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Abstract

We describe the current state of progress on the maximal subgroup
problem for the Monster sporadic simple group. Any unknown max-
imal subgroup is an almost simple group whose socle is in one of 19
specified isomorphism classes.

1 Introduction

The Monster group M is the largest of the 26 sporadic simple groups, and
has order

808 017 424 794 512 875 886 459 904 961 710 757 005 754 368 000 000 000.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357328399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


It was first constructed by Griess [3], as a group of 196884×196884 matrices.
This construction was carried out entirely by hand.

In [9] Linton, Parker, Walsh and the second author constructed the
196882-dimensional irreducible representation of the Monster over GF (2).
In [4] Holmes and the second author constructed the 196882-dimensional
representation over GF (3).

Much work has been done on the subgroup structure of the Monster. Un-
published work by the first author includes the p-local analysis for p ≥ 5,
which was repeated (with corrections) by the second author, and extended
to p ≥ 3 (see [20]). The local analysis was completed with Meierfrankenfeld
and Shpectorov’s solution of the 2-local problem, also unpublished after sev-
eral years [10]. The first author has also worked extensively on the non-local
subgroups [11]. This includes the (relatively straightforward) case where
the socle is non-simple, and more significantly the case where the socle con-
tains an A5 with 5A-elements. Together with work on the (2, 3, 7) structure
constants, this reduced the number of isomorphism types of possible simple
subgroups which need to be considered, from 55 to approximately 30. These
results are summarised in [11], though in most cases the proofs are left as
exercises for the reader.

In this paper, we reduce this number further to 19, and present some
further restrictions on possible maximal subgroups. It is hoped that in due
course the three recent computer constructions of the Monster [9], [4], [24] will
lead to a complete determination of the maximal subgroups of the Monster,
although this is still a long way off at present.

We take as our starting point the Atlas list of groups which are, or may
be, involved in the Monster [2]. The list is reproduced in Table 1. For those
61 groups whose order divides that of the Monster and which were asserted
in the Atlas not to be involved, proof of non-containment is provided in the
last section of this paper. Note that the classification of local subgroups of
M shows that none of these groups can be involved without being contained.

Six of the ten doubtful cases in Table 1 have now been resolved: L2(19),
L2(29), L2(31), L2(49) and L2(59) are now known to be subgroups (see [7],
[5], [22], [6]), and L2(41) and J1 are known not to be involved (see [11], [18]).

The question of which of these groups are subgroups of M is in some
cases rather more difficult to answer than the question of involvement. Our
present state of knowledge is covered by Table 2. At this stage we cannot
deal with the cases in (c), which seem to require deep analysis. We claim
that the groups listed in (a) and (b) are subgroups of M, while those in (d)
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Table 1: The Atlas list of groups possibly involved in the Monster

An, 5 ≤ n ≤ 12
L2(q), q = 7, 8, 11, 13, 16, 17, 19?, 23, 25, 27?, 29?, 31?, 41?, 49?, 59?, 71?, 81
L3(3), L3(4), L3(5), L4(3), L5(2)
U3(3), U3(4), U3(5), U3(8), U4(2), U4(3), U5(2), U6(2)
S4(4), S6(2), S8(2), O7(3), O+

8 (2), O−8 (2), O+
8 (3), O−8 (3), O+

10(2), O−10(2)
Sz(8)?, G2(3), G2(4), 3D4(2), F4(2), 2F4(2)′, 2E6(2)
M11,M12,M22,M23,M24, Co1, Co2, Co3, F i22, F i23, F i

′
24, J2, Suz

HS,McL,He,HN, Th,B,M, J1?

Here a ? denotes a group for which it was not known at the time of publica-
tion whether or not it was involved in M.

and (e) are not.

Theorem 1 The groups listed in Tables 2(a) and (b), with the exception of
L2(29) and L2(59), are subgroups of M.

Theorem 2 The groups listed in Tables 2(d) and (e), with the exception of
L3(5), are not subgroups of M.

Note. We deal with the case L3(5) in Section 2.4. The cases L2(29) and
L2(59) have been dealt with computationally by Beth Holmes [5],[6].

Proof of Theorem 1. First, the known subgroups A12 and Th contain
all the groups listed in the first rows of the two tables. Similarly, the sub-
group Fi23 contains all the groups in the second and third rows of Table 2(a)
plus L2(17), L2(16) and U4(2). The Harada–Norton group contains U3(5),
and both the Held group and O−10(2) are well-known subgroups of 3.F i′24,
and therefore of M. The subgroups L2(31) and L2(49) were found computa-
tionally, as subgroups of the Baby Monster [22], while L2(23) was found by
Linton [8] as a subgroup of 3.F i′24. Finally, U3(4) is contained in 6.Suz. ut

Before dealing with Theorem 2 we prove the following crucial result
(proved by the first author many years ago, but not published at that time),
which will also be useful later:
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Table 2: The current status

(a) Completely classified subgroups of M
A5, A7, A8,M12, A9, A10, G2(3), A11,

3D4(2), A12, Th
L2(25), S4(4), S6(2), L4(3), U5(2), 2F4(2)′, O+

8 (2), O−8 (2), O7(3)
S8(2), O+

8 (3), F i23
L2(23), L2(29), L2(49), L2(59), U3(5), He,O−10(2), HN

(b) Partially classified subgroups of M
L2(7), A6, L2(8), L2(11), L2(13), L2(19), L3(3), U3(3),M11, U3(8)
L2(17), L2(16), L2(31), U4(2), U3(4)

(c) Doubtful cases
L2(27), L3(4), Sz(8), L2(71)

(d) Involved but not contained
M22, U4(3), L5(2),M23, HS,M24,McL, U6(2), Co3, O

−
8 (3), O+

10(2)
Co2, F i22, F4(2), Co1,

2E6(2), F i′24, B
L2(81), L3(5), J2, G2(4), Suz

(e) Not involved in M
L2(41), J1
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Lemma 3 There is no A7 containing 5B-elements in M.

Proof. Note first that there is only one class of 5B-type A5 which extends
to S5, namely those with type (2B, 3B, 5B) and normalizer S5 × S3. This is
because the normalizers of the other two types are (D10 × A5)

.2 and A5:4.
The latter group can be seen inside some of the direct product normalizers
described in Table 4 of [11]. Indeed the existence of an S5 or A5:4 was used as
a way of assigning some of the diagonal A5s to classes T and B respectively
in that table.

