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ABSTRACT 
According to the transformation relationships between the 

Cartesian coordinates and the general curvilinear coordinates, 
the governing equations of the model are derived as the forms 
in the general curvilinear coordinates from those in the 
Cartesian coordinates. In the model, the contravariant velocities 
are adopted as the independent variables in non-orthogonal 
grids. The momentum equations keep strongly conservative 
forms and the boundary conditions can be given easily. The 
model used a staggered grid arrangement. The discrete 
equations are solved using the SIMPLIC algorithms. The 
numerical model has been validated against the bifurcated flow 
of which the diversion angle is 30 degree. Compared with the 
measured values, the numerical shallow water model is shown 
to be capable of simulating the water domains with irregular 
boundaries. 

 
INTRODUCTION 

In the bifurcation channels or rivers including the 
estuaries, the orthogonal curvilinear grids are difficult to be 
generated in order to fit the irregular boundaries, especially 
when the diversion angle is not equal to 90 degree. It is 
inevitable to induce some inaccuracy when the orthogonal 
curvilinear coordinates are applied to the complex domain. 
Many numerical models have been developed to overcome this 
difficulty such as by use of the local mesh refinement based on 
Cartesian grid or orthogonal curvilinear grid and the finite 
element methods based on the triangle grids. An alternative 
approach is using general curvilinear grids whereby the meshes 
are generated to fit the boundaries correctly. Compared with the 
approaches based on the rectangular grid, the boundaries can 
be easier to be disposed in this approach. Since the 
contributions of non-orthogonal terms are considered, the 
accuracy can be improved. The equations and the approach are 
also simpler than those of the finite element methods requiring 
1 
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the inversion of the dense matrices. It can be said that the 
approaches based on the non-orthogonal curvilinear are very 
attractive. 

There are three ways to select the main variables in 
solving the hydraulic equations based on the non-orthogonal 
grids, i.e. the Cartesian, covariant and contravariant velocity 
components are applied respectly. Ye et al. (1997), Karki and 
Mongia (1990), Shi et al.(1997) adopted the Cartesian velocity 
components as the main variables in the momentum equations. 
Xu and Zhang (1998) applied the covariant velocity 
components. Shi et al. (1998) used the contravariant velocity 
components. Because the contravariant velocity components 
are normal to the interfaces of grids, the fluxes across the grid 
interfaces and the boundary conditions can be conveniently 
expressed by use of the contravariant velocity components. On 
the other hand, there is still the cross pressure gradient term in 
each momentum equation of which the contravariant velocity 
components are adopted as the main variables as well as that 
uses the Cartesian velocity components. However, the cross 
term in every momentum equation is predominant along the 
direction of its covariant velocity component. It means that 
numerical methods on basis on the Cartesian systems can be 
applied to solve the equations based on the non-orthogonal 
grids systems. In the shallow water equations derived 
previously, such as reference (Shi et al.,1998) (Xie, 1999), 
which are based on the non-orthogonal Curvilinear coordinate 
systems and of which the contravariant velocity components 
are the main variables, the diffusion terms were neglected and 
the equations became simple. In fact, the neglects may increase 
errors and debase the stabilities or convergence of numerical 
solvers. So it is necessary to consider the diffusion terms in the 
shallow water equations.  

It is the purpose of this paper to present details of a 
shallow water model for simulating the flow of bifurcation 
domains. First, the shallow water equations are transformed 
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into the forms based on the non-orthogonal curvilinear 
coordinate systems with adopting the contravariant velocity 
components as the main variables. The hydrodynamic 
equations are discretized by the use of the finite volume 
method, and solved by SIMPLEC method. Finally, the model is 
applied to simulate and analyze the flow structure of 
bifurcation channels. 

