Int. Journal of Math. Analysis, Vol. 5, 2011, no. 25, 1225-1236

Weingarten Timelike Tube Surfaces around a Spacelike Curve

H. S. Abdel-Aziz and M. Khalifa Saad
Mathematics Department, Faculty of Science
Sohag University, Egypt
m_khalifag@yahoo.com

Abstract

The subject of this paper is the study of a timelike tube surface around the spacelike curve with timelike and spacelike binormal vectors in a three-dimensional Minkowski space E_{1}^{3}. Moreover, we have discussed Weingarten and linear Weingarten conditions for this surface with respect to their curvatures; the mean curvature H, Gaussian curvature K and the second Gaussian curvature $K_{I I}$.

Keywords: Tube surfaces, Weingarten property, Minkowski space-time, Mean and Gaussian curvatures, Second Gaussian curvature

Mathematics Subject Classification: 53A05, 53B25

1 Introduction

In the study of the differential geometry of surfaces, it is common to determine some surfaces satisfying curvature conditions. An interesting curvature property to study for surfaces in a Minkowski space E_{1}^{3} is the one that requires the existence of a non-trivial functional relationship between the principal curvatures. The resulting surfaces are called Weingarten surfaces. In particular, a surface S (in either R^{3} or E_{1}^{3}) is called a Weingarten surface if there is some (smooth) relation $U\left(\kappa_{1}, \kappa_{2}\right)=0$ between its two principal curvatures κ_{1} and κ_{2}, or equivalently, if there exists a non -trivial functional relation $\Omega(K, H)=0$ with respect to its Gaussian curvature K and its mean curvature H. The existence of a non-trivial functional relation $\Omega(K, H)=0$ on the surface S parametrized by $\Phi(u, v)$ is equivalent to the vanishing of the corresponding Jacobian determinant, namely $\left|\frac{\partial(K, H)}{\partial(u, v)}\right|=0$. Also, the linear Weingarten surfaces, these are Weingarten surfaces
satisfying a linear equation between Gaussian and mean curvatures, that is, $a K+b H=c$, $(a, b, c) \in R,(a, b, c) \neq(0,0,0)$.

There are many studies of these surfaces [3],[4] gave a classification of ruled Weingarten surfaces in a Minkowski 3- space E_{1}^{3}. Recently [8],[9] investigated polynomial translation (K, H) - Weingarten surfaces and translation $\left(H, K_{I I}\right)$ - linear Weingarten surfaces in a Euclidean 3- space.

Besides, several geometers $[1,2,11],[6],[7]$ have studied Weingarten surfaces and linear Weingarten surfaces.

On account of the study that considered in[1],[11], we develop a corresponding work by studying a timelike tube surface around a spacelike curve in E_{1}^{3}, which satisfy the Weingarten and linear Weingarten conditions with respect to its curvatures.

2 Preliminaries

Let $R^{3}=\{(x, y, z): x, y, z \in R\}$ be a 3-dimensional space, and let $X=\left(x_{1}, x_{2}, x_{3}\right)$ and $Y=\left(y_{1}, y_{2}, y_{3}\right)$ be two vectors in R^{3}. The Lorentz scalar product of X and Y is defined by

$$
\begin{equation*}
\langle X, Y\rangle=x_{1} y_{1}+x_{2} y_{2}-x_{3} y_{3} \tag{2.1}
\end{equation*}
$$

$E_{1}^{3}=\left(R^{3},\langle X, Y\rangle\right)$ is called Minkowski 3-space. Since the metric is indefinite, recall that a vector x of E_{1}^{3} can have one of three causal characters: it can be spacelike vector, null(lightlike) vector or timelike vector if $\langle x, x\rangle>0$ or $x=0,\langle x, x\rangle=0$ and $x \neq 0,\langle x, x\rangle \lessdot 0$, respectively. For $x \in E_{1}^{3}$, the norm of the vector x is given by $\|x\|=\sqrt{|\langle x, x\rangle|}$. Therefore, x is a unit vector if $\langle x, x\rangle= \pm 1$. Similarly, an arbitrary curve $\alpha=\alpha(s) \subset E_{1}^{3}$ can locally be spacelike, timelike or null (lightlike), if all of its velocity vectors $\alpha^{\prime}(s)$ are respectively spacelike, timelike or null (lightlike) (i.e., $\left\langle\alpha^{\prime}(s), \alpha^{\prime}(s)\right\rangle>0$, $\left.\left\langle\alpha^{\prime}(s), \alpha^{\prime}(s)\right\rangle \lessdot 0,\left\langle\alpha^{\prime}(s), \alpha^{\prime}(s)\right\rangle=0\right)$. So, $\alpha(s)$ is a unit speed curve if $\left\langle\alpha^{\prime}(s), \alpha^{\prime}(s)\right\rangle= \pm 1$, where s is the arc length parameter of α. Any two vectors $X, Y \in E_{1}^{3}$ are called orthogonal [10] if $\langle X, Y\rangle=0$.

