
Towards Liquid Web Applications

Tommi Mikkonen1, Kari Systä1, and Cesare Pautasso2(B)

1 Department of Pervasive Computing, Tampere University of Technology,
Tampere, Finland

{tommi.mikkonen,kari.systa}@tut.fi
2 Faculty of Informatics, University of Lugano (USI), Lugano, Switzerland

c.pautasso@ieee.org

Abstract. As the complexity of rich Web applications grows together
with the power and number of Web browsers, the next Web engineer-
ing challenge to be addressed is to design and deploy Web applications
to make coherent use of all devices. As users nowadays operate multi-
ple personal computers, smart phones, tablets, and computing devices
embedded into home appliances or cars, the architecture of current Web
applications needs to be redesigned to enable what we call Liquid Soft-
ware. Liquid Web applications not only can take full advantage of the
computing, storage and communication resources available on all devices
owned by the end user, but also can seamlessly and dynamically migrate
from one device to another continuously following the user attention and
usage context. In this paper we address the Liquid Software concept in
the context of Web applications and survey to which extent and how
current Web technologies can support its novel requirements.

1 Introduction

Today, the average consumer in the U.S. or Europe has two primary computing
devices – a personal computer, usually a laptop, and a smartphone, with more
new mobile devices and tablets activated every day. We are on the move from a
world in which each person has two or three devices to a world in which people will
use dozens of computing devices – laptops, phones, tablets, game consoles, TVs,
car displays, digital photo frames, home appliances, wearable computers, and so
on. All these devices are connected to the Web, and their users are provided with
computation that is constantly available, capable of delivering meaningful value
even in few moments, without requiring active attention from the users part [1].

The architecture of current Web applications is not living up to these expec-
tations. Content is increasily made available on the Web and users have many
ways to access the content published on the Web, but they are exposed to extra
complexity caused by the large number of Web-enabled devices at their disposal.
Additional complexity comes from the fact that user content is spread to several
devices and Internet services. Managing all these as separate entities is currently
a tedious task, while at the same time users expect casual experiences. Since all
these devices are already connected to the Web, orchestrating their actions to
simplify users’ lives would be a natural extension of the Web platform.
c© Springer International Publishing Switzerland 2015
P. Cimiano et al. (Eds.): ICWE 2015, LNCS 9114, pp. 134–143, 2015.
DOI: 10.1007/978-3-319-19890-3 10

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357328355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Towards Liquid Web Applications 135

To create software that fits with the multi-device paradigm, the architecture
of current Web applications needs to be redesigned to enable what we call Liquid
Software [2]. Such Liquid Web applications not only can take full advantage of
the computing, storage and communication resources available on all devices
owned by the end user, but also can seamlessly and dynamically migrate from one
device to another continuously following the user attention and usage context.

In this position paper we apply the Liquid Software concept to the design of
Web applications and survey to which extent and how current Web technologies
can support its novel requirements. The rest of this paper is structured as follows.
In Section 2, we provide background for the concept of Liquid Software. In
Section 3, we discuss engineering Liquid Applications in the light of present
Web technologies. In Section 4, we provide an extended discussions regarding
our findings pointing out future research directions, summarized in Section 5.

2 Liquid Software: Background and Related Work

The notion of Liquid Software was originally proposed in [3]. In our interpre-
tation, the essential feature of Liquid Software is support for hassle-free multi-
device experiences, falling to the following categories [4]:

1. Sequential Screening. A single user runs an application on different
devices at different times. The application adapts to the different devices capa-
bilities while respecting the actual user needs in different usage contexts.

2. Simultaneous Screening. A single user uses the services from several
devices at the same time, i.e., the session is open and running on multiple devices
at same time. Different devices may show an adapted view of the same user
interface or the system may have a distributed user interface where different
devices play their own roles.

3. Collaboration scenario. Several users run the same application on their
devices. This collaboration can be either sequential or simultaneous.

All the above scenarios share similar challenges in adapting the user interface
to different devices and in synchronizing the data and state between devices.
Synchronization of the data and state are important because the devices and
users need to be aware of the results of their actions previously or simultaneously
done in other devices. This is essential both for immediately transferring the work
from one device to another, but also to enable seamless, real-time collaboration.