GOVERNING EQUATION BASED ON THE CARTESIAN 
COORDINATE SYSTEMS 

In the shallow water domain, the flow is reasonably 
uniform and the values of different physical variables are 
almost constant in the vertical direction. The shallow water 
equations based on the Cartesian coordinate systems, also 
named 2-Dimensional hydrodynamic equations, are always 
expressed as  
(1) The continuity equation  
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where H hς= +  is the total water depth measured from the 
bed to the free surface, ς  is the elevation of the free 
surface，  is the water depth measured from the bed to the 
static surface, t is time, u ，  are the Cartesian velocity 
components, g is the gravity 

h
v

acceleration, e tν ν ν= +  is the 

general diffusion coefficient, here tν  is the turbulent viscous 

coefficient and always is expressed as  or 

,  is a constant,  is the friction 

velocity, 

*t C u Hνν =

*t C u xνν = Δ 0.6 ~ 1.0Cν = *
u

xΔ  is the length of grid, ν  is the kinemics viscous 
coefficient. 

TRANSFORM OF THE GOVERNING EQUATIONS 
In the Cartesian coordinate systems, the velocity vector 

U
r

 can be expressed as , which means the two velocity 
components along the X-direction and Y-direction respectively. 
In the general curvilinear coordinate systems, the velocity 
vector can also be written as 

( ,u v)

( ),con conu v , and  are 
the contravariant velocity components being normal to the 

conu conv
η  
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line and the ξ  line respectively. The transformed relationship 
between these two kind coordinate systems can be derived as 

( )conu uy vxη η α= −                          (4) 

( )conv ux uyξ ξ γ= −                          (5) 

where 2 2x yη ηα = +  is the length square in the η  direction 

of the grid, 2 2x yξ ξγ = +  is the length square in the ξ  
direction of the grid. 

In order to be expressed and compute conveniently, the 
contravariant velocity components always are written as the 
flux forms 

( )U uy vxη η= −                               (6) 

( )V ux uyξ ξ= −                              (7) 
So the Cartesian velocity components can also be 

represented by the contravariant velocity components as 
follows 

( )u x U x V Jξ η= +                            (8) 

( )v y U x V Jξ η= +                            (9) 
where J is the Jacobian of the transformation. 

By use of the transformation relationships of physical 
variables and their derivatives between the two coordinate 
systems, the shallow water equations in the general curvilinear 
coordinate system can be derived from in the Cartesian 
coordinate system. The governing equations including the 
continuity equation and the momentum equations can be 
written as the unite form.  

HHJ HU HV
t J

α β
ξ η ξ ξ η

Φ
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

Γ∂ Φ ∂ Φ ∂ Φ ∂ ∂Φ ∂Φ+ + = −
∂ ∂ ∂ ∂ ∂ ∂

+  

 H S
J

γ β
η η ξ

Φ
Φ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

Γ∂ ∂Φ ∂Φ− +
∂ ∂ ∂

     (10) 

where (1, , )u vΦ =  is denoted as the general dependent 

variable, x x y yξ η ξ ηβ = + ΦS, is the source term on the 
computation plane. 

It is noted that these variables are still the Cartesian 
velocity components. The two momentum equations in the 
form of Eq.10 are disposed in order to get the momentum 
equations of which the main variables are the contravariant 
velocity components. 
(1) .(10)( ) .(10)( )Eq u y Eq v xη ηΦ = × − Φ = × ， the 
momentum equation of which U is the main variable can be 
derived. 
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where， ,  11 12 13 21 22 3
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(2) .(10)( ) .(10)( )Eq v x Eq u yξ ξΦ = × − Φ = × ， the 
momentum equation of which the V is the main variable can 
also be derived. 
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where, 11 12 13 21 22 3
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It is showed that the transformed momentum equations 

with the contravariant velocity components as the independent 
variables in the non-orthogonal curvilinear systems keep the 
same forms in the Cartesian coordinate systems. Only the 
source term has been changed. The shallow water equations are 
still the conservation forms and the terms have the same 
physical meaning. Therefore the numerical methods used in the 
Cartesian coordinate systems can also be applied to solve the 
transformed shallow water equation. 