The vector product of two vectors $X=\left(x_{1}, x_{2}, x_{3}\right), Y=\left(y_{1}, y_{2}, y_{3}\right)$ belong to E_{1}^{3}, is defined as

$$
X \wedge Y=\left(x_{3} y_{2}-x_{2} y_{3}, x_{1} y_{3}-x_{3} y_{1}, x_{1} y_{2}-x_{2} y_{1}\right)
$$

We also recall that the pseudosphere of radius 1 and center at the origin is the hyperquadric in E_{1}^{3} defined by $S_{1}^{2}(1)=\left\{v \in E_{1}^{3}:\langle v, v\rangle=1\right\}$.

3 Timelike tube surface around a spacelike curve with a timelike binormal

In this section we define the notion of timelike tube surfaces.
Let $\delta=\delta(u):(\zeta, \eta) \longrightarrow E_{1}^{3}$ be a spacelike unit speed curve with a timelike binormal \mathbf{e}_{3}, where u is the arc length parameter of δ.

Considering that $\left\|\mathbf{e}_{1}\right\|=1, \mathbf{e}_{2}=\frac{\mathbf{e}_{1}}{\left\|\mathbf{e}_{1}\right\|}$ and $\mathbf{e}_{3}=\frac{\mathbf{e}_{1} \wedge \mathbf{e}_{1}}{\left\|\mathbf{e}_{1} \wedge \mathbf{e}_{1}\right\|}$, we obtain the orthonormal frame field $\left\{\mathbf{e}_{1}(u), \mathbf{e}_{2}(u), \mathbf{e}_{3}(u)\right\}$.This frame satisfies the following conditions:

$$
\begin{align*}
\left\langle\mathbf{e}_{1}, \mathbf{e}_{1}\right\rangle & =\left\langle\mathbf{e}_{2}, \mathbf{e}_{2}\right\rangle=1 \\
\left\langle\mathbf{e}_{3}, \mathbf{e}_{3}\right\rangle & =-1 \\
\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}\right\rangle & =\left\langle\mathbf{e}_{2}, \mathbf{e}_{3}\right\rangle=\left\langle\mathbf{e}_{3}, \mathbf{e}_{1}\right\rangle=0, \tag{3.1}
\end{align*}
$$

and vector product is defined to be

$$
\begin{equation*}
\mathbf{e}_{1} \wedge \mathbf{e}_{2}=\mathbf{e}_{3}, \quad \mathbf{e}_{2} \wedge \mathbf{e}_{3}=-\mathbf{e}_{1}, \quad \mathbf{e}_{3} \wedge \mathbf{e}_{1}=-\mathbf{e}_{2} \tag{3.2}
\end{equation*}
$$

Differential formula for this orthonormal system is expressed by

$$
\begin{equation*}
\mathbf{e}_{1}^{\prime}=\kappa(u) \mathbf{e}_{2}(u), \quad \mathbf{e}_{2}^{\prime}=\kappa(u) \mathbf{e}_{1}(u)-\tau(u) \mathbf{e}_{3}(u), \quad \mathbf{e}_{3}^{\prime}=\tau(u) \mathbf{e}_{2}(u), \tag{3.3}
\end{equation*}
$$

where the prime "'" denotes the derivative with respect to the u-parameter and $\kappa(u)$ and $\tau(u)$ are the curvature and the torsion of the curve $\delta(u)$ respectively.

