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Abstract  This paper describes a novel approach to 
predicting time-series which blends techniques developed in 
the areas of observer design and numerical solvers for ODEs. 
The developed predictor is based on a novel feedback control 
architecture which leads to computationally efficient and a 
fairly accurate forecast even for volatile economic series. 
Application to series of various kinds shows that the 
developed forecaster possesses some basic properties of 
numerical solvers for ODE. In the same time it prediction 
horizon is favorably compared with a time step attaining in 
numerical simulations for the series with precisely known 
models whereas no knowledge of the series’ global model is 
assumed in our forecast. We demonstrate that for noisy series 
the accuracy of prediction reduces to the level of noise to 
signal ratio as well as that reduction of noise by smoothing 
the series comparably increases the accuracy of prediction. It 
is also shown that the developed approach provides 
practically valuable forecast in application to volatile 
economic series. 

Keywords  Time-Series Forecast, Adaptive Feedback 
Control, Numerical Solvers, Delay-Observers. 

 

1. Introduction 
Modeling and prediction of time series is an important 

problem for various fields of contemporary science and 
engineering. It frequently is considered in probabilistic 
setting and is based on utility of running models with 
successively updated parameters which leads concurrently 
to reduction of noise and prediction of subsequent series’ 
values. For example, ARMA and ARIMA are popular 
stochastic forecasting techniques that are based on linear 
models[1].Some nonlinear models, as ARCH [2] and 
GARCH[3]and their different extensions, are developed for 
taking into account heteroscedasticity - a change in variance 
along time. More details for these models and current 
literature review in this area could be found in [4]. 
Representation of time-series in state-space form attracts 
application of Kalman and particle filters to linear and 

nonlinear problems in stochastic estimation and forecast; 
more details and references on these subjects could be found 
in [4, 5] and [6]-[8]. Comparable techniques for stochastic 
data assimilation, which also are based on Bayesian 
inference methods, were recently presented in [9]. Note that 
in practice estimation of noise statistics involve some errors 
which could reduce performance of optimal stochastic 
estimators as Kalman filter and alike. This is especially 
apparent for non-stationary series. 

Artificial intelligence [10] and soft computing [11] 
paradigms were used extensively for forecasting of series. 
These techniques mainly are based on application of 
artificial neural networks[12] – [15], support vector 
machine[16, 17], fuzzy logic [18]-[ 20] and their various 
combinations to find of repeated patterns and forecast of 
series. It was reported in cited above papers that artificial 
neural networks and probabilistic techniques like ARIMA 
frequently provide quite similar forecast. Some papers 
integrate artificial intelligence and ARIMA forecast 
methodologies [21]. 

Wavelets decomposition has been used in forecasting of 
series in a number of publications [22,23] which report 
mixed results [22].Various smoothing techniques have been 
applied to series forecast as well [24]. 

Note that in a diverse and broad field of forecasting we 
quote above only some resent and known publications where 
more details and subsequent references could be found. 

Most forecasting techniques frequently provide a lagging 
forecast. The lag normally extends for volatile and rapidly 
altering series which contribute to their relatively humble 
predictability. 

The concept of feedback controlled observers/estimators, 
which have been primarily developed in control literature, 
presents an attractive approach to forecasting of 
deterministic/denoised series and sometimes their 
derivatives. In the area of control a concept of observer was 
developed by Luenberger [25]-[27] for linear systems; 
subsequent and more recent references could be found in 
[28]. Design of observers for nonlinear and discrete-time 
systems was suggested in [29] – [35]. In physics literature 
the methodology of observer design was recently used for 
estimating of parameters and states of nonlinear and chaotic 
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systems, see [36, 37]where additional references in physics 
literature on this subject can be found. 

An observer for continuous systems can be written into a 
forecaster form by the utility of delayed observations while a 
discrete observer and forecaster formally can be presented by 
practically identical models. The design of observers for 
estimating directly immeasurable system states typically is 
based on stability control of zero-equilibrium solution to so 
known error-equations which implies decay of estimation 
error. However, this approach cannot be directly utilized for 
prediction of series for which the underlying models are 
practically unknown. Hence forecast of series is based 
normally on utility of artificial running models with 
sequentially estimated parameters. 