BOUNDARY CONDITIONS  
For the open boundaries, the water levels or velocities 

must be given. As a rule, only the discharges are offered in the 
upstream of rivers or estuaries. In this kind of condition, the 
boundary velocities along the river width can be obtained by 
the following equation. 
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where ( )iu t  is the average velocity along water depth, A is 
the area of river cross section, B is the river width, the subscript 
i is denoted as the velocity location. 

If the water levels are given in the boundaries of the 
computing domains, it is always assumed that the velocities on 
the boundary are satisfied with the expressions, 

U
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∂
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V
η
∂

∂
=0) and (or ). The water levels in 

the boundaries always can be gotten from the field 
measurement or the results of the numerical model applied to 
larger computation domain, also can be acquired after the 
harmonic analysis of tide. 

0V = 0U =

The normal velocity is equal to zero at the lateral solid 
wall. The evaluation of tangential velocity should be dependent 
on the requirement of the model. When the numerical models 
are applied to the natural and large water domain, the non-slip 
conditions along the solid lateral walls may be adopted. For the 
small computation domains such as the channels, the boundary 
effects to the flow may be notable. So flow structures near the 
solid walls should be considered, the wall function always is 
used to compute the velocities and the drag force near solid 
walls, such as Eq.14 which is developed by Launder and 
Spalding (1972). 
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u z
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where  is the roughness height of solid wall,  is the 
distance from the velocity point to the wall. The Eq.14 can be 
applied to compute the friction velocity and the drag force 

0z z

coefficient. 
   In the rivers, coastal or estuary domains, the topographies 
are very irregular. The boundaries may vary due to the change 
of the water level. In order to solve the problems of the moving 
boundaries, many approaches are developed such as the dry 
and wet method, the line-boundary method, frozen boundary 
method et al.. The frozen boundary method is used in the model 
because it is simple. 

NUMERICAL SCHEMES 
The Finite Volume Method (FVM) is one of the most 

popular discretization methods in engineering CFD. For the 
outstanding mass conservation and easy treatment of boundary 
conditions for complex domains, it has been applied in some 
famous software, such as FLUENT. In the model, the method is 
used to discretize the equations. To avoid the pressure 
oscillations, staggered grids method or the momentum 
interpolation method of the collected grids can always be used. 
The method of staggered grids is simpler and applied in the 
model. The contravariant velocity fluxes are evaluated on the 
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interfaces of the main grids, the water levels are located on the 
center of main grid cells.   

The discrete equations of the shallow water equation can 
be rewritten as the following form 
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the superscript old denotes the time of n tΔ . In order to 
improve the convergence of the numerical model , the source 
terms in the transformed governing equations are disposed as 
 CP SSS ΦΦΦ +Φ= ， , 0PSΦ ≤

 *
P E W N S Pa a a a a a S ξ ηΦ= + + + + − Δ Δ ,  

, , ,e w nU U V Vs

s

 are the contravariant velocities at different 

interfaces of unit grid cell,  are the 
diffusion coefficient at the grid cell interfaces, 

, , ,e w nΦ Φ Φ ΦΓ Γ Γ Γ
,ξ ηΔ Δ  are 

the lengths of the grid cell in the directions of ,ξ η , 

, , ,e w n sδξ δξ δη δη  are the distances between every two grids 
next to each other. 
    Adopting the processes of the SIMPLEC methods to solve 
the discrete equations above in the model, the velocities and the 
water levels of computation domains can be acquired. 
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Dow
VALIDATION AND ANALYSIS 
The validations of the model are supported and provided 

by the velocities measured in the bifurcated water channel. The 
model was designed to be consistent with one used in a set of 
experiments carried in the bifurcated channels (Tong, 2005). 