Consider M is a timelike tube surface parametrized by $\Psi: j \times R \longrightarrow E_{1}^{3}$. Then, the position vector of Ψ can be written in the following form

$$
\begin{equation*}
\Psi(u, v)=\Psi_{\left(\delta, \mathbf{e}_{2}, \mathbf{e}_{3}, r\right)}(u, v)=\delta(u)+r\left(\mathbf{e}_{2}(u) \cosh v+\mathbf{e}_{3}(u) \sinh v\right) \tag{3.4}
\end{equation*}
$$

where $\delta, \mathbf{e}_{2}, \mathbf{e}_{3}: j \longrightarrow E_{1}^{3}$ and $r: j \longrightarrow R_{>0}$. We call δ a base curve and a pair of two vectors $\mathbf{e}_{2}, \mathbf{e}_{3}$ a director frame of the timelike tube surface Ψ. We must have

$$
\|\Psi(u, v)-\delta(u)\|^{2}=r^{2}
$$

The last equation expresses analytically the geometric fact that $\Psi(u, v)$ lies on a Lorentzian sphere $S_{1}^{2}(u)$ of radius r centered at $\delta(u)$.

The unit normal vector field σ of the timelike tube surface Ψ is given by

$$
\begin{equation*}
\sigma=\frac{\Psi_{u} \wedge \Psi_{v}}{\left\|\Psi_{u} \wedge \Psi_{v}\right\|} \tag{3.5}
\end{equation*}
$$

Accordingly to parametrization (3.4) of a timelike tube surface Ψ, one easily defines its first fundamental form

$$
I=E d u^{2}+2 F d u d v+G d v^{2}
$$

where E, F, G - the coefficients of I - are given by

$$
\begin{equation*}
E=\left\langle\Psi_{u}, \Psi_{u}\right\rangle, \quad F=\left\langle\Psi_{u}, \Psi_{v}\right\rangle, \quad G=\left\langle\Psi_{v}, \Psi_{v}\right\rangle, \quad \Psi_{u}=\frac{\partial \Psi(u, v)}{\partial u} \tag{3.6}
\end{equation*}
$$

For the spacelike surface in $E_{1}^{3}, E G-F^{2}>0$; for the timelike surface in $E_{1}^{3}, E G-F^{2}<$ 0.

We define the second fundamental form $I I$ of M by

$$
I I=P d u^{2}+2 Q d u d v+W d v^{2}
$$

with the coefficients given by

$$
\begin{equation*}
P=\left\langle\Psi_{u u}, \sigma\right\rangle, Q=\left\langle\Psi_{u v}, \sigma\right\rangle, W=\left\langle\Psi_{v v}, \sigma\right\rangle \tag{3.7}
\end{equation*}
$$

Moreover, the Gaussian and mean curvatures of the timelike tube surface $\Psi(u, v)$ are given by, respectively

$$
\begin{gather*}
K=\frac{P W-Q^{2}}{E G-F^{2}} \tag{3.8}\\
H=\frac{E W-2 F Q+G P}{2\left(E G-F^{2}\right)} . \tag{3.9}
\end{gather*}
$$

If the second fundamental form is non-degenerate; $P W-Q^{2} \neq 0$. In this case, one define formally the second Gaussian curvature $K_{I I}$ a similar one to Brioschi's formula for the Gaussian curvature obtained on Ψ replacing the components of the first fundamental form E, F, G by those of the second fundamental form P, Q, W as [8]
$K_{I I}=\frac{1}{\left(P W-Q^{2}\right)^{2}}\left\{\left|\begin{array}{ccc}-\frac{1}{2} P_{u u}+Q_{u v}-\frac{1}{2} W_{u u} & \frac{1}{2} P_{u} & Q_{u}-\frac{1}{2} P_{v} \\ Q_{v}-\frac{1}{2} W_{u} & P & Q \\ \frac{1}{2} W_{v} & Q & W\end{array}\right|-\left|\begin{array}{ccc}0 & \frac{1}{2} P_{v} & \frac{1}{2} W_{u} \\ \frac{1}{2} P_{v} & P & Q \\ \frac{1}{2} W_{u} & Q & W\end{array}\right|\right\}$.