Suppose now that there is an A7 containing 5B-elements in M. Then
there is an S5, containing 3-cycles of the A7, so the 5-point A5 is of M-
type (2B, 3B, 5B). Now we look in the 3B-centralizer 31+12.2.Suz for the
subgroup 3×A4. There are two classes of involutions in 2.Suz which corre-
spond to class 2B in the Monster, namely the central involution −1A, and
the class +2A. In order to have a group 3×A4, we must obviously have the
latter class. Moreover, the only 3-elements in 6.Suz which normalize a 22

group of type +2A project to Suz-class 3C. (To see this, observe that the
22-group decomposes the 12-space on which the group acts into a direct sum
of three 4-spaces, and the normalizing element must permute these 4-spaces,
so have trace 0, so be in class 3C.) But by [20], these elements fuse to M-class
3C, contradicting the fact that they fuse to M-class 3B via the S5. ut

Proof of Theorem 2. Of the cases in Table 2(e), L2(41) has been dealt
with by the first author [11], and J1 by the second author [18].

To deal with the first two rows of Table 2(d), we note that each of the
groups therein has A7 as a subgroup. Therefore, by Lemma 3, every subgroup
of M of one of these types must contain 5A-elements. But none of these
groups are in Table 5 of [11], so none of them can be subgroups of M. (Note:
while it may not be clear in every case which class is being used in the
argument which is suppressed in [11], all cases either have only one 5-class
or contain a subgroup with this property which is also in Table 2(d).)

A similar argument covers G2(4), J2, and Suz. These groups contain
A5 × A4, in which the A5 must have 5A-elements (as by Table 3 of [11] the
centralizer of any 5B-type A5 is one of D10, S3 or 2). As the 5-elements
in such A5s centralize other A5s containing the other conjugacy class of 5-
element, it can be seen that that class too must fuse to 5A in the Monster.
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Finally, L2(81) can be dealt with by means of its subgroup D80, as no 40-
element of M powering to 5B is conjugate to its inverse. ut

2 Classification of subgroups

2.1 Elementary reductions

We now turn to the groups in Tables 2(a) and (b). These tables are distin-
guished by the fact that subgroups of M whose shape is one of the groups
of Table 2(a) have been completely classified, but this is not true of Ta-
ble 2(b). In this section we begin to justify our assertion that the 30 groups
in Table 2(a) are completely determined.

By Lemma 3, any subgroup of M containing A7 has 5A-elements and
therefore any occurrence must correspond to an item in the list in [11]. This
deals with the cases A7, A8, A9, A10, A11, A12, U3(5), S6(2), S8(2), O7(3),
O+

8 (2), O−8 (2), O+
8 (3), O−10(2), Fi23, and HN . It is also easy to deal with

L4(3), S4(4) and He by showing that every subgroup of one of these shapes
must also have a 5A-element. Note that in none of these cases can there be
any problem about which 5-class is being used, as either there is just one
5-class or the subgroup shown in the second column of Table 5 of [11] has
already been completely classified.

The cases A5 and L2(49) are also dealt with in [11], so, with the doubtful
cases, as well as the postponed cases L2(29), L2(59) and L3(5), there remain
30 groups to consider, namely:

L2(q), q = 7, 8, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 59, 71
L3(3), L3(4), L3(5), U3(3), U3(4), U3(8), U4(2), U5(2)
G2(3), 3D4(2), 2F4(2)′, Sz(8), A6,M11,M12, Th

In every case where there is an A5 subgroup we may assume that the
elements of order 5 in that subgroup are in class 5B, since the 5A-cases have
all been dealt with by the first author [11]. In fact, as in the cases considered
above, [11] does not specify which class(es) of 5-elements in the subgroup
are assumed to be in M-class 5A, so we need to be careful in some cases
to ensure that we have proved that the particular 5-class we are using fuses
to 5B. This however only applies to the cases L3(5) and U3(4), which are
considered individually below.
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We now deal with six of the above 30 cases, namely, U5(2), M12, L3(5),
3D4(2), Th, and G2(3).

2.2 U5(2)

Any subgroup U5(2) contains 3×U4(2), and by [11] we may assume that the
elements of order 5 (which are all conjugate in U5(2)) fuse to class 5B. The
M-classes of elements of order 3 which commute with a 5B-element are 3B
and 3C. But C(3C) ∼= 3× Th does not contain 3× U4(2), so this case does
not occur. In the other case, we have C(3B) ∼= 31+12.2.Suz, and the elements
of M-class 5B project to Suz-class 5A. But it is easy to see by character
restriction that 2.Suz does not contain a subgroup U4(2) with 5A-elements.
Thus we have proved:

Theorem 4 The Monster does not contain a subgroup U5(2) with 5B-elements.

2.3 M12

The group M12 has a subgroup 2×S5. Now, as we saw in Lemma 3, only one
of the three classes of 5B-type A5s in M extends to S5, namely the one with
centralizer S3. In particular, the central involution in 2 × S5 is in M-class
2A. But these involutions are inside A5s in M12, contradicting the fact that
the Monster does not contain an A5 of type (2A, 5B). Thus we have proved:

Theorem 5 The Monster does not contain a subgroup M12 with 5B-elements.

2.4 L3(5)

In L3(5) there are two classes of 5-elements. The centralizer of an element of
L3(5)-class 5A contains 51+2, and therefore this class fuses to 5B in M. By
[11], we may assume that the other 5-class fuses to 5B as well. Moreover,
there is a subgroup S5, which must therefore be inside S3 × Th in M. In
particular, the 3-elements are in class 3B.

Now consider the subgroups 52:GL2(5). By the 5-local analysis [20] we
know that these must be either in

N(5B2) ∼= 52+2+4(S3 ×GL2(5))
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or in
N(54) ∼= 54:(3× 2.L2(25)).2.

In the latter case, the subgroup 3× 2.L2(25) is contained in 6.Suz, and the
non-central elements of order 3 project to class 3C in Suz, and therefore to
3C in M, which is a contradiction.

We next investigate the structure of 52+2+4:(S3 × GL2(5)). The com-
plement S3 × GL2(5) contains two distinct classes of GL2(5), one of which
centralizes S3, while the other centralizes just 2. In both cases, however, the
centralizer of the group 52:GL2(5) contains at least one 2A-element. (This
follows from the fact that the 3-normalizer S3 × Th contains a subgroup
S3 × 52:GL2(5) of this group.)

