution of (2.2) inOR. We may
compute the degree using formula

deg(T0,OR, 0) =
∑

µj>0

(−1)βj ,

whereµj are the eigenvalues of the linearized operator ofT0 andβj its multiplicity.
SinceQ is symmetric, it is easy to show that the linearized operator ofT0 atu = 1
is

L = ν(∆ + n),
for some constantν > 0. As the eigenvalues of the Beltrami-Laplace operator
∆ on Sn are strictly less than−n, except for the first two eigenvalues0 and−n.
There is only one positive eigenvalue ofL with multiplicity 1, namelyµ = nν.
Therefore,

deg(T1,OR, 0) = deg(T0,OR, 0) = −1.

That is, there is an admissible solution of equation (2.2). The regularity and esti-
mates of the solution follows directly from Theorem 2.8. ¤

We now prove Theorem 1.3.

Proof. Theorem 1.3 follows from the above Proposition, sinceQ(W ) = S
1
k
k (W )

satisfies conditions (2.3)-(2.6) and (2.22). The orthogonal condition (3.8) follows
from (1.3). ¤

Remark3.3. Since theC2 a priori bound in Proposition 2.7 is independent of the
lower bound ofϕ̃ (we note it is used only for theC2,α estimate), Proposition 3.2
can be used to prove existence ofC1,1 solutions to equation (2.2) in the degenerate
case. To be more precise, ifQ satisfies thestructural conditions(2.3)-(2.6), (2.22)
and the orthogonal condition (3.8). Then for any nonnegativeϕ̃ ∈ C1,1(Sn) with
ϕ(x) = F (ϕ̃(x)) satisfies (2.1), equation (2.2) has a solutionu ∈ C1,1(Sn). For
equation (1.1), we can do a little better. One can prove that ifϕ ≥ 0 satisfying (1.3)

andϕ
1

k−1 ∈ C1,1, then equation (1.1) has aC1,1 solution (see [13] and [12] for
the similar results for the degenerate Monge-Ampère equation). For this, we only
need to rework Proposition 2.4. Instead, we estimateH = ∆u+nu. Following the
same lines of proof of Proposition 2.4, the desired estimate can be obtained using

two facts: (1), forf = ϕ
1

k−1 , we have|∇f(x)|2 ≤ Cf(x) for all x ∈ Sn, whereC

depending only onC1,1 norm off ; (2), for k > 1 andQ = S
1
k
k ,

∑n
i=1 Qii(W ) ≥

1
kS

− 1
k(k−1)

k (W )S
1

k−1

1 (W ) (for a proof, see Fact 3.5 on page 1429 in [16]).

The structural conditions(2.3)-(2.6) and (2.22) are satisfied for the quotient

operatorQ(W ) = (Sk(W )
Sl(W ) )

1
k−l with Γ = Γk for any0 ≤ l < k. Also, constant is

the unique solution ofQ(W ) = 1 in A2,α by Proposition 3.1. Unfortunately, the
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orthogonal condition (3.8) is not valid in general by some simple examples in [11].
Nevertheless, as in [11], we have the following existence result.

Proposition 3.4.SupposeQ satisfies thestructural conditions(2.3)-(2.6) and (2.22).
Assumẽϕ ∈ C l,1(Sn) (l ≥ 1) is a positive function. Suppose there is an automor-
phic groupG of Sn which has no fixed points. If̃ϕ is invariant underG, i.e.,
ϕ̃(g(x)) = ϕ̃(x) for all g ∈ G andx ∈ Sn. Then there exists aG-invariant ad-
missible functionu ∈ C l+2,α (∀0 < α < 1), such thatu satisfies equation (2.2).
Moreover, there is a constantC depending only onα, min ϕ̃, and ‖ϕ̃‖Cl,1(Sn),
such that

||u||Cl+1,α(Sn) ≤ C.

In particular, for any positiveG-invariant positiveϕ ∈ C1,1(Sn), equation (1.7)
has ak-convexG-invariant solution.

