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Abstract

The subject of this paper is the study of a timelike tube surface around the
spacelike curve with timelike and spacelike binormal vectors in a three-dimensional
Minkowski space E3

1 . Moreover, we have discussed Weingarten and linear Wein-
garten conditions for this surface with respect to their curvatures; the mean curva-
ture H , Gaussian curvature K and the second Gaussian curvature KII .
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1 Introduction

In the study of the differential geometry of surfaces, it is common to determine some

surfaces satisfying curvature conditions. An interesting curvature property to study for

surfaces in a Minkowski space E3
1 is the one that requires the existence of a non-trivial

functional relationship between the principal curvatures. The resulting surfaces are called

Weingarten surfaces. In particular, a surface S (in either R3 or E3
1) is called a Wein-

garten surface if there is some (smooth) relation U(κ1, κ2) = 0 between its two principal

curvatures κ1 and κ2, or equivalently, if there exists a non -trivial functional relation

Ω(K,H) = 0 with respect to its Gaussian curvature K and its mean curvature H . The

existence of a non-trivial functional relation Ω(K,H) = 0 on the surface S parametrized

by Φ(u, v) is equivalent to the vanishing of the corresponding Jacobian determinant,

namely
∣∣∣∂(K,H)

∂(u,v)

∣∣∣ = 0. Also, the linear Weingarten surfaces, these are Weingarten surfaces
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satisfying a linear equation between Gaussian and mean curvatures, that is, aK +bH = c,

(a, b, c) ∈ R, (a, b, c) �= (0, 0, 0).

There are many studies of these surfaces [3],[4] gave a classification of ruled Weingarten

surfaces in a Minkowski 3- space E3
1 . Recently [8],[9] investigated polynomial translation

(K, H)- Weingarten surfaces and translation (H, KII)- linear Weingarten surfaces in a

Euclidean 3- space.

Besides, several geometers [1, 2, 11],[6],[7] have studied Weingarten surfaces and linear

Weingarten surfaces.

On account of the study that considered in[1],[11], we develop a corresponding work

by studying a timelike tube surface around a spacelike curve in E3
1 , which satisfy the

Weingarten and linear Weingarten conditions with respect to its curvatures.

2 Preliminaries

Let R3 = {(x, y, z) : x, y, z ∈ R} be a 3-dimensional space, and let X = (x1, x2, x3) and

Y = (y1, y2, y3) be two vectors in R3. The Lorentz scalar product of X and Y is defined

by

〈X , Y 〉 = x1y1 + x2y2 − x3y3, (2.1)

E3
1 = (R3, 〈X, Y 〉) is called Minkowski 3−space. Since the metric is indefinite,

recall that a vector x of E3
1 can have one of three causal characters: it can be spacelike

vector, null(lightlike) vector or timelike vector if 〈x, x 〉 > 0 or x = 0, 〈 x, x 〉 = 0

and x �= 0, 〈x, x 〉 � 0, respectively. For x ∈ E3
1 , the norm of the vector x is given by

‖x‖ =
√|〈x, x 〉|. Therefore, x is a unit vector if 〈x, x〉 = ±1. Similarly, an arbitrary

curve α = α(s) ⊂ E3
1 can locally be spacelike, timelike or null (lightlike), if all of its velocity

vectors ά(s) are respectively spacelike, timelike or null (lightlike) ( i.e., 〈ά(s), ά(s)〉 > 0,

〈ά(s), ά(s)〉�0, 〈ά(s), ά(s)〉 = 0). So, α(s) is a unit speed curve if 〈ά(s), ά(s)〉 = ±1, where

s is the arc length parameter of α. Any two vectors X, Y ∈ E3
1 are called orthogonal [10]

if 〈X , Y 〉 = 0.

The vector product of two vectors X = (x1, x2, x3), Y = (y1, y2, y3) belong to E3
1 , is

defined as

X ∧ Y = ( x3y2 − x2y3, x1y3 − x3y1, x1y2 − x2y1).

We also recall that the pseudosphere of radius 1 and center at the origin is the hyper-

quadric in E3
1 defined by S2

1(1) = {v ∈ E3
1 : 〈v, v 〉 = 1}.
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3 Timelike tube surface around a spacelike curve with

a timelike binormal

In this section we define the notion of timelike tube surfaces.