A surface in the 3 - dimensional Minkowski space E_{1}^{3} is called a timelike surface if the induced metric on the surface is a Lorentz metric and is called a spacelike surface if the induced metric on the surface is a positive definite Riemannian metric, i.e., the normal vector on the timelike(spacelike) surface is a spacelike(timelike) vector [5] , [10], [12].

In the following, we investigate the timelike tube surface Ψ in E_{1}^{3} satisfying the Jacobi equation $\Omega(U, V)=0, U \neq V$, of the curvatures K, H and $K_{I I}$ of Ψ and we formulate the main results in the next theorems.

Let Ψ be a timelike tube surface in 3 - dimensional Minkowski space E_{1}^{3} given in (3.4). So, from equation (3.3), partial differentiation of Ψ with respect to u and v are as follows

$$
\begin{align*}
\Psi_{u} & =\mathbf{e}_{1}(u)+r\left[\mathbf{e}_{2}(u) \tau(u) \sinh v+\cosh v\left(-\kappa(u) \mathbf{e}_{1}(u)+\tau(u) \mathbf{e}_{3}(u)\right)\right] \\
\Psi_{v} & =r\left(\mathbf{e}_{3}(u) \cosh v+\mathbf{e}_{2}(u) \sinh v\right) \tag{3.11}
\end{align*}
$$

Therefore, we find the components of the first fundamental form of Ψ to be $E=-2 r \kappa(u) \cosh v+r^{2} \kappa^{2}(u) \cosh ^{2} v-r^{2} \tau^{2}(u), \quad F=-r^{2} \tau(u), \quad G=-r^{2}$.

Considering equation (3.2), from equation (3.5) we write the unit surface normal as

$$
\begin{equation*}
\sigma=\left(\mathbf{e}_{2}(u) \cosh v+\mathbf{e}_{3}(u) \sinh v\right) . \tag{3.13}
\end{equation*}
$$

The second order partial differentials of Ψ are found

$$
\begin{aligned}
\Psi_{u u}= & \left(-r \kappa^{\prime} \cosh v-r \kappa \tau \sinh v\right) \mathbf{e}_{1}+\left(\kappa(1-r \kappa \cosh v)+r \tau^{\prime} \sinh v+r \tau^{2} \cosh v\right) \mathbf{e}_{2} \\
& +\left(r \tau^{2} \sinh v+r \tau^{\prime} \cosh v\right) \mathbf{e}_{3}, \\
\Psi_{u v}=- & r \kappa \sinh v \mathbf{e}_{1}+r \tau \cosh v \mathbf{e}_{2}+r \tau \sinh v \mathbf{e}_{3}, \\
\Psi_{v v}= & r\left(\mathbf{e}_{2} \cosh v+\mathbf{e}_{3} \sinh v\right) .
\end{aligned}
$$

From equation (3.13) and the last equations we find the second fundamental form coefficients as follow

$$
P=-\kappa(u) \cosh v+r \kappa^{2}(u) \cosh ^{2} v-r \tau^{2}(u), \quad Q=r \tau(u), \quad W=r
$$

Making use of the data described above, the Gaussian curvature K, the mean value curvature H and the second Gaussian curvature $K_{I I}$ are given respectively as follows

$$
\begin{gather*}
K=\frac{\kappa(u) \cosh v}{r(-1+r \kappa(u) \cosh v)}, \tag{3.14}\\
H=\frac{(1-2 r \kappa(u) \cosh v)}{2 r(-1+r \kappa(u) \cosh v)}, \tag{3.15}\\
K_{I I}=-\frac{\left(3+\cosh 2 v-12 r \kappa(u) \cosh ^{3} v+8 r^{2} \kappa^{2}(u) \cosh ^{4} v\right) \operatorname{sech}^{2} v}{8 r(-1+r \kappa(u) \cosh v)^{2}} . \tag{3.16}
\end{gather*}
$$

Theorem 3.1 Let Ψ be a timelike tube surface in Minkowski 3 -space E_{1}^{3} defined in (3.4) satisfying the Jacobi condition

$$
\begin{equation*}
\Omega(K, H)=0, \tag{3.17}
\end{equation*}
$$

for the Gaussian curvature K and the mean curvature H of Ψ.Then,
(i) Ψ is a Weingarten surface.
(ii) The Gaussian curvature K and the mean curvature H of Ψ are tied by the relation

$$
\begin{equation*}
K=\frac{2 \kappa(u) \cosh v}{1-2 r \kappa(u) \cosh v} H \tag{3.18}
\end{equation*}
$$