U控制单元 V控制单元 主控单元 U位置V位置

 U unit       V unit       Main unit   Point V  Point U 
      Physical plane              Computational plane 

Fig.1 Lay-out of grid systems 
 

The bifurcated channels include one 0.4m wide main channel 
and one 0.3m wide branch channel, the angle of bifurcation is 
30 degree, see Fig. 2. In the test, the velocities in the bifurcated 
domains were measured by 3D acoustic Doppler velocimeter 
(ADV). The fluxes of main channel downstream and branch 
channel are 0.0090884 /s, 0.0027231 /s respectively. The 
flux percent of the branch channel to the total upstream is 
23.05%. In the diversion area, the average water depth is about 
11.5cm. The locations of velocity to be measured are shown in 
Fig.3. 

3m 3m

The number of grids applied in numerical computation is 
280× 41 including 134× 41 for upstream of bifurcation point, 
146× 20 for the main channel and 146× 20 for the branch 
channel. The grids are shown in Fig.3. The curvilinear grids on 
the left-up of the figure are the enlarged bifurcated region. The 
size of unit grids in that region is less than 2cm× 2cm. In order 
to be consistent with the experimental data of the diversion 
flow ratios and the water levels at the bifurcated area, the water 
levels upstream are given as the boundary condition and the  
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Fig.2 Computational grids of 30 degree 

bifurcated angle channels 
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measured diversion fluxes are afforded as the downstream 
boundary condition. The water level of channel upstream is 
0.12m and the roughness coefficient of organic glass n=0.010 
is used to the bottom.  
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Fig.3 Locations of validation sections in bifurcated channels 
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Fig.4 Comparisons of calculated velocities  
and measured velocities 

(dots are measured values, lines are computed values) 
 
The comparisons between the calculated velocities and 

the measured velocities in different cross sections are presented 
in Fig. 4. The dots represent the measured velocities and the 
lines are the computed values. It is shown that the velocities 
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Down
simulated by the model agree well with the experimental data 
only except that the deviations of velocities near the sold walls 
are a little bit larger. The results of the comparisons 
demonstrate that the numerical method can be applied to 
simulate the flow.   

Fig. 5 shows the velocity contours of the bifurcated 
regions. It illustrates that the basic laws of the flow motion in 
the bifurcated regions, i.e. there are backflows existing at the 
leeside of the entrance to the branch channel that form the low 
velocity zone. At the same time, another low velocity area 
being symmetry with the above one is formed on the other side 
of the main channel. Furthermore, the distributions of the shear 
stresses and the erosion or deposition can be observed from the 
velocity contour graph. 

The water level contours of 30 degree bifurcated angle 
channel are presented in Fig. 7. The distribution of water level 
contours of surface is similar to that of bend river. The water 
level on one side is higher than that on the opposite side. The 
reason is the same as the principles of the flow in the bend 
river, i.e. the flow bends when enters into the branch, then the 
transverse water level gradient occurs due to the difference of 
water level on both side in order to maintain the eccentric 
force. On the whole, the water surface on the side of main 
channel is higher than that on the side of the back flow zone of 
branch. 
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Fig.5 Velocity contours in bifurcated channel 
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Fig.6 Water level contours in bifurcated channel 
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CONCLUSION  
According to the transformation theories between the non-

orthogonal curvilinear coordinate and the Cartesian coordinate, 
the hydrodynamic equations of shallow water with respect to 
the contravariant velocities as the main variables in the non-
orthogonal curvilinear coordinate system are derived from the 
2-D equations in the Cartesian coordinate systems. The effects 
of the non-orthogonal terms have been considered in the 
derived equations. The structures and conservative forms of the 
equations have been kept. With this advantage, it is easy to give 
the boundary conditions.  

2-D flow numerical model has been established, in which 
the shallow water equations are discretized using FVM and are 
solved by the SIMPLEC method.. The numerical model has 
been validated against the bifurcated flow of which the 
diversion angle is 30 Degree. Compared with the measured 
values, the numerical shallow water model is shown to be 
capable of simulating the flow structures of the domain with 
irregular boundaries. 
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