Proof. We only sketch the main arguments of the proof. Since anyG-invariant
function is orthogonal tospan{x1, ..., xn+1} by [11]. Therefore,u = 1 is the
uniqueG-invariant solution of (2.2) by Proposition 3.1. We again use degree theory.
This time, we considerG-invariant function spaces:

Ãl,α = {f ∈ C l,α(Sn) : f is G-invariant},
and

ÕR = {w is k-convex, w ∈ Ãl,α : ‖w‖Cl,α(Sn) < R}.
One may compute that the degree ofQ is not vanishing as in the proof of The-

orem 3.2 (see also [11]). ¤

We will prove Theorem 1.2 in the next section. Here will use it together with
Proposition 3.4 to prove Theorem 1.4.

Proof. For 0 ≤ t ≤ 1, we defineϕt = (1 − t + tϕ
−1
k−l )−k+l. Certainlyϕt is G-

invariant and{(ϕt

−1
k−l )ij + ϕt

−1
k−l δij} is semi-positive definite everywhere onSn.

We consider equation

(3.10)
Sk

Sl
(ut

ij + utδij) = ϕt.

Applying degree theory as in the proof of Proposition 3.4, there exists admissible
solutionut of equation (3.10) for each0 ≤ t ≤ 1. Whent = 0, u0 = 1 is the
unique solution by Proposition 3.1 and it is convex. By the continuity of degree
argument and Theorem 1.2,ut is convex for all0 ≤ t ≤ 1. ¤
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4 A convexity criterion for spherical quotient equations

Now we turn to the convexity of the solutions of equation (1.7). In order to
prove Full Rank Theorem 1.2, as in [15], we need to establish the following de-
formation lemma for the Hessian quotient equation (1.7). The proof below follows
lines in [15] by explore some special algebraic structural properties of the quotient
operator. The proof involves some direct but lengthy computations. In a forthcom-
ing article, we will deal with this type of convexity problem for general elliptic
concave fully nonlinear equations.

ForW = {uij + δiju}, we rewrite (1.7) in the following form

F (W ) =
Sk(W )
Sl(W )

= ϕ on Sn,(4.1)

and let

Fαβ :=
∂F

∂Wαβ
, Fαβ,rs :=

∂2F

∂Wαβ∂Wrs
.(4.2)

We note thatFαβ is positive definite forW ∈ Γk.

Lemma 4.1. (Deformation Lemma) LetO ⊂ Sn be an open subset, supposeu ∈
C4(O) is a solution of (1.7) inO, and that the matrixW = {Wij} is semi-positive
definite. Suppose that there is a positive constantC0 > 0, such that for a fixed inte-
ger (n− 1) ≥ m ≥ k, Sm(W (x)) ≥ C0 for all x ∈ O. Letφ(x) = Sm+1(W (x))
and letτ(x) be the largest eigenvalue of{−(ϕ−

1
k−l )ij(x) − δijϕ

− 1
k−l (x)}. Then

there are constantsC1, C2 depending only on||u||C3 , ||ϕ||C1,1 , n and C0, such
that the following differential inequality holds inO,

(4.3)
n∑

α,β

Fαβ(x)φαβ(x) ≤ (k − l)(n−m)ϕ
k−l+1

k−l (x)Sm(W (x))τ(x)

+ C1|∇φ(x)|+ C2φ(x),

whereFαβ are defined by (4.2).

Proof. The proof will follow mainly the arguments in [15], which in turn were
motivated by Caffarelli-Friedman [3], Korevaar-Lewis [18].

For two functions defined in an open setO ⊂ Sn, y ∈ O, we say thath(y) .
k(y) provided there exist positive constantsc1 andc2 such that

(h− k)(y) ≤ (c1|∇φ|+ c2φ)(y).(4.4)

We also writeh(y) ∼ k(y) if h(y) . k(y) andk(y) . h(y). Next, we writeh . k
if the above inequality holds inO, with the constantc1, andc2 depending only on
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||u||C3 , ||ϕ||C2 , n andC0 (independent ofy andO). Finally, h ∼ k if h . k and
k . h. We shall show that

n∑

α,β=1

Fαβφαβ . (k − l)(n−m)ϕ
k−l+1

k−l Sm(W )τ.(4.5)

For anyz ∈ O, letλ1 ≥ λ2... ≥ λn be the eigenvalues ofW atz. SinceSm(W ) ≥
C0 > 0 andu ∈ C3, for anyz ∈ Sn, there is a positive constantC > 0 depending
only on||u||C3 , ||ϕ||C2 , n andC0, such thatλ1 ≥ λ2... ≥ λm ≥ C.