If we now consider generating L3(5) with two subgroups 52:GL2(5) in-
tersecting in 52:(4× 5:4), we see that all three subgroups are centralized by
the same element of order 2. Therefore, whatever group is so generated is a
subgroup of the Baby Monster. But in [19] the second author proved that
L3(5) is not a subgroup of B, and so this does not happen.

Combining this with the result [11] that there is no 5A-type L3(5) in M,
we have:

Theorem 6 There is no subgroup L3(5) in the Monster.

2.5 3D4(2)

The centralizer in 3D4(2) of a 7A/B/C-element is 7×L2(7), so these classes
fuse to M-class 7A, because CM(7B) ∼= 71+4:2.A7, which does not contain a
subgroup L2(7). If the 7D-elements of 3D4(2) also fuse to M-class 7A, then
this case is dealt with in [11], by accounting for the relevant (2, 3, 7) structure
constants. It turns out that there is a unique class of such subgroups 3D4(2)
in M, each with normalizer S4 × 3D4(2):3.

So we may assume that the elements of 3D4(2)-class 7D fuse to M-class
7B. Therefore the Sylow 7-subgroup of any such 3D4(2) has equal numbers
of 7A and 7B-elements. It follows from the class fusion given in [20] that the
subgroup 7× L2(7) is embedded in C(7A) ∼= 7×He in such a way that the
L2(7) contains elements of He-class 7D/E.

Now inspection of the list of maximal subgroups of He in [2] reveals that
all the L2(7)s of He-type 7D/E are contained in the involution centralizer
21+6L3(2). In particular, the group 7 × L2(7) that we want is contained in
the involution centralizer 21+24.Co1 in M.
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To generate 3D4(2), we can take a subgroup 7 × 7:3 of 7 × L2(7), and
extend it to 72:2.A4. But the full M-normalizer of the 72-subgroup is (72 ×
D14).(3× 2.A4), so there is a unique way to make this extension. Moreover,
the extension is already visible in the centralizer of the same involution which
centralizes 7 × L2(7). It follows that the group so generated is contained in
21+24.Co1, and therefore is not 3D4(2).

Thus we have proved:

Theorem 7 There is a unique class of groups of shape 3D4(2) in the Mon-
ster, and the normalizer of any such group is a non-maximal subgroup S4 ×
3D4(2):3.

2.6 The Thompson group

From the above, the containment of 3D4(2) in Th shows that the 7-elements
must fuse to M-class 7A. Therefore this case has been done in [11], since Th
is a (2, 3, 7)-group. There is a unique class of Th in M, normalized by the
well-known maximal subgroup S3 × Th.

2.7 G2(3)

Theorem 8 Every G2(3) in M contains 7A-elements, and has non-trivial
centralizer.

Proof. We show first that there is no G2(3) containing 7B-elements in M.
So suppose for a contradiction that H is a subgroup G2(3) containing 7B-
elements. In [18] the second author showed that the only elements of order
3 which conjugate a 7B-element to its square are in class 3C. Hence the
3E-elements in H fuse to class 3C in M. On the other hand, there are pure
32 groups in H of G2(3)-class 3A, and also of G2(3)-class 3B. Thus neither
of these classes can fuse to 3C in M. But now the involution centralizer in
G2(3) contains a 32-group containing elements of G2(3)-classes 3A, 3B, 3D
and 3E, so at most two cyclic subgroups of this 32 can contain elements of
M-class 3C. This is a contradiction, as there is no such 32 in M.

Thus we have proved that any G2(3) in M contains 7A-elements. The
analysis of the (2, 3, 7A)-structure constants [11] shows that the subgroup
L2(13) of our putative G2(3) is uniquely determined, up to conjugacy. It has
centralizer 31+2:22 of order 108, and double centralizer G2(3). Now any G2(3)
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containing this L2(13) can be generated by extending the 7-normalizer from
D14 to 7:6. The normalizer of the D14 can easily be computed, by looking at
the centralizers of involutory outer automorphisms of the Held group, and it
has the shape 7:6× 3.S7.

Now the different ways of extending D14 to 7:6 fall into 4 orbits, of sizes
1+2+210+840, under the action of 3.S7. In every case, however, the normal
3-group in 3.S7 actually centralizes both the L2(13) (since it is in 31+2:22,
which contains a Sylow 3-subgroup of 3.S7), and the 7:6, and therefore cen-
tralizes the group generated. It follows that every G2(3) in M has non-trivial
centralizer, and hence its normalizer is not maximal. ut

3 Computational results

3.1 Overview

There remain 24 cases to deal with, namely

L2(q), q = 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 59, 71
L3(3), L3(4), U3(3), U3(4), U3(8), U4(2), Sz(8), 2F4(2)′,M11

In the following subsection we classify subgroups of types L2(25) and 2F4(2)′.
This uses substantial computations in subgroups of M, but does not use any
of the computer constructions of M directly.

A student of the second author, Beth Holmes, is working on classifying
certain maximal subgroups computationally. She has already classified the
subgroups L2(23), L2(29) and L2(59), and found that in each case there is
a unique class, with normalizers S3 × L2(23), L2(29):2 and L2(59), the first
contained in 3.F i24, the other two being new maximal subgroups [5],[6]. She
has also eliminated the possibility of a subgroup L2(13) containing 13B-
elements, and is working on other cases.

We believe we can deal similarly with most of the remaining cases con-
taining A5, specifically

L2(q), q = 9, 11, 16, 19, 31, 71, L3(4) and M11

The plan is to find each A5 in such a way that we can explicitly compute the
5-normalizer, and then run through all possible cases in the usual way, using
an amalgamation of suitable subgroups.
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3.2 L2(25) and 2F4(2)′

In this subsection we aim to show that there is no L2(25) of 5B-type in the
Monster, and as a corollary, there is no 2F4(2)′ of 5B-type either. These
results rely to some extent on computational results on subgroups of the
Baby Monster [23], as well as other computations in smaller groups. We use
the fact that L2(25) may be generated by subgroups S5 and 52:4 intersecting
in 5:4. Thus we start by taking representatives of the two classes of 5B-type
S5s, and trying to extend a subgroup 5:4 to 52:4 inside the full 5B-normalizer
51+6:2.J2:4. We shall show that there is a very small number of possible
extensions, and in each case the group generated by the S5 and the 52:4 is
centralized by an involution.