This paper blends techniques from the areas of numerical 
analysis and control and develops approach for predicting of 
the next value of a time-series. Enlarging of sampling step 
leads to prediction of series on extended time horizons. For 
simplicity we adopt a polynomial running model controlling 
by a linear feedback. Various more complex models and 
control architectures could be naturally included into this 
approach. However, we notice in our simulations that a gain 
in model complexity could deprive the forecast accuracy 
which is especially apparent for volatile and noisy series.  

We derive a discrete forecast model from its continuous 
analog by application of the implicit Euler’s method and 
estimate control parameters of the running model by 
minimizing least square error norm combining delay-errors 
in both the state variable and discrete approximation of its 
derivative. The developed procedure is applied to various 
time series where it delivers a fairly accurate forecast. 

This paper is organized as follows. Section 1 presents a 
continuous prediction model which is written in section 2 in 
a discrete form adapting for forecasting of series that is 
common in applications. Section 3 tests the accuracy of the 
developed forecasters in application to various kinds of 
series. Sections 4 and 5 discuss and summarize this study. 

2. Estimator/Forecaster for Continuous 
Series 

While our objective is to develop a forecaster for discrete 
time-series, we begin with brief review of the methodology 
which can be used for estimating of the derivatives and 
forecasting of continues series and subsequently adapt it for 
forecasting of data sampling with a finite step. 

Let a running model for continuous data )(tx be a 
polynomial of degree 1−n which we denote as ( )y t ; 
obviously, 0/)( =nn dttyd which also can be written as a 
first order system: 

1+=′ kk yy , 0=′ny , 1...,,1 −= nk  

where 1)( yty = . Since )(tx represents a 
measured/denoised variable, we assume initially that its first 
derivative, )(tx′ , could be derived directly from the data or 

measured independently. Using these observations we intend 
to estimate higher order derivatives of this series through 
utility of its polynomial model as follows: 
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where control parameters constba kk =, normally are 
chosen to ensure asymptotic stability of the equilibrium 
solution to the error equations which can be written as: 

211),( ebeaekne kkkk ++=′ +δ , nk ...,,1= (2) 

Here 1 1e x y= − , and 1 1 /k k
ke d e dt+ = , 1...,,1 −= nk

are estimation errors in the series and its derivatives. Note 
that setting 0kb = in (1) and (2) yields a practically 

important case in which only )(tx is assumed to be 
measurable but it derivative, )(tx′ is estimated from (1) as 
well. System (2) is stable if the maximal real part of eigen 
values of the underlying matrix is negative. This stability 
condition implies exponential decay of all components of the 
error vector ),...,( 1 neee= and can be used to determine 
control parameters for these estimators [28]. 

If only delay observations are available, (1) can be written 
as 
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nk ...,,1= (3) 

whereτ is the delay. Last equations could be interpreted as 
delayed estimator or predictor equations. 

Obviously, observation/forecast errors decay if zero 
equilibrium solution of (3) is stable. Various stability 
conditions for delay equations could be used to determine 
controller parameters for equation (3),see [38, 39] and 
subsequent references therein. However application of this 
approach to forecasting of relatively complex series is 
limited since it adopts a global polynomial model; 
consequently control parameters ka and kb are constant in 
this setting. Note that utility of more complex models could 
improve forecast accuracy if they are naturally embraced by 
the given series. Otherwise a simpler model often turns out to 
be more robust and superior. 