2.1 Liquid User Experience Scenarios

Today, browsers are used to access many Cloud services and Web applications,
and users can already use several devices to access those services. In some cases,
it is sufficient for users to share a hyperlink (URL with optional parameters) to
exactly reproduce and restore the state of the user interface of the application
from one browser to another. For example, the hyperlink may be used to identify
the video to be played and also the position within the video the playback should
start from. In this case, the client navigation state can be reliably identified and



136 T. Mikkonen et al.

reconstructed elsewhere, assuming that the result of de-referencing the hyperlink
is the same everywhere.

With more complex Web applications, so called Rich Internet Applica-
tions [5], it may not be possible to use a simple hyperlink to describe the large
amounts of local state accumulated on the client during a user work session, and
thus it may not be so simple to migrate the application across browsers. For
example, Google Docs can be seen as a Liquid Application since one or multiple
users can use it from multiple client devices either simultaneously or sequen-
tially. While the state of the edited document (i.e., the data) gets synchronized
in real-time, the state of the editor user interface is not. This means that when
switching from one browser to another, even if the document remains the same,
the editor configuration (e.g., the position of the caret within the document, or
the configuration of the tool bar) will not be transferred across sessions.

Our ambition is not limited to centralized cloud services like Google Docs,
or even to Rich Internet Applications. Many applications run locally in users
devices and only sporadically contact to a server or cloud. At the moment mobile
devices have many native mobile applications. Some of them are standard util-
ities like addressbook, some are mobile interfaces to common Internet services.
We foresee that many of them will be implemented as Web applications, but still
include a lot of local computation in the device. Local behavior, data and state
are needed for better user experience and to cope with less than ideal network
characteristics, and to access to local resources, like sensors and the file system.
The fact that part of the application and its data resides in the client leads
to different kinds of liquidity: liquidity between device and Cloud and liquid-
ity between devices. If the applications or their components can move flexibly
between devices and servers, the system may optimize factors like response times,
networking costs or battery-life [6]. For instance, if the network latencies slow
down the response times, the system may move the communicating components
to the same host. Also, if we assume that a substantial part of the applica-
tion logic and state is stored in the client device, liquid user experiences require
liquidity of applications between devices using proximity-based communication.

So far, perhaps the most vivid example of a liquid behavior is the new Handoff
capability in Apple iOS 8 [7]. One example scenario of Handoff is one where
composing of an email may have started in a phone but finished with a PC
that has bigger screen and a real keyboard. The participating devices need to
be registered in iCloud with the same identity, and the devices mush be able to
communicate over Bluetooth. Handoff can be seen as a mechanism to implement
a liquid user experience, since it enables sequential screening for a single user.
The applications need to be rewritten to take advantage of the Handoff API
and pre-installed across all devices; most of the common Apple applications
are already compatible with Handoff. Each device runs a specific version of the
application, hence the user interface is implicitly adapted to take advantage of
the device capabilities (e.g., multi-touch, screen size, and resolution).

In comparison to Handoff, Liquid Software should support heterogeneous
devices across software ecosystem boundaries. This way, developers would need



Towards Liquid Web Applications 137

to implement only one application, which then can adapt itself to run everywhere.
In our vision Liquid experiences are built using the Web – where applications
already now are deployed on demand and through Responsive Web Design [8]
are also adapted to fit on the local device display on the fly. Moreover, properties
such as openness and freeness from predatory control make the Web a natural
choice over native applications that are bound to a particular operating system,
manufacturer, or ecosystem [9].

2.2 Liquid vs. Solid Software

In the multi-device world, the user experience of the applications may span
across multiple devices [10]. Controlling the behavior of the applications as they
migrate from one device to the next forms a new field of research, where prox-
imity, gestures, and previous actions define the flow of user interaction. This
has been well demonstrated by a video by the glass company Corning (https://
www.youtube.com/watch?v=6Cf7IL eZ38), where applications are used seam-
lessly with personal devices, shared screens, and embedded devices in a fashion
that best fits the context as well as the particular use case at hand.

Based on the above, Liquid Software is by no means a single technology, but
rather a mindset for developing applications to be executed on multiple, het-
erogeneous computing devices [2]. Liquid Applications then satisfy the SAFE
qualities [11] – they are Scalable, Adaptive with respect to their environment,
Flexible thus supporting heterogeneity, and Elastic with respect to their work-
load. The essential elements that make such software different from traditional,
”solid”, single-device applications are the following:

– Code mobility: dynamic relocation of executable code. One categoriza-
tion of code mobility has been given by Fuggetta et al. in [12]. In that work
strong mobility means that the code can move together with its state while in
weak mobility the execution is re-initialized in the new location.