Let G = {1, 2, ..., m} andB = {m + 1, ..., n} be the “good” and “bewared”
sets of indices. DefineSk(W |i) = Sk((W |i)) where(W |i) means that the ma-
trix W excluding thei-column andi-row, and(W |ij) means that the matrixW
excluding thei, j columns andi, j rows. LetΛG = (λ1, ..., λm) be the “good”
eigenvalues ofW at z, for the simplicity of the notations, we also writeG = ΛG

if there is no confusion. In the following, all calculations are taken at the pointz
using the relation “.”, with the understanding that the constants in (4.4) are under
control.

For eachz ∈ O fixed, we choose a local orthonormal framee1, ..., en so that
W is diagonal atz, andWii = λi, ∀i = 1, ..., n. Let

Sij =
∂Sm+1(W )

∂Wij
, Sij,rs =

∂2Sm+1(W )
∂Wij∂Wrs

.

We note thatSij is diagonal at the point sinceW is diagonal. Notice that
φα =

∑
i,j SijWijα, we find that (asW is diagonal atz),

0 ∼ φ(z) ∼ (
∑

i∈B

Wii)Sm(G) ∼
∑

i∈B

Wii, (soWii ∼ 0, i ∈ B).(4.6)

This relation yields that,∀1 ≤ t ≤ m,

St(W ) ∼ St(G), St(W |j) ∼
{

St(G|j), if j ∈ G;

St(G), if j ∈ B.
(4.7)

St(W |ij) ∼





St(G|ij), if i, j ∈ G;

St(G|j), if i ∈ B, j ∈ G;

St(G), if i, j ∈ B, i 6= j,

Also,

0 ∼ φα ∼ Sm(G)
∑

i∈B

Wiiα ∼
∑

i∈B

Wiiα.(4.8)

According to [15],

Sij ∼
{

Sm(G), if i = j ∈ B;

0, otherwise,
(4.9)
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Sij,rs =





Sm−1(W |ir), if i = j, r = s, i 6= r;

−Sm−1(W |ij), if i 6= j, r = j, s = i;

0, otherwise.

(4.10)

Sinceφαα =
∑

i,j [S
ij,rsWrsαWijα+SijWijαα], combining (4.6), (4.8) and (4.10),

it follows that for anyα ∈ {1, 2, ..., n},
φαα =

∑

i6=j

Sm−1(W |ij)WiiαWjjα −
∑

i6=j

Sm−1(W |ij)W 2
ijα +

∑

i

SiiWiiαα

= (
∑

i∈G
j∈B

+
∑

i∈B
j∈G

+
∑

i,j∈B
i 6=j

+
∑

i,j∈G
i6=j

)Sm−1(W |ij)WiiαWjjα

− (
∑

i∈G
j∈B

+
∑

i∈B
j∈G

+
∑

i,j∈B
i 6=j

+
∑

i,j∈G
i6=j

)Sm−1(W |ij)W 2
ijα +

∑

i

SiiWiiαα.(4.11)

From (4.8) and (4.7), we have

∑

i∈B
j∈G

Sm−1(W |ij)WiiαWjjα ∼
[ ∑

j∈G

Sm−1(G|j)Wjjα

] ∑

i∈B

Wiiα ∼ 0.(4.12)

Similarly,
∑

i∈G
j∈B

Sm−1(W |ij)WiiαWjjα ∼ 0.(4.13)

By (4.8),∀i ∈ B fixed and∀α,

−Wiiα ∼
∑

j∈B
j 6=i

Wjjα.