3. Adaptive Forecaster for Discrete 
Time-Series 

This section derives the equation for a discrete forecaster 
as an approximation to it continuous analog. Approximation 
of derivatives in (3) using backward differences yields a 
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system of difference equations which also can be obtained by 
application of implicit Euler’s method: 

1 1

2

( ) ( 1) [ ( , ) ( ) ( ( 1)
( 1)) ( ( 1) ( 1)]
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δ += − + + −
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where 1,2...i= ,time-delay 1τ = , time-step h normally is 
equal or integer multiple of τ ,and ( )i∆ is a 2nd - order 
approximation to first derivative of time-series which is 
computed as follows: 

( ) (3 ( ) 4 ( 1) ( 2)) / (2 )i x i x i x i h∆ = − − + −  
Now we could shift i forward by one unit to write (4) 

formally as a forecaster equation; instead we keep (4) and 
assume that a current observation is adopted on 1i − -step 
and prediction is delivered on i –step. Prediction on a few 
time-steps can be obtained from a slightly modified version 
of this equation which assumes thatτ equals to a positive 
integer. Note that prediction horizon is determined by 
sampling step h which normally should be equated to one in 
this setting. Yet, our simulations show that an appropriate 
choice of h-values in some cases enhances the accuracy of 
forecast providing by (4). 

Now we write (4) in the form suitable for numerical 
simulations: 
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stands for vector-transposition. 

Running values of control parameters a  and b and in 
some cases h are selected at each step to minimize the least 
square error calculating on past time-intervals which include
l  -data points as follows: 

1
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Thus the objective function for the corresponding 

optimization problem includes two components: the 
least-square errors for predicting values of the series and 
difference approximation of it first derivative 

4. Simulation Results 
Note that (6) implies a nonlinear optimization problem 

with multiple extremes which can sensitively depend upon 
initial values of adjustable parameters. To reduce this 
sensitivity and enhance the forecast accuracy we apply 
exponential smoothing to successive values of these 
parameters – a technique is commonly used in simulations to 
enhance convergence of iterations. 

We will use two measures of forecast errors: 
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where medium of a sequence of forecast values is computed 
on the entire interval where the data is available. 

Note that while these measures fairly are gaging relative 
accuracy of prediction, their absolute values could remain 
small for a lagging forecast which reduces their practical 
significance for series with frequently changing directions, 
for example, for some economic series. Thus to assess the 
forecast lag, it is also instructive to examine how accurately 
the system can predict local/major turning points of the 
series – the ultimate goal of an automatic forecast. 

4.1. Forecast of Multifrequency Data Set 

To evaluate how the prediction accuracy depends upon 
variability of data, we forecast the values of oscillatory series 
which is defined by sampling with a fixed step a periodic 
function with period 2π: 

1
( sin( / ))

K

k
x a t k

=
= ∑    (7) 

Where a is an amplitude and K=6 is used in our simulations. 
Figures 1 and 2 compare actual and predicted series values 
when x  is sampled with steps π /2.2 and π /3. Table shows 
the values of error measures corresponding to time steps 
equal π /2.2, π /2.5 and π /3: 

 𝜋𝜋/2.2 𝜋𝜋/2.5 𝜋𝜋/3 

1M  0.1538 0.093 0.089 

2M  0.1982 0.1172 0.110 

Table includes the values of error measures (1st column) 
which are calculated by forecasting of series (7) sampling 
with three different step sizes (1st row). 

Note that forecast accuracy is waned if x is sampled with 
a step larger than π /2.2. For smallest of these three steps the 
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forecast yields superior accuracy and practically negligible 
lag while for the largest step it delivers a satisfactory 
accuracy as well. It could be seen from figure 1 that forecast 
error slightly decreases over time due to adaptation of the 
model to the data set. This effect is more apparent on initial 
time intervals where the forecast error rapidly decays. Note 
that the accuracy of this forecast practically exceeds one 
which can be delivered by standard numerical techniques in 
the cases when a model for the series is precisely known and 
thus can be simulated. 

 

Figure 1.  Comparison of actual and predictive values for 2π-periodic 
multifrequency data sampling with step π/2.2. Blue and green lines plot 
respectively actual and predictive values. Prediction error decreases for 
larger values of time due to adaptation of the model to the data. 

 

Figure 2.  Comparison of actual and predictive values for 2π-periodic 
multifrequency data set sampling with step π/3. 