As usual, by [11] we may assume that all elements of order 5 in our
putative L2(25) are in M-class 5B. Moreover, the existence of a subgroup
S5 implies (as in Lemma 3) that the 3-elements are in M-class 3B, and that
the M-centralizer of the A5 in such an S5 is a (2A, 3C)-type S3. It follows
that there are two possibilities for such an S5 in M. The first has centralizer
S3, and is a subgroup of the Thompson group Th, while the second has
centralizer of order 2, generated by a 2A-element. Thus we have proved:

Lemma 9 There are exactly two classes of S5 containing 5B-elements in M.
The respective S5-normalizers are S5 × S3 and S5 × 2.

Next we turn attention to the subgroup 52:12 of our putative L2(25). We
first prove from the 5-local analysis that there is only one class of 52 which is
normalized by a 3B-element in M. For if the 52 is of type 5B6(ii) or 5B6(iii)
in the notation of [20], then it is in the normal 54 of 54:(3× 2.L2(25)).2. But
the only 3B-elements in here are the ones centralizing 2.L2(25), and these
only normalize 52 groups which are 1-spaces over GF (25)—and the latter
are of type 5B6(i). Thus our 52 is of the type labelled 5B6(i) in [20]. This
means it is in the normal 51+6 of the 5-normalizer. The normalizer of such
a 52 in M is 52+2+4:(S3 × GL2(5)). Moreover, the only 3B-elements in this
group are the ones in a copy of GL2(5).

Next we determine the centralizers of the subgroups 5:4 which are con-
tained in the two subgroups S5. It can be seen that, as stated in Table 3
of [11], the centralizer of the D10 is 53:(4 × A5). This may be seen as the
centralizer in C(5B) ∼= 51+6:2.J2 of the product of a 2B-element of 2.J2
and a central 4-element of 4.J2. To extend this D10 to 5:4, we must adjoin
an element mapping to J2:2-class 4C. There are two essentially different
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ways of doing this, as these elements are not conjugate to their negatives in
4.J2

.2 ∼= 2.J2:4. In one case the centralizer of 5:4 is 52:(4× S3), while in the
other case it is 5:4 × S3. Our next problem is to determine which of these
occurs in each of our subgroups S5.

We consider an embedding of the subgroup 5:4 × S3 of S5 × S3 into
the 5-normalizer 51+6:2.J2:4. As above, we see that the 4-element acts on
the 56-factor with eigenvalues 1, 1, 4, 2, 2, 3 (or their inverses) in one case, or
1, 4, 4, 2, 3, 3 (or their inverses) in the other. The S3 centralizes the two 1-
dimensional eigenspaces, and acts as the deleted permutation representation
on each of the 2-dimensional eigenspaces. (The former follows from the fact
that in 2.J2 it is the involutions of character value +2 in the 6-dimensional
(5-modular) representation that fuse to class 2A in M.) In particular, if we
multiply our 4-element by an involution in the S3, we obtain a 4-element in
the other conjugacy class in 2.J2:4. This means:

Lemma 10 The subgroups 5:4 in two nonconjugate subgroups S5 of 5B-type,
are themselves not conjugate in M. The centralizers of these two groups 5:4
are 52:(4× S3) and 5:4× S3.

Since both these centralizers contain 3C-elements, we can conjugate the
two groups 5:4 into a copy of the Thompson group Th. Their centralizers in
Th are then 4 and 5:4. Our central problem now is to determine which of
these two Frobenius groups in Th is the one contained in an S5 in Th. This
turns out to be a very subtle question, which was first solved by computer
calculations.

We began with a copy of 5:4 < S5 < Th, obtained by using the words
in the standard generators provided in [17]. We then found the centralizer
in Th of a 4-element in 5:4, by first finding the involution centralizer using
Bray’s method [1]. This 4-centralizer contains 96 cyclic groups of order 5,
and we tested each of them to see if it centralized the 5:4. As none of them
does centralize the 5:4, it follows that the Frobenius group we started with
has centralizer 4 in Th, and therefore centralizer 52:(4× S3) in M.

Remark. As the computer calculation here is very sensitive to any error,
and could easily produce a false negative result, we ran another similar pro-
gram which found an element of order 5 centralized by the D10, but inverted
by the element of order 4. It follows that inside the 5-normalizer 51+2:2.A4:4

12



our 4-element acts on the 52-factor with eigenvalues 4, 3 (or their inverses),
and not with eigenvalues 1, 2 (or their inverses).

We also give here a non-computational proof using the Y -diagram ([12],
also Figure 1 of page 233 of the Atlas [2]).

Lemma 11 The 5:4 inside the S5 inside Th has centralizer 52:(4 × S3) in
M. The 5:4 inside an S5 of the other type has centralizer 5:4× S3 in M.

Proof. Using the notation of [12] and [2], we adjoin to the generators
shown an involution ∆ which normalizes each factor of the group S6×S6×S6

generated by all the nodes except a. This can be chosen to centralize cidieifi,
1 ≤ i ≤ 3, and looking inside 〈∆, a, b1, c1, d1, e1, f1〉 ∼= U3(5):2 shows that ∆a
has order 5.

The centralizer in Y555 of the S3 which permutes the suffices is Th o 2.
This has a subgroup 〈ac1c2c3, ad1d2d3, ae1e2e3, af1f2f3〉, with the property
that the subgroup S5 of the Thompson group can be taken as its projection
into one of the factors of the even part of Y555. It can now be seen that the
4-element of the S5 which normalizes the product of the cidieifis must involve
a (since otherwise it would be odd in Y555), and therefore it inverts ∆a. This
proves the last sentence of the above remark, from which the required result
follows. ut

We will be needing the following lemma later.

Lemma 12 In each of the 5B-type S5s the 4-elements fuse to class 4D in
M.

