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Abstract

The subject of this paper is the study of a timelike tube surface around the
spacelike curve with timelike and spacelike binormal vectors in a three-dimensional
Minkowski space E3. Moreover, we have discussed Weingarten and linear Wein-
garten conditions for this surface with respect to their curvatures; the mean curva-
ture H , Gaussian curvature K and the second Gaussian curvature Kjy .
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1 Introduction

In the study of the differential geometry of surfaces, it is common to determine some
surfaces satisfying curvature conditions. An interesting curvature property to study for
surfaces in a Minkowski space E} is the one that requires the existence of a non-trivial
functional relationship between the principal curvatures. The resulting surfaces are called
Weingarten surfaces. In particular, a surface S (in either R? or E}) is called a Wein-
garten surface if there is some (smooth) relation U(kq, ka) = 0 between its two principal
curvatures k, and ko, or equivalently, if there exists a non -trivial functional relation
Q(K, H) = 0 with respect to its Gaussian curvature K and its mean curvature H. The
existence of a non-trivial functional relation (K, H) = 0 on the surface S parametrized

by ®(u,v) is equivalent to the vanishing of the corresponding Jacobian determinant,
O(K,H)
O(u,v)

namely

) = 0. Also, the linear Weingarten surfaces, these are Weingarten surfaces
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satisfying a linear equation between Gaussian and mean curvatures, that is, aK +bH = c,
(a,b,c) € R, (a,b,c) # (0,0,0).

There are many studies of these surfaces [3],[4] gave a classification of ruled Weingarten
surfaces in a Minkowski 3- space E3. Recently [8],[9] investigated polynomial translation
(K, H)- Weingarten surfaces and translation (H, Kjj)- linear Weingarten surfaces in a
Euclidean 3- space.

Besides, several geometers [1,2, 11],[6],[7] have studied Weingarten surfaces and linear
Weingarten surfaces.

On account of the study that considered in[1],[11], we develop a corresponding work
by studying a timelike tube surface around a spacelike curve in E} , which satisfy the
Weingarten and linear Weingarten conditions with respect to its curvatures.

2 Preliminaries

Let B3 = {(x,y,2) : 2,9,z € R} be a 3-dimensional space, and let X = (zy, 75, z3) and
Y = (y1,¥2,y3) be two vectors in R3. The Lorentz scalar product of X and Y is defined
by

(XY ) = my1 + 22y — 33, (2.1)

E} = (R (X,Y )) is called Minkowski 3—space. Since the metric is indefinite,
recall that a vector z of E can have one of three causal characters: it can be spacelike
vector, null(lightlike) vector or timelike vector if (z,z ) > 0 orxz =0, ( z,z ) = 0
and x # 0, (z,z ) <0, respectively. For x € E}, the norm of the vector x is given by
|z|]| = \/|{z,z )|. Therefore, z is a unit vector if (x,x) = +1. Similarly, an arbitrary
curve a = a(s) C E? can locally be spacelike, timelike or null (lightlike), if all of its velocity
vectors «fs) are respectively spacelike, timelike or null (lightlike) ( i.e., (a(s),als)) > 0,
(as), als))<0, {als),als)) = 0). So, a(s) is a unit speed curve if (a{s), a(s)) = 1, where
s is the arc length parameter of a. Any two vectors X,Y € E} are called orthogonal [10]
it (XY )=0.

The vector product of two vectors X = (z1,79,73), Y = (y1,¥2,y3) belong to E}, is
defined as

X NY = (x3y2 — Tays, T1Y3 — TaY1, T1Y2 — LaY1).
We also recall that the pseudosphere of radius 1 and center at the origin is the hyper-
quadric in E} defined by S?(1) = {v € E} : (v,v ) =1}.
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3 Timelike tube surface around a spacelike curve with

a timelike binormal

In this section we define the notion of timelike tube surfaces.
Let § = d(u) : (¢,n) — E3} be a spacelike unit speed curve with a timelike

binormal ez, where u is the arc length parameter of 6.

. . . e __ €1 e
Considering that ||e;|| = 1, ey = —Hein and ez = ;= T
frame field {e;(u), e2(u), es(u)}.This frame satisfies the following conditions:

we obtain the orthonormal

<elael> = <e2782> =1,
(eg,e3> = —1,
(e1,€2) = (eg,e3) = (e3,e) =0, (3.1)

and vector product is defined to be

e Ney = es, e N €3 = —eq, €3 Ne = —es. (32)

Differential formula for this orthonormal system is expressed by

e, = r(u)ey(u), e, = r(u)ei(u) — 7(u)es(u), e, = 7(u)ey(u), (3.3)

where the prime ” °” denotes the derivative with respect to the u —parameter and
k(u) and 7(u) are the curvature and the torsion of the curve §(u) respectively.