4.2. Forecast of Trending Multifrequency Data Set 

Our simulations show that to retain the desired accuracy 
for steeply-trending series, the forecast horizon normally 
should be decreased. This is similar to acknowledged 
performance of numerical solvers for stiff ODEs. Yet, the 
trend of the series could be removed by application of such 
standard procedures as subtracting a long moving average 
from the data, subsequent differencing of the data, etc. Since 
the trend rarely can be removed completely, figure 3 
compares actual and predicted values for slow-trending data 
that is formed by sampling the following function with step π 
/3: 

1
( sin( / )) 4 ln( 1)

K

k
x a t k x

=
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The accuracy measures in this case are: 1M =0.0059 and 

2M =0.0075. It is clear that prediction lag and errors remain 

to be small in this case as well.  

 

Figure 3.  Comparison of actual and predictive values for trending 
2π-periodic multifrequency data sampling with step π/3. 

4.3. Forecast of Multifrequency Noisy Data Set 

To reveal the effect of noise, we predict upcoming values 
of series (7) which is augment by additive noise as follows: 

1
( sin( / )) ( )

K

k
x a t k N t

=
= +∑  (8)

 
where ( )N t is zero mean noise which is assumed to be either 
uncorrelated uniformly distributed in interval 0.2a± or 
normal noise with standard deviation equals 0.25a . 

Figure 4 shows that addition of uniformly distributed 
noise noticeably increases prediction error which still 
remains close to noise to signal ratio. In fact, the error 
measures in this case are: 1 0.23M = and 2 0.29M = .Note 
that to enhance prediction accuracy in this case we 
significantly amplified the rate of exponential averaging 
which is applied to the running set of adjustable control 
parameters.  

 

Figure 4.  Comparison of actual and predictive values for 
multifrequencydata set which is augment by additive uniformly distributed 
uncorrelated noise. The data is sampled with step π/3.  

 

Figure 5.Comparison of actual and predictive values for noisy 
multifrequency data set that has been smoothed by exponential moving 
average.  
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Next to reduce the noise level in (8) we smooth it by 
application of exponential moving average and subsequently 
forecast the obtained series. This simplest denoising 
substantially decreases prediction errors which are reflected 
in much smaller values of error measures: 1 0.09M =  and

2 0.11M = , see also figure 5 for assessing the lag of 
forecast. 

The developed forecaster delivers similar performance in 
applications to multifrequency data augmenting by additive 
normal noise with large standard deviation. In this case the 
error measures equal: 1 0.241M =  and 2 0.3M = , see also 
figure 6. Obviously, these numbers are in line with noise to 
signal ratio for this case. 

 

Figure 6.  Comparison of actual and predictive values for 
multifrequencydata set which is augment by normal noise with standard 
deviation equals 0.25a . The data is sampled with step π/3.  

Application of slight exponential smoothing to this series 
reduces its noise level and subsequently decreases the error 
measures. Thus addition of noise increases roughness of the 
series and practically to the same degree increases prediction 
errors. In turn, smoothing noisy data enhances the accuracy 
of prediction delivering by our technique.  

 

Figure 7.  Comparison of simulated chaotic solutions to Lorenz equations 
(blue-line) with prediction of the corresponding chaotic series (green-line) 
which is sampled with step equals one.  

4.4. Forecasting of Chaotic Series 

In this section we estimate the accuracy of forecasting of 
chaotic series that are developed by simulating the Lorenz 
equations [40] by forward Euler’s method with a constant 
time-step. We chose a standard set of parameters for these 
equations that implies chaotic regimes [40]. It could be 
empirically determined that the forward Euler’s method 
becomes unstable in simulating of these equations if it 
time-step exceeds 0.01. This value is used as a benchmark 
for comparison with the length of forecast horizon reachable 

by our forecast technique while some other numerical 
solvers would be able to run with larger step for this problem. 
The simulations show that forecast error remains small if the 
length of forecast horizon equals one which is reflected in the 
values of error measures: 1 0.001M = and 2 0.003M = , 
see also figure 7 for comparison of simulated and predicted 
solutions to Lorenz equations. 