– State synchronization: ensuring that the state of the software (and in
particular, its user interface) is preserved after the relocation. Fugetta et al.
differentiate migration from cloning [12]. Liquid Applications take advantage of
both of these mechanisms. The use case where the user wants to move the on-
going work from a smart phone to a PC (sequential screening), requires strong
mobility with migration since the applications move with their states. In use
cases where several users collaborate simultaneusly, cloning of the runtime state
of the software is needed.

– Adaptation The applications as a whole and their components need to
adapt to different contexts, runtime environments and hardware capabilities.

Conversely, solid software is characterized by the inability to change its execu-
tion environment, without going through a complex and expensive redeployment,
reconfiguration, and re-initialization process – or, in general, by associating soft-
ware with a single computer.

Data and State. In this work we distinguish the application data from the
application state. With data we refer to the content that users store persistently
across usage session, while state is the information that the application needs in

 https://www.youtube.com/watch?v=6Cf7IL_eZ38
 https://www.youtube.com/watch?v=6Cf7IL_eZ38


138 T. Mikkonen et al.

order to continue its own execution after being relocated. This division is similar
to the division given in [12] where the data was called Data Space Management.
In the current Internet some of the resources are local to the device, while some
data is available through the network. The user expectation of Liquid Appli-
cations is that all relevant data is available regardless of the device, and that
modifications done in one location need be synchronized and made visible to
all hosts. Companies like Apple, Google or Microsoft are solving this issue by
providing data synchronization to the cloud. However, these solutions remain
isolated from each other and are difficult to integrate with Web applications due
to their file-based abstraction.

3 Engineering Liquid Web Applications

Creating Liquid Applications requires revising the role of traditional layers used
to design Web applications as well as using new implementation mechanisms.

3.1 Layers Revisited

As explained earlier, Liquid Applications and their architecture vary in three
different dimensions 1) simultaneous vs. sequential multi-device usage, 2) single
vs. multiple users collaboration, and 3) thin vs. thick client. These dimensions
are not necessary binary choices, and there may be a spectrum of intermediate
solutions. For example, the ”thickness” of Liquid Web applications may vary
depending on the available resources and needs at hand. Fig. 1 shows a possible
architecture where the application logic is split between server and client and
data is persisted by the server-side. The client part of the logic with related state
and user interface (UI) are about to migrate to another device. Below we discuss
how the liquid quality impacts each architectural layer: User Interface, Logic,
Data and State in the light of these scenarios.

User Interface. The first challenge is to support the adaptability to differ-
ent device characteristics and usage contexts, but new challenges emerge when
interaction includes collaboration between different devices or users. Simultane-
ous usage will require that the data model shown through the user interfaces

Fig. 1. Liquid Web Application Architecture



Towards Liquid Web Applications 139

of different devices is kept synchronized. Furthermore, the user interface should
support interactions that are based on coordinated input and output involving
multiple devices. For example, the touch screen of a mobile device could act
as an input device for driving the larger display of a laptop. These scenarios
could also be combined so that different users look at the same shared display
but use their own devices for input. The thicker the client is, the more there
are possibilities to implement adaptation in the device, but on the other hand
synchronization and coordination between devices become easier in centralized
and server-based approaches.

Logic. Similarly to the user interface, also the logic that implements Liquid
Applications needs be runnable in different client devices and also adaptable
different devices and device combinations. If multiple screens or multiple users
work on the same application simultaneously, the desired behaviour may be
the same for all devices, or different users and devices may play different roles
in the overall logic. In the dimension of thin and thick client, the logic may
be split between server-side (e.g., in the Cloud) and client-side (e.g., on the
mobile device) in various ways depending, e.g., on the available computational
power, quality of the network connection, and the battery charge level of the
device. The logic may also change its location dynamically. To support these
scenarios, components need to be designed to be portable, for example across
devices and between device and server, which is already supported by existing
Web technologies (e.g., JavaScript, HTML5, Web components).