Let δ = δ(u) : (ζ, η) −→ E3
1 be a spacelike unit speed curve with a timelike

binormal e3, where u is the arc length parameter of δ.

Considering that ‖e1‖ = 1, e2 =
é1‖é1‖ and e3 =

e1 ∧é1

‖e1 ∧é1‖
, we obtain the orthonormal

frame field {e1(u), e2(u), e3(u)}.This frame satisfies the following conditions:

〈e1, e1〉 = 〈e2, e2〉 = 1,

〈e3, e3〉 = −1,

〈e1, e2〉 = 〈e2, e3〉 = 〈e3, e1〉 = 0, (3.1)

and vector product is defined to be

e1 ∧ e2 = e3, e2 ∧ e3 = −e1, e3 ∧ e1 = −e2. (3.2)

Differential formula for this orthonormal system is expressed by

e´1 = κ(u)e2(u), e´2 = κ(u)e1(u) − τ(u)e3(u), e´3 = τ(u)e2(u), (3.3)

where the prime ” ´ ” denotes the derivative with respect to the u −parameter and

κ(u) and τ(u) are the curvature and the torsion of the curve δ(u) respectively.

Consider M is a timelike tube surface parametrized by Ψ : j × R −→ E3
1 . Then, the

position vector of Ψ can be written in the following form

Ψ(u, v) = Ψ(δ, e2, e3, r)(u, v) = δ(u) + r (e2(u) cosh v + e3(u) sinh v ), (3.4)

where δ, e2, e3 : j −→ E3
1 and r : j −→ R.>0 . We call δ a base curve and a pair of

two vectors e2, e3 a director frame of the timelike tube surface Ψ. We must have

‖ Ψ(u, v) − δ(u) ‖2= r2.

The last equation expresses analytically the geometric fact that Ψ(u, v) lies on a

Lorentzian sphere S2
1(u) of radius r centered at δ(u).
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The unit normal vector field σ of the timelike tube surface Ψ is given by

σ =
Ψu ∧ Ψv

‖ Ψu ∧ Ψv ‖ . (3.5)

Accordingly to parametrization (3.4) of a timelike tube surface Ψ, one easily defines

its first fundamental form

I = Edu2 + 2Fdudv + Gdv2,

where E, F, G - the coefficients of I - are given by

E = 〈 Ψu, Ψu 〉, F = 〈 Ψu, Ψv 〉, G = 〈 Ψv, Ψv 〉, Ψu =
∂Ψ(u, v)

∂u
. (3.6)

For the spacelike surface in E3
1 , EG−F 2 > 0 ; for the timelike surface in E3

1 , EG−F 2 <

0.

We define the second fundamental form II of M by

II = Pdu2 + 2Qdudv + Wdv2,

with the coefficients given by

P = 〈Ψuu , σ〉, Q = 〈Ψuv , σ〉, W = 〈Ψvv , σ〉. (3.7)

Moreover, the Gaussian and mean curvatures of the timelike tube surface Ψ(u, v) are

given by, respectively

K =
PW − Q2

EG − F 2
. (3.8)

H =
EW − 2FQ + GP

2(EG − F 2)
. (3.9)

If the second fundamental form is non-degenerate; PW −Q2 �= 0. In this case, one define

formally the second Gaussian curvature KII a similar one to Brioschi’s formula for the

Gaussian curvature obtained on Ψ replacing the components of the first fundamental form

E, F, G by those of the second fundamental form P, Q, W as [8]
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KII =
1

(PW − Q2)2

⎧⎨
⎩

∣∣∣∣∣∣
−1

2
Puu + Quv − 1

2
Wuu

1
2
Pu Qu − 1

2
Pv

Qv − 1
2
Wu P Q

1
2
Wv Q W

∣∣∣∣∣∣
−

∣∣∣∣∣∣
0 1

2
Pv

1
2
Wu

1
2
Pv P Q

1
2
Wu Q W

∣∣∣∣∣∣

⎫⎬
⎭ .

(3.10)

A surface in the 3 - dimensional Minkowski space E3
1 is called a timelike surface if the

induced metric on the surface is a Lorentz metric and is called a spacelike surface if the

induced metric on the surface is a positive definite Riemannian metric, i.e., the normal

vector on the timelike(spacelike) surface is a spacelike(timelike) vector [5] , [10] , [12].