Proof. In the type of S5 that centralizes an S3, by the above argument
we may take a 4-element to be the projection of ad1e1f1d2e2f2d3e3f3 into
one of the two factors of the even part of Y555. In the notation of [12], this
lies in the central product of the three groups 〈di, ei, fi, zi〉 and the group
〈a, b1, b2, b3〉, where the common central involution is f ∗. In our expression
for the 4-element above, we may conjugate a to the involution corresponding
to the extending node of the D4-diagram whose nodes are a and the bis,
which is b1b2b3f

∗. We may also conjugate each of the dieifis to its product
with f ∗. This takes our 4-element to the product of the three bidieifis. This
is a 4-element in the even part of 〈b1b2b3, c1c2c3, d1d2d3, e1e2e3, f1f2f3〉, which
projects to a subgroup A6 of the Thompson group. According to the Atlas,
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such 4-elements belong to class 4B in the Thompson group, which fuses to
4J in the double cover of the Baby Monster and 4D in the Monster.

For the other type of S5 the argument is easier, as by Lemma 11 the
4-element centralizes a 5-element, so it must belong to class 4B in Th and
4D in M. ut

We continue our investigation inside the 5-normalizer 51+6:2.J2:4. We now
know exactly how our two Frobenius groups embed in here. For the sake of
clarity, in each case choose the 4-element which squares the 5-elements in
this Frobenius group. Then in the first case, where the S5 has centralizer
S3, we know that the 4-element has eigenvalues 1, 1, 4, 2, 2, 3, since for any
automorphism of 51+6 the determinant of its action on the central quotient
is the cube of its eigenvalue on the centre. Similarly, in the second case the
eigenvalues are 1, 4, 4, 2, 3, 3.

In particular, in the second case, there is a unique extension of the 5 to a
52 on which the 4-element acts as a scalar. Also, this extension is centralized
by the 2A-element which centralizes the S5. Therefore the group generated
by S5 and 52:4 is also centralized by this involution.

In the first case, the eigenvalue 2 has multiplicity 2, so there are po-
tentially six possible extensions. However, explicit calculation in the 6-
dimensional representation of 2.J2:4 reveals that three of these contain 5A-
elements, so there are just three possible extensions, permuted by the S3

which centralizes the S5. Again, therefore, the resulting group is centralized
by an involution. Thus:

Lemma 13 Every 5B-type L2(25) in M is centralized by a 2A-element, so
is contained in the Baby Monster.

Theorem 14 There is no L2(25) of 5B-type in M.

Proof. According to the calculations in [23], there is no 5B-type L2(25)
in the Baby Monster. ut

Corollary 15 There is no 2F4(2)′ of 5B-type in M .

Proof. The group 2F4(2)′ contains L2(25). ut

14



4 Partial results

In many cases partial classifications of certain types of subgroups are known.
These will often be useful in limiting the amount of computation necessary
to complete the classification. In this section we deal with all cases apart
from groups of type L2(q), which will be covered in the next section.

4.1 Sz(8)

Our first result was proved by the second author in 1984, but the proof has
not appeared in print before.

Theorem 16 Any subgroup Sz(8) in M contains 5B-elements.

Proof. Note first that Sz(8) is a (2, 4, 5)-group in 6 independent ways.
Also it contains a pure elementary Abelian 23, so the involutions must fuse
to M-class 2B. Hence the 4-elements must fuse to M-class 4A, 4C, or 4D.
Now using GAP [16] we calculate the relevant (2, 4, 5A) structure constants
in M:

ξM(2B, 4A, 5A) =
40687

14192640
< 1

ξM(2B, 4C, 5A) =
154601

49152
= 3

7145

49152
< 4

ξM(2B, 4D, 5A) =
83

160
< 1

so the only way an Sz(8) of 5A-type could exist (with trivial centralizer) is
if it contains 4C-elements. Moreover, since the structure constant is strictly
less than 6, any Sz(8) extends to Sz(8):3.

Now we look for the subgroup 3×5:4 inside N(5A) ∼= (D10×HN).2. The
desired element of order 4 must correspond to an element of HN :2-class 2C,
4D, 4E, or 4F . These fuse respectively to elements of 2.B-class 2C, 4A, 4F ,
and 4J , and therefore to elements of M-class 4B, 4A, 4C, 4D respectively.
(These fusions are easily checked by character restriction.) Since our element
is of M-class 4C, it is of HN :2-class 4E. Hence the element of order 3 which
commutes with it is in HN -class 3A, and thence 2.B-class 3A and M-class
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3A. It follows immediately from the power maps that the remaining outer
classes of Sz(8):3 fuse to M-classes 6C, 12E, and 15A.

Finally, we observe that Sz(8):3 can be generated by a triple of elements of
Sz(8)-type (2A, 3A, 15A), so of M-type (2B, 3A, 15A). But ξM(2B, 3A, 15A) =
241
6720

< 1, so any such Sz(8):3 has non-trivial centralizer. This contradiction
completes the proof. ut

4.2 L3(4)

Theorem 17 Every L3(4) in M is of type (2B, 3B, 4C, 4C, 4C, 5B, 7A).

Proof. We already know from [11] that the 5-elements are in class 5B, and
therefore the involutions are in class 2B. Moreover, the Sylow 3-subgroup of
L3(4) is a 32, while there is no 3C-pure 32 in M, so the 3-elements are in class
3B. As noted in Section 2.7, it follows from [18] that the only elements of
order 3 which conjugate a 7B-element to its square are in class 3C. Therefore
the 7-elements are in class 7A.

Now according to [11] there is a unique class of L3(2)s of type (2B, 3B, 7A)
in the Monster, centralizing S4. To see such a group, we look inside CM(S4) =
S8(2). This group has a subgroup O−8 (2) in which L3(2) is maximal, and it
can be seen that this L3(2) fuses to type (2B, 3B, 4C, 7A) in M. Hence all
4-elements in L3(4) would have to fuse to 4C-elements in M. ut

4.3 U3(3)

Theorem 18 Every U3(3) in M contains 2B-elements.

Proof. If we have 2A-elements, then all 4-elements fuse to M-class 4B.
By looking at the unitary structure of U3(3), we can see that its Sylow 2-
subgroup can be written in the form

〈a, b, c|a4 = b4 = [a, b] = c2 = 1, ac = a−1, bc = ab〉.