Data. In the case of Liquid Software we assume that the data managed by
a Web application is available and accessible from all devices and contexts. Fur-
thermore simultaneous screening requires that changes on data become visible
on all screens immediately. If multiple users work with the same data, the system
needs to handle ownership and access control of the data as well as conflict detec-
tion and resolution. Solving of these problems has a direct dependency on the
design decision concerning the thin vs. thick dimension. The desired function-
ality can be achieved through centralization of the data layer, or by replicating
and synchronizing a copy of the shared data across all devices.

State. The state of the application encapsulates enough information for
migrating or cloning an application to a new location and to continue the exe-
cution there. The easiest way to move the state is to serialize the entire process
or its whole virtual machine. From the user’s point of view it is only important
that the user can smoothly move the application to an another device and con-
tinue working with minimal disruption. This does not mean that all details on
the state need to be preserved, but only the parts that are relevent for the user
and for running the application in the new context. It should also be noted, that
many applications are client-server systems and part of the state remains on the
server. In these cases, the server-part and client-part can move independently
from each other. If the client part – usually the user interface – moves, the server
part does not need to move. In some systems, all relevant state may be on the
server, and changing from one client to another does not require the transfer of
any state beyond a URL identifying the server-side state.



140 T. Mikkonen et al.

3.2 Mechanisms

In the context of the Web, liquidity builds on numerous already existing tech-
niques and mechanisms that are already commonly applied, or at very least,
they have been experimented with in research projects. Next, we address the
building blocks for achieving liquidity in existing Web browsers.

Responsive Web design. The primary weapon for tackling user interface
issues in different devices used for accessingWeb services isResponsiveWebDesign
[8]. In its purest form, a key issue in responsive design is how to design the layout
and the elements so that they can easily be customised for different screen sizes
and device types, with focus usually only on eventual visual appearance on the
screen. In general, due to the differences in browsers used in desktops and mobile
devices, the development of Responsive Web Designs calls for architecture where
some of the functionalities are always executed on the server side.While this simpli-
fies the development, as these functionalities need not be tested with every possible
client device, there are also complicating factors, since the state of the user inter-
face must still be transferred from one device to another. Concrete technologies for
composing Responsive Web Designs include using proportion-based grids and flex-
ible images, where element sizing takes place using relative units instead of abso-
lute ones, and CSS3 media queries, where different styles can be used for different
devices. For the developer, the above facilities are usually visible through a library
that supports Responsive Web Design, such as Bootstrap (http://getbootstrap.
com) or Foundation (http://foundation.zurb.com).

Liquid Middleware. A key component in designing Liquid Applications
is a middleware system that provides support for code and data mobility. Sev-
eral such systems have been proposed in the field of agent systems [13–15]. In
connection with Web applications, there are three different levels to perform a
migration from one device to another:

– Web application. In our own work, we have shown how to serialize, migrate
and deserialize Web applications in two contexts: 1) Agent framework enables
HTML5 mobile agents that demonstrate that both application code and
runtime state can be moved together with the application code [15], and
2) Lively Kernel extensions allow Web applications written using the Lively
Kernel Web framework to migrate from one computer to another [16]. Both
approaches require that the developer follows certain conventions to record
state variables to be transferred as well as to define initialization and termi-
nation procedures.

– JavaScript virtual machine. In the context of browsers, migration can
be realized through the underlying JavaScript virtual machine. Unlike the
Web application level migration, migrating the JavaScript VM and the cor-
responding DOM tree state implies that any Web application can be moved
automatically, without requiring developers to explicitly depend on a spe-
cific mobility framework, apart from what is necessary for adapting the user
interface to different contexts with Responsive Web Design techniques.

– Operating system level migration. The most extensive approach to code
migration is to transfer the whole virtual machine or operating system image

http://getbootstrap.com
http://getbootstrap.com
http://foundation.zurb.com


Towards Liquid Web Applications 141

from one host to another. Obviously, such operation requires extensive vir-
tualization, details of which fall beyond Web technologies. Moreover, with
such migration, also considerations regarding the time it takes to transfer
the image arise.