Consider M is a timelike tube surface parametrized by ¥ : j x R — FE3}. Then, the
position vector of W can be written in the following form

U(u,v) = Vs, e, e5, r) (U, v) = d(u) + 1 (€2(u) coshv + ez(u)sinhwv ), (3.4)
where 0,5, €3 : j — E} and r: j — R~y . We call § a base curve and a pair of
two vectors ey, es a director frame of the timelike tube surface ¥. We must have
I (u,v) = d(u) [|*=r*.

The last equation expresses analytically the geometric fact that WU(u,v) lies on a
Lorentzian sphere S?(u) of radius r centered at d(u).
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The unit normal vector field o of the timelike tube surface ¥ is given by

v, NV,

0= .
T AT, |

(3.5)

Accordingly to parametrization (3.4) of a timelike tube surface W, one easily defines
its first fundamental form

I = Edu® + 2Fdudv + Gdv?,

where E, F, GG - the coefficients of I - are given by

_ OV (u,v)

E:<\Ilu7\pu>a F:<\Iju,\ljy>, G:<\Ilv7\1/v>7 \Ilu P
u

(3.6)
For the spacelike surface in E, EG—F? > 0 ; for the timelike surface in E}, EG—F? <

We define the second fundamental form /71 of M by

II = Pdu® + 2Qdudv + Wdv?,
with the coefficients given by
P:<\Iluu 70>7 Q:<qjuv 70>7 W:<\IIUU 70>' (37>

Moreover, the Gaussian and mean curvatures of the timelike tube surface ¥ (u,v) are
given by, respectively

PW — Q?
K=Fa—r (38)
E —2F P
g EW Q +G (39)

2(EG — F?)

If the second fundamental form is non-degenerate; PW — Q? # 0. In this case, one define
formally the second Gaussian curvature K;; a similar one to Brioschi’s formula for the
Gaussian curvature obtained on W replacing the components of the first fundamental form
E, F, G by those of the second fundamental form P,Q, W as [§]
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Kijj=——— o »— LW, P —|ip, P
1w, Q W w, Q@ w
(3.10)

A surface in the 3 - dimensional Minkowski space F} is called a timelike surface if the
induced metric on the surface is a Lorentz metric and is called a spacelike surface if the
induced metric on the surface is a positive definite Riemannian metric, i.e., the normal
vector on the timelike(spacelike) surface is a spacelike(timelike) vector [5] , [10] , [12].

In the following, we investigate the timelike tube surface ¥ in E} satisfying the
Jacobi equation Q(U,V) = 0,U # V, of the curvatures K, H and K of ¥ and we
formulate the main results in the next theorems.

Let ¥ be a timelike tube surface in 3 - dimensional Minkowski space E? given in (3.4).
So, from equation (3.3), partial differentiation of ¥ with respect to u and v are as follows

U, = e(u)+r [ex(u)7(u) sinhv + coshv (—r(u)e;(u) + 7(u)es(u))],
U, = 7 (es3(u)cosh v+ ey(u)sinhv ). (3.11)

Therefore, we find the components of the first fundamental form of ¥ to be

E = —2r k(u) coshv + r?k?(u) cosh? v — 273 (u), F = —r*1(u), G =—r%
3.12)

Considering equation (3.2), from equation (3.5) we write the unit surface normal as
0 = (ey(u) coshv + ez(u)sinhv ). (3.13)

The second order partial differentials of ¥ are found

U, = (—rKcoshv—r rk 7sinhv)e; + (k(1—r kcoshv)+r 7sinhv + 7 7°coshv) ey

+(r 7*sinhv 4 r Tcoshv) es,

V,, = —r ksinhv e; +r 7coshv e; +r T7sinhv ez,

U,, =1 (€3 coshv + ez sinhv).
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From equation (3.13) and the last equations we find the second fundamental form
coefficients as follow

P = —k(u) coshv + 7 k2(u) cosh® v —r 72(u), Q=rT1(u), W =r.

Making use of the data described above, the Gaussian curvature K, the mean value
curvature H and the second Gaussian curvature K;; are given respectively as follows

- k(u) cosh v | (3.14)
r (=147 k(u) coshv)
1-2 h
_ ( r k(u) coshv) | (3.15)
2r (=147 x(u) coshv)
K= (3 + cosh 2v — 127 r(u) cosh® v + 8r2k%(u) cosh? U)SeChQU. (3.16)

8 (—1+r k(u) coshv)?