However, such a group cannot occur in the Monster. To see this, we first note
that b commutes with a. Now A = CM(a) has structure 4.F4(2).2. (Note:
the non-splitness of the outer extension can be seen by observing that class
2E of F4(2).2 must lift to 8C in the Monster, which determines which group
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of the isoclinism class 4.F4(2).2 occurs.) As both c and ac fuse in M to 2A,
we have CM(〈a, c〉) = 2.F4(2), a subgroup of index 4 in A, and the elements
x of A can be split into four cosets according to which power of a is equal to
[x, c]. In particular, since [b, c] = a, it follows that b lies in the outer half of
A ∼= 4.F4(2).2. But there are no elements of order 4 in the outer half of A.
This proves that U3(3)s with 2A-elements cannot occur in M. ut

If we have 7B-elements then the class 3B in U3(3) must fuse to class
3C in M, since these are the only 3-elements which properly normalize a
7B-element.

If we now have an L2(7) of type (2B, 3A, 7A), then by section 5 of [11] it
has centralizer 22.L3(4):S3. An A4 inside it has centralizer 211.M24, and an
S4 has centralizer of order 218.33.5.7, using the structure constants

ξM(2B, 3A, 4A) = 1/218.33.5.7
ξM(2B, 3A, 4C) = 1/214.3.7
ξM(2B, 3A, 4D) = 0.

In particular the 4-elements are in class 4A, and the centralizer of the S4

is 211.L3(4):S3. Again we see that two copies of 22.L3(4):S3 in here intersect
nontrivially, so any U3(3) of this type has non-trivial centralizer.

Next suppose we have an L2(7) of type (2B, 3B, 7A). Then the same
argument as for L3(4) shows that 4C in U3(3) fuses to 4C in M. Finally, by
[11] there is no L2(7) of type (2B, 3C, 7A), so the only remaining possibilities
are as in Table 3.

4.4 U4(2)

For U4(2), note that the Baby Monster B does not contain an elementary
abelian 24 which lifts to Q8 ◦Q8 in the double cover 2.B, so the 2A-elements
fuse to M-class 2B. The subgroup S6 implies that class 2B in U4(2) fuses to
class 2B in M, and 3C and 3D fuse to 3B, and also (by Lemma 12) that 4B
fuses to 4D. The 9-elements imply that 3AB fuses to 3B.

4.5 U3(8)

For U3(8), the subgroup D18 implies that 2A fuses to 2B and 3C fuses to 3B.
Then the analysis of the (2, 3, 7) structure constants in [11] implies that the
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subgroup L2(8) is of type (2B, 3B, 7A) in M. The elements of order 21 may
then be either in class 21A or in class 21C, with 7th powers respectively in
3A and 3C.

In the latter case, note that CM(3C) ∼= 3 × Th contains a unique class
of L2(8), and such an L2(8) centralizes at least 32. Therefore from [11] its
centralizer is 3.S6, and the whole normalizer L2(8):3 × 3.S6 is a maximal
subgroup of N(3A) ∼= 3.F i24. In particular the elements of order 9 are 5th
powers of elements of order 45, so in M-class 9A.

4.6 L3(3)

First we show that a 13B-element is normalized only by 3C-elements, not 3A
or 3B, while a 13A-element is normalized by 3B-elements and 3C-elements,
but not 3A.

A 13B-element may be found inside 6.Suz, where it is normalized by
elements of Suz-class 3C only. These lift to elements of M-class 3C only.

A 13A-element has normalizer (13:6×L3(3)).2, and a subgroup 6×L3(3)
thereof can be found in 6.Suz. The 3-elements normalizing the 13A-element
are then either central in 6.Suz, in which case they are in M-class 3B, or lift
to class 3B or 3C in Suz, in which case they are in M-class 3B or 3C by
[20].

But now the structure constants ξM(2A, 3B, 13A) = 0, ξM(2A, 3C, 13A) =
1/36 and ξM(2A, 3C, 13B) = 0 show that any L3(3) containing 2A-elements
has nontrivial centralizer. Therefore we may restrict attention to subgroups
L3(3) containing 2B-elements.

The 3A-elements in L3(3) cannot fuse to 3C since they form pure 32-
groups. This leaves just the cases listed in Table 3.

4.7 M11

The fact that M11 contains S5 tells us that the A5 in any 5B-type M11 is of
type (2B, 3B, 5B). Moreover, by Lemma 12 the 4-elements in such an S5 are
in class 4D, and hence the 8-elements are in class 8F .

4.8 U3(4)

There is a unique class of subgroups A5 in U3(4), and the existence of a
subgroup 5 × A5 of U3(4) implies that the A5 is of type (2B, 3C, 5B), and
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that the central 5-elements are also in class 5B. The rest of the class fusion
given in Table 3 follows from the power maps.

5 L2(q)

5.1 General results

From Table 1, the set of values of q > 5 for which L2(q) might be a subgroup
of the Monster is {7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 41, 49, 59, 71, 81}.
Following Section 6 of [11], we write Q = {19, 27, 29, 31, 41, 49, 59, 71}. It is
convenient to give a proof of the following result, which follows from what
was stated in [11]. Note that this theorem does not cover the cases q = 16,
25 or 81.

Theorem 19 If q ∈ Q or q = 7, 8, 9, 11, 13, 17, 23, then the only possible
subgroups of M of type L2(q) with 5A-elements are those described in Table
5 of [11].

Proof. If q = 7, 8, 13, 17, 23 or 27 then the theorem is obvious as there
are no elements of order 5 at all. The other cases are those in which L2(q)
is generated by two groups of type A5 which may be chosen to intersect in
either D10 or A4, and this is the property we use.

There are five cases according to the conjugacy class fusion of the A5. In
the two cases where the 3-element belongs to class 3C, the result is clear, as
it follows from Table 3 of [11] that each A4 extends uniquely to an A5. We
deal with the other three cases in turn.

If the A5 is of type (2A, 3A, 5A) then, from Table 3 of [11], the centralizer
of the L2(q) is isomorphic to the intersection of a pair of distinct A12s in
HN , and also to the intersection of a pair of distinct A12s in O−10(2). The
possibilities for both these intersections are described in the Atlas (pages
147 and 166). The only possible intersections that occur in both cases are
M12 and the even parts of S6 o 2 and S3 oA4. The centralizers of these groups
are L2(11), A6 and 34:A5 respectively, and as each of these has A5 as a
maximal subgroup it follows that it is indeed generated by a pair of A5s, and
in the first two cases they can clearly be chosen to intersect in either D10 or
A4. This exhibits two of the cases in Table 5 of [11].