Proof. Let Ψ be a timelike tube surface in E_{1}^{3} parametrized by (3.4) and satisfying (3.17).Then, we have

$$
\begin{equation*}
\frac{\partial K}{\partial u} \frac{\partial H}{\partial v}-\frac{\partial K}{\partial v} \frac{\partial H}{\partial u}=0 \tag{3.19}
\end{equation*}
$$

Differentiating K given by (3.14) and H given by (3.15) with respect to u and v respectively, to obtain

$$
\begin{equation*}
\frac{\partial K}{\partial u}=-\frac{\kappa^{\prime}(u) \cosh v}{r(-1+r \kappa(u) \cosh v)^{2}}, \quad \frac{\partial K}{\partial v}=-\frac{\kappa(u) \sinh v}{r(-1+r \kappa(u) \cosh v)^{2}}, \tag{3.20}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial H}{\partial u}=\frac{r \kappa^{\prime}(u) \cosh v}{2 r(-1+r \kappa(u) \cosh v)^{2}}, \quad \frac{\partial H}{\partial v}=\frac{r \kappa(u) \sinh v}{2 r(-1+r \kappa(u) \cosh v)^{2}} \tag{3.21}
\end{equation*}
$$

From (3.20) and (3.21), equation (3.19) is satisfied, and then, the surface Ψ is a Weingarten surface.

Furthermore, from (3.14) and (3.15) we get the required relation

$$
K=\frac{2 \kappa(u) \cosh v}{1-2 r \kappa(u) \cosh v} H
$$

Theorem 3.2 Let Ψ be a timelike tube surface with non- degenerate second fundamental form in 3 - dimensional Minkowski space E_{1}^{3} satisfying the Jacobi equation

$$
\begin{equation*}
\Omega\left(K_{I I}, K\right)=0, \tag{3.22}
\end{equation*}
$$

for the second Gaussian curvature $K_{I I}$ and the Gaussian curvature K. Then, the surface Ψ is a Weingarten surface.

Proof. Let Ψ be a timelike tube surface in E_{1}^{3} satisfying (3.22). Thus, after a derivation of $K_{I I}$ given by (3.16) with respect to u, followed by a derivation with respect to v, we get

$$
\begin{gather*}
\left(K_{I I}\right)_{u}=\frac{r^{3}\left(-\cosh 2 v+r \kappa(u) \cosh ^{3} v\right) \kappa^{\prime}(u) \operatorname{sech} v}{2\left(r^{2}(-1+r \kappa(u) \cosh v)^{2}\right)^{\frac{3}{2}}}, \tag{3.23}\\
\left(K_{I I}\right)_{v}=\frac{r^{2} \operatorname{sech}^{2} v\left(-1+r^{2} \kappa^{2}(u) \cosh ^{4} v-2 r \kappa(u) \cosh v \sinh ^{2} v\right) \tanh v}{2\left(r^{2}(-1+r \kappa(u) \cosh v)^{2}\right)^{\frac{3}{2}}} . \tag{3.24}
\end{gather*}
$$

Then, by (3.20) and (3.23), (3.24), the condition $\left|\frac{\partial\left(K_{I I}, K\right)}{\partial(u, v)}\right|=0$ that must be satisfied for the Weingarten surface Ψ, leads to

$$
\begin{equation*}
\left(K_{I I}\right)_{u} K_{v}-\left(K_{I I}\right)_{v} K_{u}=\frac{r^{3}(r \kappa(u)-\operatorname{sech} v) \kappa^{\prime}(u) \tanh v}{2\left(r^{2}(-1+r \kappa(u) \cosh v)^{2}\right)^{\frac{5}{2}}}=0 . \tag{3.25}
\end{equation*}
$$

The obtained expression is equivalent with

$$
r \kappa(u) \kappa^{\prime}(u) \sinh v \cosh v-\kappa^{\prime}(u) \sinh v=0 .
$$

The above equation is equal to zero for every value of v, so the coefficients of $\sinh v$ $\cosh v$ and $\sinh v$ must be zero. In this case, we find that $\kappa^{\prime}=0$.