In the following, we investigate the timelike tube surface Ψ in E3
1 satisfying the

Jacobi equation Ω(U, V ) = 0, U �= V , of the curvatures K, H and KII of Ψ and we

formulate the main results in the next theorems.

Let Ψ be a timelike tube surface in 3 - dimensional Minkowski space E3
1 given in (3.4).

So, from equation (3.3), partial differentiation of Ψ with respect to u and v are as follows

Ψu = e1(u) + r [e2(u)τ(u) sinhv + coshv (−κ(u)e1(u) + τ (u)e3(u))] ,

Ψv = r (e3(u)cosh v + e2(u) sinh v ). (3.11)

Therefore, we find the components of the first fundamental form of Ψ to be

E = −2r κ(u) cosh v + r2κ2(u) cosh2 v − r2τ 2(u), F = −r2τ(u), G = −r2.

(3.12)

Considering equation (3.2), from equation (3.5) we write the unit surface normal as

σ = (e2(u) cosh v + e3(u) sinh v ). (3.13)

The second order partial differentials of Ψ are found

Ψuu = (−r κ́ cosh v − r κ τ sinh v)e1 +
(
κ(1 − r κ cosh v) + r τ́ sinh v + r τ 2 cosh v

)
e2

+(r τ 2 sinh v + r τ́ cosh v) e3,

Ψuv = −r κ sinh v e1 + r τ cosh v e2 + r τ sinh v e3,

Ψvv = r (e2 cosh v + e3 sinh v).
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From equation (3.13) and the last equations we find the second fundamental form

coefficients as follow

P = −κ(u) cosh v + r κ2(u) cosh2 v −r τ 2(u), Q = r τ(u), W = r.

Making use of the data described above, the Gaussian curvature K, the mean value

curvature H and the second Gaussian curvature KII are given respectively as follows

K =
κ(u) cosh v

r (−1 + r κ(u) cosh v)
, (3.14)

H =
(1 − 2r κ(u) cosh v)

2r (−1 + r κ(u) cosh v)
, (3.15)

KII = −(3 + cosh 2v − 12r κ(u) cosh3 v + 8r2κ2(u) cosh4 v)sech2v

8r (−1 + r κ(u) cosh v)2
. (3.16)

Theorem 3.1 Let Ψ be a timelike tube surface in Minkowski 3-space E3
1 defined in

(3.4) satisfying the Jacobi condition

Ω(K,H) = 0, (3.17)

for the Gaussian curvature K and the mean curvature H of Ψ.Then,

(i) Ψ is a Weingarten surface.

(ii) The Gaussian curvature K and the mean curvature H of Ψ are tied by the relation

K =
2κ(u) cosh v

1 − 2r κ(u) cosh v
H (3.18)

Proof. Let Ψ be a timelike tube surface in E3
1 parametrized by (3.4) and satisfying

(3.17).Then, we have

∂K

∂u

∂H

∂v
− ∂K

∂v

∂H

∂u
= 0. (3.19)

Differentiating K given by (3.14) and H given by (3.15) with respect to u and v

respectively, to obtain

∂K

∂u
= − κ́ (u) cosh v

r (−1 + r κ(u) cosh v)2
,

∂K

∂v
= − κ(u) sinh v

r (−1 + r κ(u) cosh v)2
, (3.20)
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∂H

∂u
=

r κ́ (u) cosh v

2r (−1 + r κ(u) cosh v)2
,

∂H

∂v
=

r κ(u) sinh v

2r (−1 + r κ(u) cosh v)2
. (3.21)

From (3.20) and (3.21), equation (3.19) is satisfied, and then, the surface Ψ is a Weingarten

surface.

Furthermore, from (3.14) and (3.15) we get the required relation

K =
2κ(u) cosh v

1 − 2r κ(u) cosh v
H.

Theorem 3.2 Let Ψ be a timelike tube surface with non- degenerate second funda-

mental form in 3 - dimensional Minkowski space E3
1 satisfying the Jacobi equation

Ω(KII , K) = 0, (3.22)

for the second Gaussian curvature KII and the Gaussian curvature K . Then, the

surface Ψ is a Weingarten surface.