Data Synchronization. As discussed earlier, there is a need to synchronize
updates on data shared by several devices. This can be done in the following
ways: 1) keep all data in a centralized server and access data always from that
server; 2) on the other extreme, keep all data replicated across all user devices
and employ a decentralized, peer-to-peer synchronization tool (such as BitTor-
rent Sync, AeroFS, and the like); 3) build a system of several primary providers
that all other devices use through a unified interface - for example VisualREST
[17]. The preferred option depends on the need for simultaneous, concurrent
access from multiple devices and thus the need for conflict avoidance/resolution.
If a thin client approach is taken, all data is stored in server and addressed
from the client. Possible caching would then be implemented with appropriate
protocols – like in HTTP. Various Backend as a Service (BaaS) systems allow
linking Web applications to hosted backend cloud storage systems and associ-
ated services such as push notifications, user management and social network
integration. BaaS systems offer well-documented APIs that can be used from
Web applications simply by adding a few lines of boilerplate code. For instance,
there are systems such as Firebase that focus on making cloud side data stor-
age as simple and effortless as possible. In our designs, this dimension is best
considered in the context of Cloudberry [18].

4 Discussion

We claim that Web is a suitable platform for Liquid Software. This claim is
backed by several technical experiments and prototypes we have been working
on [6,15,16,18]. In the following we propose the next step - design and imple-
mentation of a general software framework for Liquid Web applications. The
framework is still based on Web technologies and standards, but we propose
some changes to existing designs.

The users should be provided with an interface that allows smooth control of
liquidity. This means that the top-level user interfaces of devices should comple-
mented with new user interface gestures. One example of such gesture is hype-
dragging [19] that users can use for pushing applications away from the device
their are currently running on. Alternatively, a pull approach is also possible,
where users indicate the target device on which the application should be moved
on. Another requirement for user interface is adaptability of the user interface.
Design and implementation of adaptive user interfaces usually takes extra effort,
and we should develop frameworks and tools that make implementation of adap-
tive user interfaces easy.

A further important component of the software framework is the middleware
that supports mobility of the code and execution state. The mechanisms should
be as automated as possible and extra effort for the developer should be as small



142 T. Mikkonen et al.

as possible. For example, serialization and de-serialization of the state should be
automated but the developer may need to declare what is the relevant part of
the state. Likewise, it should be possible to develop applications that can observe
and react to specific events happening during the migration. The ideas presented
in HTML5 Mobile Agents [15] can act as a starting point, but the primary
use case should be achieving a liquid user experience of Web applications. In
addition, the middleware should support application architectures where same
component can run both on server and client. The ability to make optimal use
of all available resources of the execution environment has been investigated as
part of the Liquid Web Services architectural style [11].

Finally, the architecture should include a Liquid Storage abstraction that
makes relevant data available and synchronized to users and applications who
need it. This can be achieved using different centralized or decentralized repli-
cation mechanisms that are abstracted away by the storage abstraction, which
should work in a way similar to HTML5 local storage. The data API of Cloud-
berry and EDB [20] include several ideas our design could reuse.

Ultimately, our research goal is is to develop a new liquid.js framework that
utilizes the above framework components and make creation of Liquid Applica-
tions easy. The liquid.js toolkit will simplify the migration of stateful components
and their adaptation to heterogeneous execution environments.

5 Conclusions

From the end-user perspective, liquid software essentially means that the soft-
ware has a built-in ability to perform adaptive, live migration. The role of the
Web is then to act as a platform-independent execution environment, which
provides suitable abstractions for relocation, serialization, migration, and adap-
tation that are needed to develop such applications. All the facilities already
exist today, but require use of special frameworks or even application specific
code. All these should be either standardized by bodies like W3C, or be simply
included to mainstream Web frameworks that today largely define solid appli-
cation models in the first place.

There are plenty of future research to be carried out in the field of liquid
applications. First and foremost, security challenges associated with using mul-
tiple devices, with some of them being used by multiple people, are many, and we
have largely overlooked them in this phase. Secondly, Internet-of-Things (IoT),
as well as its Web-oriented counterpart, Web-of-Things (WoT), introduce chal-
lenges that resemble liquid software – managing a large number of computing
units, storage and sensors/actuators that are not pre-allocated or pre-configured
simply falls beyond what existing application models can deliver. We believe that
liquid software provides a suitable metaphor to envison the behavior of software
systems as they are deployed in such complex and heterogeneous environments.

Acknowledgments. The work is partially supported by the Hasler Foundation
(Switzerland) with the Liquid Software Architecture (LiSA) project.