Then, (4.7) yields,
∑

i,j∈B
i6=j

Sm−1(W |ij)WiiαWjjα ∼ −Sm−1(G)
∑

i∈B

W 2
iiα,(4.14)

and
∑

j∈G,i∈B

Sm−1(W |ij)W 2
ijα ∼

∑

i∈B,j∈G

Sm−1(G|j)W 2
ijα.(4.15)

Inserting (4.7), (4.12)-(4.15) into (4.11), we obtain as in [15],

φαα ∼
∑

i

SiiWiiαα − 2
∑

i∈B
j∈G

Sm−1(G|j)W 2
ijα − Sm−1(G)

∑

i,j∈B

W 2
ijα.(4.16)
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So we have

∑

α,β

Fαβφαβ =
n∑

α=1

Fααφαα ∼ Sm(G)
n∑

α=1

∑

i∈B

FααWiiαα

−2
n∑

α=1

∑

i∈B
j∈G

Sm−1(G|j)FααW 2
ijα − Sm−1(G)

n∑

α=1

∑

i,j∈B

FααW 2
ijα.(4.17)

SinceF is homogeneous of orderk− l,
∑

α FααWαα = (k− l)ϕ. Commuting the
covariant derivatives, it follows that

n∑

α=1

∑

i∈B

FααWiiαα =
n∑

α=1

∑

i∈B

Fαα(Wααii + Wii −Wαα)

∼
n∑

α=1

∑

i∈B

FααWααii − (n−m)(k − l)ϕ.(4.18)

Now we compute
∑n

α=1 FααWααii for i ∈ B. Differentiating the equation (4.1),
we have

ϕi =
∑

α,β

FαβWαβi, ϕii =
∑

α,β,r,s

Fαβ,rsWαβiWrsi +
∑

α,β

FαβWαβii.

So for anyi ∈ B, we get

n∑

α=1

FααWααii = ϕii −
∑

α 6=β

[
Sk−2(W |αβ)

Sl
− 2

Sk−1(W |α)Sl−1(W |β)
S2

l

− SkSl−2(W |αβ)
S2

l

+ 2
SkSl−1(W |α)Sl−1(W |β)

S3
l

]
WααiWββi

+ 2
n∑

α=1

[
Sk−1(W |α)Sl−1(W |α)

S2
l

− SkS
2
l−1(W |α)
S3

l

]
W 2

ααi

+
∑

α 6=β

[
Sk−2(W |αβ)

Sl
− SkSl−2(W |αβ)

S2
l

]
W 2

αβi.(4.19)
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By (4.6)-(4.10), we regroup it as

n∑

α=1

FααWααii ∼ ϕii +
∑

α 6=β

[
Sk−2(W |αβ)

Sl(G)
− SkSl−2(W |αβ)

S2
l (G)

]
W 2

αβi

+
∑

α∈B

[
Sk−2(G)
Sl(G)

− 2
Sk−1(G)Sl−1(G)

S2
l (G)

− Sk(G)Sl−2(G)
S2

l (G)

+ 2
Sk(G)S2

l−1(G)
S3

l (G)

]
W 2

ααi −
∑

α 6=β
α,β∈G

[
Sk−2(G|αβ)

Sl(G)
− 2

Sk−1(G|α)Sl−1(G|β)
S2

l (G)

− Sk(G)Sl−2(G|αβ)
S2

l (G)
+ 2

Sk(G)Sl−1(G|α)Sl−1(G|β)
S3

l (G)

]
WααiWββi

+ 2
n∑

α=1

[
Sk−1(W |α)Sl−1(W |α)

S2
l (G)

− Sk(G)S2
l−1(W |α)

S3
l (G)

]
W 2

ααi.

It follows that

n∑

α=1

Fααφαα ∼ Sm(G)
∑

i∈B

ϕii − (n−m)(k − l)Sm(G)ϕ

+ Sm(G)
∑

i∈B

[ ∑

α∈B

{Sk−2(G)
Sl(G)

− Sk(G)Sl−2(G)
S2

l (G)
}W 2

ααi

−
∑

α 6=β
α,β∈G

{Sk−2(G|αβ)
Sl(G)

− 2
Sk−1(G|α)Sl−1(G|β)

S2
l (G)

− Sk(G)Sl−2(G|αβ)
S2

l (G)
+ 2

Sk(G)Sl−1(G|α)Sl−1(G|β)
S3

l (G)
}WααiWββi

+ 2
∑

α∈G

{Sk−1(G|α)Sl−1(G|α)
S2

l (G)
− Sk(G)S2

l−1(G|α)
S3

l (G)
}W 2

ααi

+
∑

α 6=β

{Sk−2(W |αβ)
Sl(G)