Proof. Let Ψ be a timelike tube surface in E3
1 satisfying (3.22). Thus, after a deriva-

tion of KII given by (3.16) with respect to u, followed by a derivation with respect to v,

we get

(KII)u =
r3(− cosh 2v + r κ(u) cosh3 v) κ́ (u) sech v

2(r2(−1 + r κ(u) cosh v)2)
3
2

, (3.23)

(KII)v =
r2 sec h2v (−1 + r2κ2(u) cosh4 v − 2r κ(u) cosh v sinh2 v) tanh v

2(r2(−1 + r κ(u) cosh v)2)
3
2

. (3.24)

Then, by (3.20) and (3.23), (3.24), the condition
∣∣∣∂(KII ,K)

∂(u,v)

∣∣∣ = 0 that must be satisfied for

the Weingarten surface Ψ, leads to

(KII)u Kv − (KII)v Ku =
r3(r κ(u) − sechv) κ́ (u) tanh v

2(r2(−1 + r κ(u) cosh v)2)
5
2

= 0. (3.25)

The obtained expression is equivalent with

r κ(u) κ́ (u) sinh v cosh v − κ́ (u) sinh v = 0.

The above equation is equal to zero for every value of v , so the coefficients of sinh v

cosh v and sinh v must be zero. In this case, we find that κ́ = 0.
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Similarly, we consider a timelike tube surface defined by (3.4) with non- degenerate

second fundamental form in E3
1 is (KII , H)-Weingarten surface. Then, by using the

equations (3.21) and (3.23), (3.24), we have

(KII)u Hv − (KII)v Hu = − κ́sech v tanh v

4r (−1 + r κ cosh v)4
= 0, (3.26)

that is

κ́ sinh v = 0.

Thus, we obtain κ́ = 0.

Now, to examine the linear Weingarten property of the timelike tube surface Ψ

defined along the spacelike curve δ(u), we consider the following definition

Definition 3.1 A surface M is said to be a linear Weingarten surface if its Gaussian

curvature K and mean curvature H satisfy the relation

aK + bH = c (3.27)

on M for real numbers a , b and c (not all zero).

Let us analyze the following theorems.

Theorem 3.3 Suppose that Ψ is a linear Weingarten timelike tube surface in E3
1

satisfying (3.27).Then Ψ is an open part of a circular cylinder.

Proof. Consider the parametrization (3.4). With K and H given by (3.14) and (3.15)

respectively, we rewrite (3.27) to get

a κ(u) cosh v

r (−1 + r κ(u) cosh v)
+

b(1 − 2r κ(u) cosh v))

2r (−1 + r κ(u) cosh v)
= c.

The previous equation can be expressed in a simpler form

(2a κ(u) − 2b r κ(u) − 2cr2κ(u)) cosh v + (b + 2cr) = 0.

According to the definition of the linear independent of vectors, we obtain

2a κ − 2br κ − 2cr2κ = 0, b + 2c r = 0.

From which

κ(a + c r2) = 0.
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Therefore κ = 0 and (a + c r2) �= 0

because, if (a + c r2) = 0 then a = −c r2 and from the above b = −2c r , it leads to if

c = 0 , so a = b = 0 which contradicts the fact that (a, b, c) �= (0, 0, 0). Thus, the surface

Ψ is an open part of a circular cylinder.

Theorem 3.4 If Ψ is a timelike tube surface with non-degenerate second fundamental

form in E3
1 where its Gaussian curvature and second Gaussian curvature are in linear

relation, then Ψ is a non-linear Weingarten surface.

Proof. We assume that K and KII of Ψ are in the form

aK + bKII = c. (3.28)

By (3.14) and (3.16), equation (3.28) can be written as follows

8a κ cosh v

r
− b ( 3 + cosh 2v − 12r κ cosh3v + 8r2κ2 cosh4v ) sech2v

r (−1 + r κ cosh v )
− 8c (−1 + r κ cosh v) = 0.

The coefficients of the last equation must be zero. Thus, we have

8arκ2 − 8br2κ2 − 8r3κ2c = 0, 8a κ − 12br κ − 16r2c κ = 0,

2b + 8rc = 0, 2b = 0.

From these equations, we obtain b = 0, c = 0 and κ = 0. So, the second fundamental

form of the surface Ψ would vanish identically. Therefore, the surface Ψ is non-linear

Weingarten surface.