Theorem 3.1 Let ¥ be a timelike tube surface in Minkowski 3-space F3 defined in
(3.4) satisfying the Jacobi condition

Q(K,H) =0, (3.17)

for the Gaussian curvature K and the mean curvature H of W.Then,
(i) ¥ is a Weingarten surface.
(ii) The Gaussian curvature K and the mean curvature H of U are tied by the relation

2k(u) coshv

K (3.18)

T 1-2r k(u) cosh v

Proof. Let ¥ be a timelike tube surface in E? parametrized by (3.4) and satisfying
(3.17).Then, we have

0K 0H 0K O0H
T T . 1
Ju dv  Ov Ou . (3:19)
Differentiating K given by (3.14) and H given by (3.15) with respect to u and v
respectively, to obtain
oK K (u) coshv 0K k(u) sinh v

— = — = 2
ou r (=1 +7 K(u) coshv)?’ Ov r (=1 +r x(u) coshv)?’ (3.20)
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oH r K (u) coshv 0H r k(u) sinhv

- — = . 21
Ou  2r (=1 +r k(u)coshv)?’ dv  2r (=1 +r k(u) coshv)? (3:21)

From (3.20) and (3.21), equation (3.19) is satisfied, and then, the surface U is a Weingarten
surface.
Furthermore, from (3.14) and (3.15) we get the required relation

o 2k(u) coshv
1 —2r k(u)coshv

Theorem 3.2 Let ¥ be a timelike tube surface with non- degenerate second funda-
mental form in 3 - dimensional Minkowski space E? satisfying the Jacobi equation

(K, K) =0, (3.22)

for the second Gaussian curvature K;; and the Gaussian curvature K . Then, the
surface ¥ is a Weingarten surface.

Proof. Let ¥ be a timelike tube surface in E3} satisfying (3.22). Thus, after a deriva-
tion of K given by (3.16) with respect to u, followed by a derivation with respect to v,

we get
(K1p)u = 73(— cosh 2v + 7 k(u) cosh® v) &’ (Z) sech 127 (3.23)
2(r?2(—14r r(u) coshv)?)2
(K1) = r?sech?v (=1 + r2k2(u) cosh* v — 2r k(u) coshv sinh®v) tanhv' (3.24)

2(r2(—1 + r k(u) coshv)?)3

Then, by (3.20) and (3.23), (3.24), the condition ’%’ = 0 that must be satisfied for

the Weingarten surface W, leads to

r3(r k(u) — sechv) K (u) tanhv
2(r2(—1 + 1 w(u) coshv)?)3

(K1r)u Ky = (K11)y Ky = = 0. (3.25)

The obtained expression is equivalent with
r k(u) K (u) sinhv coshv — K (u) sinhv = 0.

The above equation is equal to zero for every value of v , so the coefficients of sinh v
coshv and sinhv must be zero. In this case, we find that = 0.
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Similarly, we consider a timelike tube surface defined by (3.4) with non- degenerate
second fundamental form in E? is (K;;, H)-Weingarten surface. Then, by using the
equations (3.21) and (3.23), (3.24), we have

ksech v tanhv

Ki)uy Hy— (Kqp)y Hy, = — =0, 3.26
(Kur) (Kur) 4r (=1 +r Kkcoshv)? (3:26)

that is

K'sinhv = 0.
Thus, we obtain = 0.

Now, to examine the linear Weingarten property of the timelike tube surface ¥
defined along the spacelike curve §(u), we consider the following definition

Definition 3.1 A surface M is said to be a linear Weingarten surface if its Gaussian
curvature K and mean curvature H satisfy the relation

aK +bH =c (3.27)

on M for real numbers a , b and ¢ (not all zero).
Let us analyze the following theorems.

Theorem 3.3 Suppose that ¥ is a linear Weingarten timelike tube surface in Ej
satisfying (3.27).Then ¥ is an open part of a circular cylinder.

Proof. Consider the parametrization (3.4). With K and H given by (3.14) and (3.15)
respectively, we rewrite (3.27) to get

a k(u) cosh v b(1 — 2r k(u) coshv))
r (=1 +7r k(u)coshv) = 2r (=1 +r k(u) coshv)

= C.

The previous equation can be expressed in a simpler form

(2a K (u) —2b r K(u) — 2cr’k(u)) coshv 4 (b + 2cr) = 0.

According to the definition of the linear independent of vectors, we obtain
2a k — 2br Kk — 2cr’k = 0, b+2cr =0.
From which
k(a+cr?)=0.
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Therefore x = 0 and (a + ¢ %) # 0

because, if (a + ¢ 7?) = 0 then @ = —c r? and from the above b = —2c¢ r | it leads to if
¢=0,s0 a=b=0 which contradicts the fact that (a,b,c) # (0,0,0). Thus, the surface
W is an open part of a circular cylinder.

Theorem 3.4 If VU is a timelike tube surface with non-degenerate second fundamental
form in F} where its Gaussian curvature and second Gaussian curvature are in linear
relation, then ¥ is a non-linear Weingarten surface.