− Sk(G)Sl−2(W |αβ)
S2

l (G)
}W 2

αβi




− 2
n∑

α=1

∑

i∈B
j∈G

Sm−1(G|j)FααW 2
ijα − Sm−1(G)

n∑

α=1

∑

i,j∈B

FααW 2
ijα.(4.20)

We first treat the following three terms in the above formula.
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Set

A = Sm(G)
∑

i∈B

∑

α 6=β

Sk−2(W |αβ)
Sl(G)

W 2
αβi − 2

n∑

α=1

∑

i∈B
j∈G

Sm−1(G|j)FααW 2
ijα

− Sm(G)
∑

i∈B

∑

α 6=β

Sk(G)Sl−2(W |αβ)
S2

l (G)
W 2

αβi.(4.21)

We want to show that

A . Sm(G)
∑

i∈B

∑

α 6=β
α,β∈B

[
Sk−2(G)
Sl(G)

− Sk(G)Sl−2(G)
S2

l (G)

]
W 2

αβi

−2
∑

i∈B
α∈G

[
Sm−1(G|α)Sk−1(G|α)

Sl(G)
− Sk(G)Sm−1(G|α)Sl−1(G|α)

S2
l (G)

]
W 2

ααi.(4.22)

Indeed, since

Fαα =
Sk−1(W |α)

Sl(G)
− Sk(W )Sl−1(W |α)

S2
l (G)

,(4.23)

by the definition ofA, we have

S2
l (G)A = Sm(G)

∑

i∈B

( ∑

α 6=β
α,β∈G

+
∑

α 6=β
α,β∈B

+2
∑

α∈B
β∈G

)[
Sl(G)Sk−2(W |αβ)

− Sk(G)Sl−2(W |αβ)
]
W 2

αβi

− 2
∑

i∈B

( ∑

α 6=β
α,β∈G

+
∑

α=β∈G

+
∑

α∈B
β∈G

)[
Sl(G)Sm−1(G|β)Sk−1(W |α)

− Sk(G)Sm−1(G|β)Sl−1(W |α)
]
W 2

αβi.

Now we should prove that the two terms
∑

i∈B

∑
α∈B
β∈G

and
∑

i∈B

∑
α 6=β

α,β∈G

in

the right hand side of previous equality are non-positive. More precisely, we prove
that

∑

i∈B

∑

α∈B
β∈G

[
Sm(G)Sl(G)Sk−2(G|β)− Sm(G)Sk(G)Sl−2(G|β)

−Sl(G)Sm−1(G|β)Sk−1(G) + Sk(G)Sm−1(G|β)Sl−1(G)
]
W 2

αβi . 0.(4.24)

As usual, we only need to prove that for eachi ∈ B, the term is non-positive.
Since forβ ∈ G, St(G) = St(G|β)+St−1(G|β)Wββ wheret ∈ {l, l−1, k, k−1}.
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By the Newton-MacLaurin inequality, we have

WββSl(G)Sk−2(G|β)−WββSk(G)Sl−2(G|β)
− Sl(G)Sk−1(G) + Sk(G)Sl−1(G)

= Wββ

[
Sl(G|β) + WββSl−1(G|β)

]
Sk−2(G|β)

−Wββ

[
Sk(G|β) + WββSk−1(G|β)

]
Sl−2(G|β)

−
[
Sl(G|β) + WββSl−1(G|β)

][
Sk−1(G|β) + WββSk−2(G|β)

]

+
[
Sk(G|β) + WββSk−1(G|β)

][
Sl−1(G|β) + WββSl−2(G|β)

]

= Sk(G|β)Sl−1(G|β)− Sl(G|β)Sk−1(G|β)
. 0.(4.25)

We now treat the term
∑

i∈B

∑
α 6=β

α,β∈G

. We shall prove that it is also non-

positive. In fact, for anyi ∈ B, we have

∑
α 6=β

α,β∈G

[
Sl(G)Sm(G)Sk−2(G|αβ)− Sm(G)Sk(G)Sl−2(G|αβ)