Similarly, we consider a timelike tube surface defined by (3.4) with non- degenerate second fundamental form in E_{1}^{3} is $\left(K_{I I}, H\right)$-Weingarten surface. Then, by using the equations (3.21) and (3.23), (3.24), we have

$$
\begin{equation*}
\left(K_{I I}\right)_{u} H_{v}-\left(K_{I I}\right)_{v} H_{u}=-\frac{\kappa^{\prime} \operatorname{sech} v \tanh v}{4 r(-1+r \kappa \cosh v)^{4}}=0 \tag{3.26}
\end{equation*}
$$

that is

$$
\kappa^{\prime} \sinh v=0 .
$$

Thus, we obtain $\kappa^{\prime}=0$.
Now, to examine the linear Weingarten property of the timelike tube surface Ψ defined along the spacelike curve $\delta(u)$, we consider the following definition

Definition 3.1 A surface M is said to be a linear Weingarten surface if its Gaussian curvature K and mean curvature H satisfy the relation

$$
\begin{equation*}
a K+b H=c \tag{3.27}
\end{equation*}
$$

on M for real numbers a, b and c (not all zero).
Let us analyze the following theorems.
Theorem 3.3 Suppose that Ψ is a linear Weingarten timelike tube surface in E_{1}^{3} satisfying (3.27).Then Ψ is an open part of a circular cylinder.

Proof. Consider the parametrization (3.4). With K and H given by (3.14) and (3.15) respectively, we rewrite (3.27) to get

$$
\frac{a \kappa(u) \cosh v}{r(-1+r \kappa(u) \cosh v)}+\frac{b(1-2 r \kappa(u) \cosh v))}{2 r(-1+r \kappa(u) \cosh v)}=c .
$$

The previous equation can be expressed in a simpler form

$$
\left(2 a \kappa(u)-2 b r \kappa(u)-2 c r^{2} \kappa(u)\right) \cosh v+(b+2 c r)=0 .
$$

According to the definition of the linear independent of vectors, we obtain

$$
2 a \kappa-2 b r \kappa-2 c r^{2} \kappa=0, \quad b+2 c r=0 .
$$

From which

$$
\kappa\left(a+c r^{2}\right)=0 .
$$

Therefore $\kappa=0$ and $\left(a+c r^{2}\right) \neq 0$
because, if $\left(a+c r^{2}\right)=0$ then $a=-c r^{2}$ and from the above $b=-2 c r$, it leads to if $c=0$, so $a=b=0$ which contradicts the fact that $(a, b, c) \neq(0,0,0)$. Thus, the surface Ψ is an open part of a circular cylinder.

Theorem 3.4 If Ψ is a timelike tube surface with non-degenerate second fundamental form in E_{1}^{3} where its Gaussian curvature and second Gaussian curvature are in linear relation, then Ψ is a non-linear Weingarten surface.

Proof. We assume that K and $K_{I I}$ of Ψ are in the form

$$
\begin{equation*}
a K+b K_{I I}=c \tag{3.28}
\end{equation*}
$$

By (3.14) and (3.16), equation (3.28) can be written as follows
$\frac{8 a \kappa \cosh v}{r}-\frac{b\left(3+\cosh 2 v-12 r \kappa \cosh ^{3} v+8 r^{2} \kappa^{2} \cosh ^{4} v\right) \operatorname{sech}^{2} v}{r(-1+r \kappa \cosh v)}-8 c(-1+r \kappa \cosh v)=0$.

The coefficients of the last equation must be zero. Thus, we have

$$
\begin{array}{rc}
8 a r \kappa^{2}-8 b r^{2} \kappa^{2}-8 r^{3} \kappa^{2} c=0, & 8 a \kappa-12 b r \kappa-16 r^{2} c \kappa=0, \\
2 b+8 r c=0, & 2 b=0 .
\end{array}
$$

From these equations, we obtain $b=0, c=0$ and $\kappa=0$. So, the second fundamental form of the surface Ψ would vanish identically. Therefore, the surface Ψ is non-linear Weingarten surface.