We notice that forecast errors grow but remain to be quite 
small if the length of forecast horizon does not exceeds three. 
This is reflected in the values of error measures which for 
this case are: 1 0.1466M = and 2 0.3254M = . Figure 8 
compares simulated chaotic solutions to Lorenz equations 
with prediction of the corresponding chaotic series sampling 
with step equals three which exceeds our benchmark in 
300-times! It also shows gradual adaptation of our forecaster 
to the data set. 

 

Figure 8.  Comparison of simulated chaotic solutions to Lorenz equations 
(blue-line) with prediction of the corresponding chaotic series (green-line) 
which is sampled with step equals three. 

4.5. Forecast of Economic Series 

Predicting prices of securities trading on exchanges even 
on short time-intervals is a notoriously challenging problem. 
Most of known techniques provide lagging forecast for these 
data which have questionable practical value. A more special 
problem in predicting only the price direction seems to be 
fairly intractable as well probably due to frequent turns in 
price direction. Indeed, application of our approach to 
predicting prices of etfs tracking the indices of major 
securities delivers feasible results. Here we assess the 
accuracy of predicting the next value for series comprising 
of daily-close prices of two etfs – spy and agg representing 
major stock and bond indexes. Note that in this case 
application of standard statistical error measures might be 
misleading. For example, a straight line fitting current and 
previousdata-entriesreturns simplest but lagging prediction 
with relatively small error measures for these series while a 
trading system following this forecast consistently lose 
money. Thus a practical value of this forecast could be 
evaluated by inspecting the plots of original and forecasted 
series as well as by evaluating the equity-line of a trading 
system which follows this forecast.  

Figure 9 presents forecast of agg-series which has been 
previously detrended by subtracting from the corresponding 
data a long exponential moving average.  
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Figure 9.  Performance of predictor for detrended agg-daily-close-price 
series. Blue and green lines show actual and predicted values respectively.  

The forecaster shows transient behavior on an initial short 
time-interval where the running error is gradually declined 
but some bursts of the error are present over the entire 
time-interval. Similar forecast is obtained for spy daily 
prices as well. To assess the practical value of this forecast, 
we simulated performance of a trading system that 
automatically buy/sell-short of a security due to gain/loss in 
it predicted value. Figure 10plots time-histories of equities 
accumulating by this system and buy-and-hold approach on 
ten-year interval for agg-price series. The trading system 
makes more than five times than its benchmark and it equity 
line remains above the benchmark for the entire time-period 
while the trading system remains practically as volatile as the 
benchmark especially during recent stock market crash. 

Fairly comparable results were found in application of this 
trading system to etfspy, see Figure 11. In this case the 
trading system also earns a few times more than buy- and- 
holds benchmark on the chosen time-interval and remains 
slightly more volatile than the benchmark as well. 

 

Figure 10.  Comparison of equity lines for simple trading system utilizing 
the developed forecast ( blue-line)and buy-and-hold approach (red-line) on 
ten-year time interval for agg-daily-close prices. 

 

Figure 11.  Comparison of equity lines for a simple trading system 
utilizing the developed forecast ( blue-line) and buy-and-hold approach 
(red-line) for spy-daily-close prices. 

We would mention that application of ARIMA for 
predicting next values for these two datasets drastically 
amplifies the running-time in our simulations and delivers 
the trading systems that are inferior to buy-and-hold 
benchmark on corresponding time-intervals. 

5. Discussion 
This paper developed and tested a new approach to 

predicting the next value of series which adopts some 
techniques developed in the areas of observers’ design and 
numerical solvers for ODEs. A numerical solver 
approximates next solution value using some of its previous 
values and the knowledge of the governing equations. Since 
typically the underlying models for series are unknown, their 
forecasters are naturally defined as running systems with 
sequentially adjusted parameters. Our system formally 
emulates a linear observer for a polynomial model. A typical 
design of observer requires knowledge of the underlying 
model which could include some uncertainties. This allows 
determining control parameters which stabilize zero solution 
to error-equations and consequently ensure decay of 
observation errors for all time values. In turn, in series 
forecast the parameters of feedback control of the running 
model are sequentially adjusted to minimize the prediction 
error computing on some former time-intervals. A 
corresponding nonlinear optimization problem is solved 
numerically. To minimize the running time for this program, 
we assume that next optimal control values are seeded by the 
current ones. 