− 2Sl(G)Sm−1(G|β)Sk−1(G|α) + 2Sk(G)Sm−1(G|β)Sl−1(G|α)
]

=
∑

α6=β
α,β∈G

Sm−1(G|β)
[
2{Sk(G)Sl−1(G|αβ)− Sl(G)Sk−1(G|αβ)}

+ Wββ{Sk(G)Sl−2(G|αβ)− Sl(G)Sk−2(G|αβ)}
]

=
∑

α6=β
α,β∈G

[
2Sm−1(G|β){Sk(G|αβ)Sl−1(G|αβ)− Sl(G|αβ)Sk−1(G|αβ)}

+ Sm(G){Sk(G|αβ)Sl−2(G|αβ)− Sl(G|αβ)Sk−2(G|αβ)}
+ Sm(G)(Wαα −Wββ){[Sk−2(G|αβ)Sl−1(G|αβ)− Sl−2(G|αβ)Sk−1(G|αβ)}

]

= 2
∑

α6=β
α,β∈G

Sm−1(G|β)
[
Sk(G|αβ)Sl−1(G|αβ)− Sl(G|αβ)Sk−1(G|αβ)

]

+ Sm(G)
∑

α 6=β
α,β∈G

[
Sk(G|αβ)Sl−2(G|αβ)− Sl(G|αβ)Sk−2(G|αβ)

]

. 0.

Here we have used again the Newton-MacLaurin inequality. So (4.22) follows.
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Combining (4.20) and (4.22), we have
n∑

α=1

Fααφαα . Sm(G)
∑

i∈B

[
ϕii − k − l + 1

k − l

ϕ2
i

ϕ
− (k − l)ϕ

]
+ I1 + I2,(4.26)

where

I1 = Sm(G)
∑

i∈B

[ ∑

α∈B

Sk−2(G)
Sl(G)

W 2
ααi −

∑

α∈B

Sk(G)Sl−2(G)
S2

l (G)
W 2

ααi

]

− Sm−1(G)
n∑

α=1

∑

i,j∈B

FααW 2
ijα

+ Sm(G)
∑

i∈B

∑

α 6=β
α,β∈B

[
Sk−2(G)
Sl(G)

− Sk(G)Sl−2(G)
S2

l (G)

]
W 2

αβi,

I2 =
∑

i∈B

{
(1 +

1
k − l

)Sm(G)
ϕ2

i

ϕ
− Sm(G)

∑

α 6=β
α,β∈G

[Sk−2(G|αβ)
Sl(G)

− 2
Sk−1(G|α)Sl−1(G|β)

S2
l (G)

− Sk(G)Sl−2(G|αβ)
S2

l (G)
+ 2

Sk(G)Sl−1(G|α)Sl−1(G|β)
S3

l (G)

]
WααiWββi

+ 2Sm(G)
∑

α∈G

[Sk−1(G|α)Sl−1(G|α)
S2

l (G)
− Sk(G)S2

l−1(G|α)
S3

l (G)

]
W 2

ααi

− 2
∑

α∈G

[Sm−1(G|α)Sk−1(G|α)
Sl(G)

− Sk(G)Sm−1(G|α)Sl−1(G|α)
S2

l (G)

]
W 2

ααi

}
.

Claim. I1 . 0 andI2 . 0.

If the Claim is true, it follows from (4.26) that
n∑

α,β=1

Fαβφαβ . Sm(G)
∑

i∈B

[
ϕii − k − l + 1

k − l

ϕ2
i

ϕ
− (k − l)ϕ

]
.(4.27)

Thus (4.5) follows from (4.27).

Proof of the Claim. First by induction and Newton-MacLaurin inequality we
have the following inequality

Sm(G)Sl(G)Sk−2(G)− Sm−1(G)Sk−1(G)Sl(G)
− Sm(G)Sk(G)Sl−2(G) + Sk(G)Sl−1(G)Sm−1(G) ≤ 0.(4.28)

On the other hand, it is clear that by (4.23),
n∑

α=1

∑

i,j∈B

FααW 2
ijα ≥

∑

i∈B

∑

α,β∈B

[
Sk−1(G)
Sl(G)

− Sk(G)Sl−1(G)
Sl(G)2

]
W 2

αβi.(4.29)
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If we put (4.29) intoI1 and using (4.28), we obtain

S2
l (G)I1 .