Towards Liquid Web Applications 143

References

1. Weiser, M.: The computer for the 21st century. Scientific American 265(3), 94–104
(1991)

2. Taivalsaari, A., Mikkonen, T., Systä, K.: Liquid software manifesto: the era of
multiple device ownership and its implications for software architecture. In: Proc.
of the 38th IEEE Computer Software and Applications Conference (COMPSAC),
pp. 338–343 (2014)

3. Hartman, J.H., Bigot, P.A., Bridges, P.G., Montz, A.B., Piltz, R., Spatscheck, O.,
Proebsting, T.A., Peterson, L.L., Bavier, A.C.: Joust: A platform for liquid software.
IEEE Computer 32(4), 50–56 (1999)”

4. Google: The new multi-screen world: Understanding cross-platform consumer
behavior (2012). http://services.google.com/fh/files/misc/multiscreenworld final.
pdf

5. Casteleyn, S., Garrigós, I., Mazón, J.N.: Ten years of Rich Internet Applications: A
systematic mapping study, and beyond. ACM Trans. Web 8(3), 18:1–18:46 (2014)

6. Babazadeh, M., Gallidabino, A., Pautasso, C.: Liquid stream processing across web
browsers and web servers. In: Proc. of the 15th International Conference on Web
Engineering (ICWE 2015). Springer, Rotterdam, NL, June 2015

7. Gruman, G.: Apple’s Handoff: What works, and what doesn’t. InfoWorld, October
7, 2014

8. Marcotte, E.: Responsive Web Design. Editions Eyrolles (2011)
9. Mikkonen, T., Taivalsaari, A.: Cloud computing and its impact on mobile soft-

ware development: Two roads diverged. Journal of Systems and Software 86(9),
2318–2320 (2013)

10. Levin, M.: Designing Multi-device Experiences: An Ecosystem Approach to User
Experiences Across Devices. O’Reilly (2014)

11. Bonetta, D., Pautasso, C.: An architectural style for liquid web services. In: Proc.
of the 9th Working IEEE/IFIP Conference on Software Architecture (WICSA),
pp. 232–241 (2011)

12. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding code mobility. IEEE Trans.
Softw. Eng. 24(5), 342–361 (1998)

13. Dömel, P.: Mobile telescript agents and the web. In: Proc. of the 41st IEEE Inter-
national Computer Conference. COMPCON 1996, p. 52 (1996)

14. Feldmann, M.: An approach for using the web as a mobile agent infrastructure. In:
Proc. of the International Multiconference on Computer Science and Information
Technology, vol. 2, pp. 39–45. PTI (2007)

15. Systä, K., Mikkonen, T., Järvenpää, L.: HTML5 agents: mobile agents for the web.
In: Krempels, K.-H., Stocker, A. (eds.) WEBIST 2013. LNBIP, vol. 189, pp. 53–67.
Springer, Heidelberg (2014)

16. Kuuskeri, J., Lautamäki, J., Mikkonen, T.: Peer-to-peer collaboration in the lively
kernel. In: Proc. ACM Symposium on Applied Computing, pp. 812–817 (2010)

17. Mäkitalo, N., Peltola, H., Salo, J., Turto, T.: VisualREST: a content management
system for cloud computing environment. In: Euromicoro Conference on Software
Engineering and Advanced Applications, pp. 183–187. IEEE (2011)

18. Taivalsaari, A., Systä, K.: Cloudberry: An HTML5 cloud phone platform for mobile
devices. IEEE Software 29(4), 40–45 (2012)

19. Rekimoto, J., Saitoh, M.: Augmented surfaces: a spatially continuous work space
for hybrid computing environments. In: Proc. CHI, pp. 378–385. ACM (1999)

20. Koskimies, O., Mikola, T., Taivalsaari, A., Wikman, J.: EDB: a multi-master
database for liquid multi-device software. In: Proc. MobileSoft. ACM (2015)

http://services.google.com/fh/files/misc/multiscreenworld_final.pdf
http://services.google.com/fh/files/misc/multiscreenworld_final.pdf

	Towards Liquid Web Applications
	1 Introduction
	2 Liquid Software: Background and Related Work
	2.1 Liquid User Experience Scenarios
	2.2 Liquid vs. Solid Software

	3 Engineering Liquid Web Applications
	3.1 Layers Revisited
	3.2 Mechanisms

	4 Discussion
	5 Conclusions
	References