Theorem 3.5 A timelike tube surface Ψ in E_{1}^{3} with non-degenerate second fundamental form is linear Weingarten surface if the surface's curvatures H and $K_{I I}$ are written in a linear form.

Proof. Let us write the relation between H and $K_{I I}$ as follows

$$
\begin{equation*}
a H+b K_{I I}=c . \tag{3.29}
\end{equation*}
$$

Inserting (3.15) and (3.16) in (3.29), we get

$$
\frac{-4 a+12(a+b) r \kappa \cosh v-8(a+b) r^{2} \kappa^{2} \cosh ^{2} v-b(3+\cosh 2 v) \operatorname{sech}^{2} v}{8 r(-1+r \kappa \cosh v)^{2}}-c=0 .
$$

Also, all the coefficients in the above (algebraic) expression must be zero and consequently
$c \neq 0, a=2 r c, b=-4 r c$ and $\kappa=0$. So, the surface Ψ is a linear Weingarten surface.

We end this section with the following two theorems.
Theorem 3.6 The timelike tube surface of a spacelike curve with a timelike binormal vector in the Minkowski 3-space E_{1}^{3} is a Weingarten surface.

Theorem 3.7 (Non-existence theorem) There is no timelike tube surface, along a spacelike curve with a timelike binormal vector, of linear Weingarten type case in which $a K+b K_{I I}=c$ in the three-dimensional Minkowski space E_{1}^{3}. In this case, the surface is parabolic.

4 Timelike tube surface for a spacelike curve with a spacelike binormal

Consider a spacelike curve $\beta(u)$ with a spacelike binormal \mathbf{e}_{3} in Minkowski 3space E_{1}^{3}, parametrized by its arc length u. Let $\mathbf{e}_{1}(u)$ be its tangent vector, i.e., $\mathbf{e}_{1}(u)=$ $\beta(u)=\frac{d}{d u} \beta(u)$. The arc length parametrization of the curve makes $\mathbf{e}_{1}(u)$ a unit vector, i.e., $\left\|\mathbf{e}_{1}(u)\right\|=1$, therefore its derivative is orthogonal to \mathbf{e}_{1}. The principal normal vector \mathbf{e}_{2} is defined as $\mathbf{e}_{2}=\frac{\mathbf{e}_{1}{ }^{\prime}}{\left\|\mathbf{e}_{1}\right\|}$. The binormal vector $\mathbf{e}_{3}=\mathbf{e}_{1} \wedge \mathbf{e}_{2}$. The three vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ make an orthonormal frame field along the spacelike curve $\beta(u)$. The Frenet equations for this frame are given by,

$$
\begin{equation*}
\mathbf{e}_{1}^{\prime}=\kappa(u) \mathbf{e}_{2}(u), \quad \mathbf{e}_{2}^{\prime}=\kappa(u) \mathbf{e}_{1}(u)+\tau(u) \mathbf{e}_{3}(u), \quad \mathbf{e}_{3}^{\prime}=\tau(u) \mathbf{e}_{2}(u) \tag{4.1}
\end{equation*}
$$

with the following conditions,

$$
\begin{align*}
& \left\langle\mathbf{e}_{1}, \mathbf{e}_{1}\right\rangle=\left\langle\mathbf{e}_{3}, \mathbf{e}_{3}\right\rangle=1 \\
& \left\langle\mathbf{e}_{2}, \mathbf{e}_{2}\right\rangle=-1 \\
& \left\langle\mathbf{e}_{1}, \mathbf{e}_{2}\right\rangle=\left\langle\mathbf{e}_{2}, \mathbf{e}_{3}\right\rangle=\left\langle\mathbf{e}_{3}, \mathbf{e}_{1}\right\rangle=0 . \tag{4.2}
\end{align*}
$$

The functions $\kappa(u)$ and $\tau(u)$ are respectively, the curve's curvature and torsion .