If the A5 is of type (2B, 3A, 5A) then, using the subgroup D10, it follows
from Table 3 of [11] that the centralizer of the L2(q) is isomorphic to the
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intersection of a pair of distinct subgroups 2.M22.2 in 2.HS.2. This intersec-
tion can be either 2.M21.2 or 25.S6, which can be shown to centralize 2×A6

and 25.A5 respectively. Of these cases only the first can give rise to an L2(q),
namely A6. This case can also be seen in Table 5 of [11].

If the A5 is of type (2B, 3B, 5A) then, using the subgroup A4, it follows
from Table 3 of [11] that the centralizer of the L2(q) is isomorphic to the
intersection of a pair of M11s in 2.M12.2. (Note that as the closure of the
A5, namely S6.2, contains more than one A5, there is no requirement for the
M11s to be distinct.)

In the case when the M11s are conjugate in 2.M12, their intersection is
M11 or A6. These groups can be shown to centralize S6.2 and the even part
of S6 o 2 respectively. Only the first case can give rise to an L2(q), namely
A6. This case can also be seen in Table 5 of [11].

Finally, in the case when the M11s are not conjugate in 2.M12, their
intersection is L2(11), which centralizes M12. The group generated by the
two A5s, which must centralize L2(11) and no more in the Monster, can only
be the type of L2(11) which is non-transitive on the 12 points on which the
M12 acts. ut

5.2 L2(q) for q ≤ 17

In this section we consider the possibilities for subgroups of type L2(q), where
q ∈ {7, 8, 9, 11, 13, 16, 17}. The results of [11], which were proved in the pre-
vious subsection except when q = 16, show that the cases with 5A-elements
are known. The 6-transposition property, together with the fact that the
product of two transpositions cannot belong to class 5B, shows that unless
q = 7 the involutions of L2(q) belong to M-class 2B. For L2(7), the (2, 3, 7)
structure constant results of [11], together with the fact that a 7B-element
is only properly normalized by a 3C-element, show that any remaining L2(7)
is of type (2B, 3C, 7B).

For L2(9) ∼= A6, the classification of A5s, together with the fact that every
32 containing 3C-elements contains exactly six 3C-elements, shows that every
5B-type A6 has type (2B, 3B, 3B, 5B).

For L2(11) and L2(16) the class fusions given in Table 3 follow immedi-
ately from the classification of A5s, together with the power maps. The fact
that all 9-elements cube to 3B gives the stated result for L2(17) as well.

For L2(8) and L2(13), both of which are (2, 3, 7)-groups, the structure con-
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stant analysis in [11] shows that they have type (2B, 3B, 7B) or (2B, 3C, 7B).
Moreover, the latter case is impossible for L2(8), as the 3-elements are cubes.
Finally, for L2(13), note that a 13B-element is not properly normalized by a
3B-element (see Section 4.6 above), and Holmes has eliminated the possibil-
ity of any other L2(13) with 13B-elements [6].

5.3 L2(q) for q ≥ 19

The cases q = 25, 41, 49, 81 have been dealt with, and the cases q = 23, 29, 59
have been completely classified by Holmes [5], [6]. However, we consider all
q ∈ Q (which includes the cases q = 29, 41, 49, 59 but not q = 23, 25, 81)
as this enables us to fill in some of the details which were omitted from the
published proofs in [11].

Theorem 20 If q ∈ Q, then, in any subgroup of M of shape L2(q), the
involutions must fuse to 2B-elements, elements of order 5 (unless q = 27) to
5B-elements, and elements of order 3 to 3B-elements.

Proof. As stated in [11], the involutions of any such L2(q) must belong
to class 2B because the product of any two 2A-elements has order at most 6.
It follows from [11] and was proved above in Theorem 19 that the 5-elements
(where they exist, i.e., unless q = 27) belong to class 5B. It remains to
prove, as asserted in Section 6 of [11], that the 3-elements belong to class
3B.

For q = 27 this follows from the fact that M has no 3A- or 3C-pure
elementary abelian subgroups of order 27 (which can be seen from the fusion
maps from 3.F i′24 and 3 × Th given in [20]). For q = 19 or 71, we use the
fact that all 9-elements power to 3B-elements.

The remaining cases are q = 29, 31, 41, 49, 59. Suppose, for a contradic-
tion, that such a subgroup L2(q) contains elements of class 3A or 3C. By
Table 3 of [11], any A5 containing 5B-elements but not 3B-elements is of
type (2B, 3C, 5B) and centralizes D10, in which the 5-elements also belong
to class 5B (as 5A cannot centralize 3C).

There are three conjugacy classes of 2B-pure four-groups 〈t1, t2〉 in M;
they are distinguished by having composition factors M24, M12 and A8 in
their centralizers. Only the third of these types centralizes a 5B-element.
Now, if we put G0 = CM(t1) ∼= 21+24.Co1 and G1 = G0/O2(G0) ∼= Co1,
then the image of t2 in G1, in the three cases above, belongs to class 1A,
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2C and 2A respectively. In particular, in the third case, which by the above
argument must hold for any four-group in a (2B, 3C, 5B)-type A5, the image
of t2 is a 6-transposition in G1, i.e., its product with any G1-conjugate has
order at most 6.

If we fix t1 then we can choose a pair of involutions commuting with t1 (so
that they have all the properties of t2) in such a way that their product, u,
has respective order 7, 16, 5, 24, 15 in G0, according as q = 29, 31, 41, 49, 59.
As the kernel of the map from G0 to G1, namely 21+24, has exponent 4, the
first and last cases contradict the 6-transposition property. For q = 31, u4

must be a 4-element of 21+24, which belongs to class 4A in M; but it can be
seen from the class list of M that no such element exists. For q = 41, u must
belong to class 5B of M, but any 5-element of G1 which is the product of two
2A-elements lifts in M to a 5A. And for q = 49, u8 must belong to class 3C
(as by hypothesis the 3-elements in our L2(49) are 3Cs), but whenever two
2A-elements of G1 have product of order 6 the 3-part of this product must
lift in M to a 3A. ut

We now deduce the class of the 7-elements of L2(q) when q = 29, 49, 71.
If q = 29 then the 7-element can be seen inside N(29A) = 29:42, where
the 42-element has p-parts 2B and 3A, and hence 7B. If q = 49 then the
7-elements must be 7As as only 3Cs can properly normalize 7Bs [18]. And if
q = 71 then the 7-elements are the fifth powers of 35-elements whose 5-parts
belong to class 5B, so must belong to class 7B.