Theorem 3.5 A timelike tube surface Ψ in E3
1 with non-degenerate second funda-

mental form is linear Weingarten surface if the surface’s curvatures H and KII are written

in a linear form.

Proof. Let us write the relation between H and KII as follows

aH + bKII = c. (3.29)

Inserting (3.15) and (3.16) in (3.29), we get
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−4a + 12(a + b)r κ cosh v − 8(a + b) r2κ2 cosh2v − b (3 + cosh 2v) sech2v

8r(−1 + r κ cosh v)2
− c = 0.

Also, all the coefficients in the above (algebraic) expression must be zero and conse-

quently

c �= 0, a = 2rc, b = −4rc and κ = 0. So, the surface Ψ is a linear Weingarten

surface.

We end this section with the following two theorems.

Theorem 3.6 The timelike tube surface of a spacelike curve with a timelike binormal

vector in the Minkowski 3-space E3
1 is a Weingarten surface.

Theorem 3.7 (Non-existence theorem) There is no timelike tube surface, along a

spacelike curve with a timelike binormal vector, of linear Weingarten type case in which

aK + bKII = c in the three-dimensional Minkowski space E3
1 . In this case, the surface

is parabolic.

4 Timelike tube surface for a spacelike curve with a

spacelike binormal

Consider a spacelike curve β(u) with a spacelike binormal e3 in Minkowski 3-

space E3
1 , parametrized by its arc length u . Let e1(u) be its tangent vector, i.e., e1(u) =

β́(u) = d
du

β(u). The arc length parametrization of the curve makes e1(u) a unit vector,

i.e., ‖ e1(u) ‖= 1, therefore its derivative is orthogonal to e1 .The principal normal vector

e2 is defined as e2 = e1́

‖e1́‖ . The binormal vector e3 = e1 ∧ e2. The three vectors e1, e2, e3

make an orthonormal frame field along the spacelike curve β(u) . The Frenet equations

for this frame are given by,

e´1 = κ(u)e2(u), e´2 = κ(u)e1(u) + τ(u)e3(u), e´3 = τ(u)e2(u), (4.1)

with the following conditions,

〈e1, e1〉 = 〈e3, e3〉 = 1,

〈e2, e2〉 = −1,

〈e1, e2〉 = 〈e2, e3〉 = 〈e3, e1〉 = 0. (4.2)

The functions κ(u) and τ (u) are respectively, the curve’s curvature and torsion .
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To examine the Weingarten property as well as the linear Weingarten property

for the timelike tube surface Φ(u, v) along the spacelike curve β(u) with a spacelike

binormal e3(u), we will consider the following basic equations:

Let Φ is parametrized by

Φ(u, v) = β(u) + r (e2(u) sinh v + e3(u) cosh v ). (4.3)

The components of the first and second fundamental forms of Φ are respectively

E = 1 + 2rκ(u) sinh v + r2κ2(u) sinh2 v − r2τ 2(u), F = −r2τ(u), G = −r2,

(4.4)

P = −(κ(u) sinh v + r κ2(u) sinh2 v − r τ 2(u)), Q = r τ(u), W = r. (4.5)

The unit surface normal of the timelike tube surface Φ is

σ = (e3(u) cosh v + e2(u) sinh v ). (4.6)

The curvatures of Φ are as follow

K =
κ(u) sinh v

r + r2 κ(u) sinh v
, (4.7)

H =
−1 − 2r κ(u) sinh v

2r (1 + r κ(u) sinh v)
, (4.8)

KII =
−3 − 3 coth2 v + csch2v − 2r (1 + 7 cosh 2v) csch v κ(u) − 4r2(1 + 3 cosh 2v) κ2(u)

8r (1 + r κ(u) sinh v)2
.

(4.9)

The straightforward calculations similar to the procedure which we have done for the

above timelike tube surface Ψ, we have the following theorems:

Theorem 4.1 The timelike tube surface of a spacelike curve with a spacelike binormal

vector in the Minkowski 3-space E3
1 is a Weingarten surface.

Theorem 4.2 There is no timelike tube surface around a spacelike curve with a

spacelike binormal vector, of linear Weingarten type case in which aH + bKII = c in

Minkowski 3-space E3
1 , and the surface is then of constant mean curvature.
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