Proof. We assume that K and K;; of U are in the form

aK + bK[[ = C. (328)

By (3.14) and (3.16), equation (3.28) can be written as follows

8a kcoshv b (3 + cosh2v —12r k cosh®v + 8r?k? cosh®v ) sech?v
— — 8¢ (=147 K cosh v) =0.
r r (=147 kcosh v)

The coefficients of the last equation must be zero. Thus, we have

8ark? — 8br’k? — 8ri3k%c =0, 8a k — 12br k — 16r%c Kk = 0,

20+ 8rc =0, 2b = 0.

From these equations, we obtain b =0, ¢ =0 and x = 0. So, the second fundamental
form of the surface ¥ would vanish identically. Therefore, the surface ¥ is non-linear

Weingarten surface.

Theorem 3.5 A timelike tube surface ¥ in E? with non-degenerate second funda-
mental form is linear Weingarten surface if the surface’s curvatures H and Kj; are written
in a linear form.

Proof. Let us write the relation between H and K as follows

aH + bK[[ = C. (329)

Inserting (3.15) and (3.16) in (3.29), we get
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—4a +12(a + b)r k cosh v — 8(a + b) r*x? cosh?v — b (3 + cosh 2v) sech?v

—c=0.
8r(—14r K cosh v)? ¢

Also, all the coefficients in the above (algebraic) expression must be zero and conse-
quently

c# 0, a=2rc, b= —4rc and Kk = 0. So, the surface V¥ is a linear Weingarten
surface.

We end this section with the following two theorems.

Theorem 3.6 The timelike tube surface of a spacelike curve with a timelike binormal
vector in the Minkowski 3-space F} is a Weingarten surface.

Theorem 3.7 (Non-ezistence theorem) There is no timelike tube surface, along a
spacelike curve with a timelike binormal vector, of linear Weingarten type case in which
aK + bK; = ¢ in the three-dimensional Minkowski space E7. In this case, the surface
is parabolic.

4 Timelike tube surface for a spacelike curve with a
spacelike binormal

Consider a spacelike curve (3(u) with a spacelike binormal e; in Minkowski 3-
space E¥ parametrized by its arc length u . Let e;(u) be its tangent vector, i.e., e;(u) =
B(u) = L3(u). The arc length parametrization of the curve makes e;(u) a unit vector,

du
i.e., || e1(u) ||= 1, therefore its derivative is orthogonal to e; .The principal normal vector
e, is defined as e; = 24, The binormal vector e5 = e; A ey. The three vectors €, €, €3

llex
make an orthonormal frame field along the spacelike curve 3(u) . The Frenet equations
for this frame are given by,

e, = r(u)ey(u), e, = k(u)ey(u) + 7(uw)es(u), e, = 7(u)ey(u), (4.1)

with the following conditions,

<elael> = <e3783> =1,
(eg,e2> = -1,
(el, 62> = (e2, 93> = <eg, e1> = 0. (42)

The functions x(u) and 7(u) are respectively, the curve’s curvature and torsion .
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To examine the Weingarten property as well as the linear Weingarten property
for the timelike tube surface ®(u,v) along the spacelike curve ((u) with a spacelike
binormal e;(u), we will consider the following basic equations:

Let ® is parametrized by

O(u,v) = B(u) + r (eg(u)sinhv + ez(u)coshw ). (4.3)

The components of the first and second fundamental forms of ® are respectively

E =1+ 2rk(u) sinhv + k2 (u) sinh? v — 272 (u), F = —r*r(u), G = —r?
(4.4)
P = —(k(u)sinhv + 7 £%(u)sinh®> v —r 72(v)), Q =17 7(u), W=r.(4.5)

The unit surface normal of the timelike tube surface ® is

o = (es(u) coshv + eg(u)sinhv ). (4.6)

The curvatures of ® are as follow

K(u)sinhv
K = 4.7
r+r? k(u)sinhv’ (47)

~ —1—2r k(u)sinhv
~ 2r (147 k(u)sinhv)’

(4.8)

—3 — 3coth®v + csch?v — 2r (1 + 7cosh 2v) csch v k(u) — 4r?(1 + 3 cosh 2v) K2(u)
8 (1+7r r(u)sinhv)? '

K=
(4.9)

The straightforward calculations similar to the procedure which we have done for the
above timelike tube surface ¥, we have the following theorems:

Theorem 4.1 The timelike tube surface of a spacelike curve with a spacelike binormal
vector in the Minkowski 3-space F} is a Weingarten surface.

Theorem 4.2 There is no timelike tube surface around a spacelike curve with a
spacelike binormal vector, of linear Weingarten type case in which aH + bK;; = ¢ in
Minkowski 3-space F3, and the surface is then of constant mean curvature.
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