By [11], if q = 31 or 71, the A4 in the A5 in any L2(q) has centralizer
21+6.31+2.4, whereas an S4 of type (2B, 3B, 4A) has centralizer 2.M12. There-
fore the S4 in L2(q) cannot be of this type, so the 4-elements fuse to 4C. If
q = 71 then the 36-elements must fuse to 36D, and the whole class fusion is
determined.

It follows from the above that the class fusion map for L2(29) is

(2B, 3B, 5B, 7B, 14C, 15C, 29A),

and the computations in [6] show that the map for L2(59) is

(2B, 3B, 5B, 6E, 10E, 15C, 29A, 30G, 59AB).

We append in Table 3 a list of what is currently known about the possible
class fusions from each of the remaining 19 groups. This enables us to prove:

Theorem 21 Any proper subgroup of the Monster with 2A-elements lies in-
side one of the known maximal subgroups.
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Note. The list of known maximal subgroups of the Monster consists of
all the non-local subgroups shown on page 234 of the Atlas, and the local
subgroups with no supergroups shown, except that the last of the 5-locals has
structure 54:(3× 2.L2(25)):22 with the outer involution inverting the 3, and
four extra subgroups should be added, a 7-local of shape 72:SL2(7) where the
O7-subgroup is 7B-pure, the 41-local 41:40 (because the supergroup L2(41) is
now known not to exist), and the new subgroups L2(29):2 and L2(59) [5],[6].

Proof. Any further maximal subgroup, apart from the odd-order group
71:35, must have as its socle a group of one of the types shown in Table 3,
and thus lie between such a group and its automorphism group.

It is easy to see that any 2A-type involution in such a group must lie in
the outer half of a group G.2, where G is one of the groups shown in Table 3.
Looking through all cases we find that in every case the product of any such
involution and one of its conjugates can be chosen to have order at least 7, or
to belong to class 3B or 5B, which is impossible for a 2A-type involution. ut

6 The Atlas results

We now redeem our pledge to prove that the simple groups stated in the
Atlas as not being involved in the Monster are indeed not contained. As
we said earlier, the classification of maximal local subgroups shows that they
cannot be involved without being contained.

For groups containing A7, Lemma 3 shows that any 5-elements in the A7s
must be 5As, so that we can use the classification in [11]. This covers the
following cases: An (13 ≤ n ≤ 32), Ln(4) (4 ≤ n ≤ 6), L4(7), L6(3), U6(4),
S4(7), S6(4), S10(2), S12(2), O7(5), O9(3), O+

10(3), O+
12(2), O−12(2), O’N , Ru.

For most of the other groups we can exhibit a subgroup which is known
not to be contained in M: D62 in L2(32), D46 in L2(47), 63 in L2(64), 63 in
L2(125), 1023 in L2(1024), 91 in L3(9), 91 in L2(16), 217 in L3(25), L3(5) in
L4(5), 91 in L4(9), 121 in L5(3), 65 in U4(4), 3.U3(5) in U4(5), 63 in U4(8),
65 in U5(4), 63 in S4(8), L2(81) in S4(9), L3(5) in S6(5), D62 in Sz(32), L3(5)
in G2(5).

This leaves just the following cases: L3(7), S4(5), S6(3), J3. The case J3
was solved by Griess and Smith (Lemma 14.4 of [3]). Next, S4(5) can be
eliminated by using [11] and our result (Theorem 14) that any L2(25) has
5A-elements.
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Table 3: Class fusions not yet eliminated

Group Class fusions
L2(7) 2B, 3C, 4, 7B
A6 2B, 3B, 3B, 4, 5B
L2(8) 2B, 3B, 7B, 9
L2(11) 2B, 3B/B/C, 5B, 6B/E/F, 11A
L2(13) 2B, 3B/B/C, 6B/E/F, 7B, 13A
L2(17) 2B, 3B, 4, 8, 9, 17A
L2(19) 2B, 3B, 5B, 9, 19A
L2(16) 2B, 3B/C, 5B, 15C/D, 17A
L3(3) 2B, 3A/B/B, 3C, 4, 6C/B/E, 8, 13

2B, 3B, 3B, 4, 6B/E, 8, 13A
U3(3) 2B, 3A/B/B, 3B, 4, 4C, 6C/B/E, 7A, 8, 12

2B, 3A/B/B, 3C, 4, 4, 6C/B/E, 7B, 8, 12
M11 2B, 3B, 4D, 5B, 6B/E, 8F, 11A
L2(27) 2B, 3B, 7B, 13, 14C
L2(31) 2B, 3B, 4C, 5B, 8A/E, 15C, 16A/B, 31AB
L3(4) 2B, 3B, 4C, 4C, 4C, 5B, 7A
U4(2) 2B, 2B, 3B, 3B, 3B, 4, 4D, 5B, 6, 6, 6, 6, 9, 12
Sz(8) 2B, 4, 5B, 7, 13
U3(4) 2B, 3C, 4, 5B, 5B, 10D/E, 13, 15D
L2(71) 2B, 3B, 4C, 5B, 6E, 7B, 9B, 12I, 18D, 35B, 36D, 71AB
U3(8) 2B, 3A/A/C, 3B, 4, 4, 4, 6C/C/F, 7A, 9A/B/A, 19A, 21A/A/C

Note: Alternatives where given should be read in parallel. For example, an
L2(11) is of type (3B, 6B) or (3B, 6E) or (3C, 6F ).
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For L3(7), take a subgroup 72:2.L2(7):2 and call its O7-subgroup G. If
L3(7) were a subgroup of the Monster, then from [20] we know that G would
have to fuse to a 7B-pure group. But in M 7B-elements are properly normal-
ized only by 3C-elements (see [18]), so the Sylow 3-subgroup of L3(7) would
have to fuse to a 3C-pure group of order 9, which is known to be impossible.

As for S6(3), the 3AB-elements are cubes, so must fuse to 3B-elements
in M. So their centralizers 31+4:2.U4(2) must be contained in 31+12.2.Suz.
But an easy character restriction of the 12-character of 6.Suz shows that this
does not happen.
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