To examine the Weingarten property as well as the linear Weingarten property for the timelike tube surface $\Phi(u, v)$ along the spacelike curve $\beta(u)$ with a spacelike binormal $\mathbf{e}_{3}(u)$, we will consider the following basic equations:

Let Φ is parametrized by

$$
\begin{equation*}
\Phi(u, v)=\beta(u)+r\left(\mathbf{e}_{2}(u) \sinh v+\mathbf{e}_{3}(u) \cosh v\right) . \tag{4.3}
\end{equation*}
$$

The components of the first and second fundamental forms of Φ are respectively

$$
\begin{equation*}
E=1+2 r \kappa(u) \sinh v+r^{2} \kappa^{2}(u) \sinh ^{2} v-r^{2} \tau^{2}(u), \quad F=-r^{2} \tau(u), \quad G=-r^{2} \tag{4.4}
\end{equation*}
$$

The unit surface normal of the timelike tube surface Φ is

$$
\begin{equation*}
\sigma=\left(\mathbf{e}_{3}(u) \cosh v+\mathbf{e}_{2}(u) \sinh v\right) . \tag{4.6}
\end{equation*}
$$

The curvatures of Φ are as follow

$$
\begin{gather*}
K=\frac{\kappa(u) \sinh v}{r+r^{2} \kappa(u) \sinh v}, \tag{4.7}\\
H=\frac{-1-2 r \kappa(u) \sinh v}{2 r(1+r \kappa(u) \sinh v)}, \tag{4.8}
\end{gather*}
$$

$K_{I I}=\frac{-3-3 \operatorname{coth}^{2} v+\operatorname{csch}^{2} v-2 r(1+7 \cosh 2 v) \operatorname{csch} v \kappa(u)-4 r^{2}(1+3 \cosh 2 v) \kappa^{2}(u)}{8 r(1+r \kappa(u) \sinh v)^{2}}$.

The straightforward calculations similar to the procedure which we have done for the above timelike tube surface Ψ, we have the following theorems:

Theorem 4.1 The timelike tube surface of a spacelike curve with a spacelike binormal vector in the Minkowski 3-space E_{1}^{3} is a Weingarten surface.

Theorem 4.2 There is no timelike tube surface around a spacelike curve with a spacelike binormal vector, of linear Weingarten type case in which $a H+b K_{I I}=c$ in Minkowski 3 -space E_{1}^{3}, and the surface is then of constant mean curvature.

References

[1] H. S. Abdel-Aziz, Weingarten Tube Surfaces in 3-Dimensional Minkowski Space, Accepted for Pub. in Int. J. of Mathematics and Computation, No. S11 (12) (2011).
[2] F. Dillen, W. Goemans and I.Van de Woestyne, Translation surfaces of Weingarten type in 3-space, Bull.Transilvania Univ. Brasov, 50 (2008), 109-122.
[3] F. Dillen and W. Kühnel, Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math, 98 (1999), 307-320.
[4] F. Dillen and W. Sodsiri, Ruled surfaces of Weingarten type in Minkowski 3-space, J.Geom., 83 (2005), 10-21.
[5] K. Duggal and A. Bejancu, Lightlike submanifolds of semi-Riemannian manifolds and applications, Mathematics and its Applications, Kluver Academic Publishers, Dordrecht,1996.
[6] W. Goemans and I. Van de Woestyne, Translation surfaces with the second fundamental form with vanishing Gaussian curvature in Euclidean and Minkowski 3-space, proceeding PADGE, 2007.
[7] R. López, Special Weingarten surfaces foliated by circles, Monatsh Math, 154 (4) (2008), 289-302.
[8] M. Munteanu and A. Nistor, Polynomial translation Weingarten surfaces in 3dimensional Euclidean space, Differential Geometry, Proceedings of the VIII international colloquium, Santiago de compostela, Spain, World Scientific, Hackensack, (2009), 316-320.
[9] M. Munteanu and A. Nistor, On the geometry of the second fundamental form of translation surface in E_{1}^{3}, Houston J.Math (in print), preprint available at http: // arXiv.org/abs/08123166, 2010.
[10] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic press, NewYork,1983.
[11] J. Suk Ro and D. Won Yoon, Tubes of Weingarten types in a Euclidean 3-space, J. Chungcheong Mathematical Society, 22(3)(2009), 359-366.
[12] T. Weinsteim, An introduction to Lorentz surfaces, de Gruyter Exposition in Math, Walter de Gruyter, Berlin, 23 (1996).

Received: December, 2010