[
Sl(G)Sl(G)Sk−2(G)− Sm−1(G)Sk−1(G)Sl(G)− Sm(G)Sk(G)Sl−2(G)

+ Sk(G)Sm−1(G)Sl−1(G)
] ∑

i∈B

∑

α,β∈B

W 2
αβi

≤ 0.

To treatI2, it follows from (4.7) and (4.8),

ϕi ∼
∑

α∈G

FααWααi for i ∈ B.(4.30)

Using (4.23), we need only to verify the following inequality for eachi ∈ B,

∑

α∈G

{
2

Wαα

[
S2

l (G)Sk(G)Sk−1(G|α)− S2
k(G)Sl(G)Sl−1(G|α)

]
W 2

ααi

+
2

k − l
Sl(G)Sk(G)Sk−1(G|α)Sl−1(G|α)W 2

ααi

+
[
(1− 1

k − l
)S2

k(G)S2
l−1(G|α)− (1 +

1
k − l

)S2
l (G)S2

k−1(G|α)
]
W 2

ααi

}

+
∑

α 6=β
α,β∈G

[
S2

l (G)Sk(G)Sk−2(G|αβ)− Sl(G)S2
k(G)Sl−2(G|αβ)

+(1− 1
k − l

)S2
k(G)Sl−1(G|α)Sl−1(G|β)

+
2

k − l
Sl(G)Sk(G)Sk−1(G|α)Sl−1(G|β)

−(1 +
1

k − l
)S2

l (G)Sk−1(G|α)Sk−1(G|β)
]
WααiWββi

≥ 0.

This follows from the fact that the matrix(fαβ +2fα

λα
δαβ) is semi-positive definite

(e.g. [25]) for f(λ) = −(Sk
Sl

)−
1

k−l (λ) when λ = (λ1, λ2, ..., λm) where each
λi (1 ≤ i ≤ m) is positive number. ¤

5

Acknowledgment. Part of the work was done while the first author was visit-
ing Max-Planck Institute for Mathematical Sciences in Leipzig in 2001. He would
like to thank Professor J. Jost for the invitation and MPI for the hospitality. We
would also like to thank J. Urbas for bringing question regarding the existence
of admissible solution of equation (1.1) to us at Isaac Newton Institute in March
2001. Research of the first author was supported in part by an NSERC Discovery



THE CHRISTOFEL-MINKOWSKI PROBLEM III 23

Grant. Research of the second and third author were supported by Shanghai Prior-
ity Academic Discipline, the grants from Ministry of Eduction of China and NSF
of China.

Bibliography

[1] A.D. Alexandrov, Zur Theorie der gemischten Volumina von konvexen korpern, III. Die Er-
weiterung zweeier Lehrsatze Minkowskis uber die konvexen polyeder auf beliebige konvexe
Flachen ( in Russian),Mat. Sbornik N.S., 3, (1938), 27-46.

[2] A.D. Alexandrov, Uniqueness theorems for surfaces in the large. I (Russian),Vestnik Leningrad.
Univ., 11, (1956), 5-17. English translation: AMS Translations, series 2,21, (1962), 341-354.

[3] L. Caffarelli and A. Friedman, Convexity of solutions of some semilinear elliptic equations,
Duke Math. J., 52, (1985), 431-455.

[4] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order
elliptic equations, III: Functions of the eigenvalues of the Hessian,Acta Math., 155, (1985),
261 - 301.

[5] L.A. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear second order elliptic equations IV:
Starshaped compact Weigarten hypersurfaces,Current topics in partial differential equations,
Y.Ohya, K.Kasahara and N.Shimakura (eds), Kinokunize, Tokyo, 1985, 1-26.

[6] S.Y. Cheng and S.T. Yau, On the regularity of the solution of the n-dimensional Minkowski
problem,Comm. Pure Appl. Math., 29, (1976), 495-516.

[7] S.S. Chern, Integral formulas for hypersurfaces in Euclidean space and their applications to
uniqueness theorems,J. Math. Mech., 8, (1959), 947-955.
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