The objective function for the corresponding optimization 
problem includes two components which are weighted by a 
sequentially adjusted parameter. These components are the 
least-square errors for predicting values of the series and 
difference approximation of it first derivative. For later, 
more accurate second order approximation has been chosen. 
To our knowledge this type of control of observation error 
has not been used in practice probably since it was assumed 
that differencing of data amplifies it noise component. Yet, 
we found that application of this type of control decreases 
prediction error even for the most volatile economic series. 
But our attempt to advance this control architecture by 
including error components in second derivative was not 
fruitful. 

In some cases the prediction accuracy could be 
substantially elevated by increasing the number of adjustable 
parameters which possibly let to escape trapping in a local 
minimum.  This was particular apparent in forecasting of 
volatile economic series where the time-step, h, was added to 
adjustable parameters. To enhance convergence of numerical 
minimizer, we smooth running sequences of adjustable 
control parameters using exponential moving averages. The 
degrees of averaging were tuned to each particular series and 
we found out that the optimal degrees of averaging normally 
would increase for more volatile series. 

Our running system implements a model of third degree 
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polynomial controlling by a linear feedback. More complex 
models and nonlinear control architectures turns out to be 
inferior in our simulations especially ones that were applied 
to forecasting of economic series probably due to their high 
noise to signal ratios. However this does not preclude 
favorable utility of more complex models and advance 
control schemes in other set ups. 

Prediction accuracy of this forecaster reduces for more 
volatile and steeply-trending series. Moreover, this 
forecaster becomes unstable if the volatility of a series 
measuring, for example by its standard deviation, exceeds a 
certain threshold. For ODEs the corresponding behavior is 
known as stiffness and normally would require both 
application of special solvers and reduction in step-size. This 
motivated us to implement different stiff-solvers schemes 
fordiscretizing of a continuous observer model to only find 
out that implicit Euler’s method delivers the best 
performance across a considerable range of data. In the same 
time we found that reduction in sampling step, attaining by 
data interpolation, decreases prediction error which matches 
performance of ODEs solvers. However, such augment of 
data could be impractical in some applications. 

In our simulations the data were detrended by subtracting 
its long exponential moving average. Yet, reduction of 
volatility requires application of some smoothing procedures 
which usually introduce time-delay and decrease the 
accuracy of forecast. To reveal more details of this behavior, 
we smooth the entire data-set using resistant to outliers 
median and rloess-filters which are available in matlab.  
Smoothing the entire data set voids time-delay for all entries 
which are distant from the end-data entries at least by half 
length of smoothing window since for every such entry the 
smoothing utilizes subset of data symmetrically locating 
about this point. Note that this type of smoothing cannot be 
used for actual prediction since it uses unavailable future 
data and is considered here for illustration purpose.  

 

Figure 12.  Comparison of actual and predicted values for smoothed daily 
agg daily-close-price data. After a short transition the forecast provides 
superior accuracy for this volatile series. 

Minor smoothing of this kind develops data sets which cut 
off the sharpest picks of the data but otherwise leave the 
modified data fairly close to the original one. We were 
surprise to find that predicting next values for such slightly 
less volatile series turns out to be significantly more accurate 
than forecasting of the original data set. To illustrate this 
behavior, we predict next value for such smoothed series 
consisting of agg-daily-close- prices. Figure 12 compares 

actual and forecasted values for this data set and displays that 
after a short transition period the forecaster delivers superior 
prediction precision. 

To better assess the prediction accuracy of such smoothed 
data; we simulated automatic trading of the corresponding 
security due to our projections in a way that was already 
described above. We experimented with data sampling with 
different time-steps across various securities and found out 
that these automatic trading systems delivers superior results 
even for most volatile data sets. Figure 13 plots the equity 
line of such system trading slightly smoothed data of 
18-yearsdaily-close-prices for Apple-stock (appl) and shows 
that the developed predictor offers superior profitability for 
such volatile synthetic series. 

 

Figure 13.  Comparison of buy- and- hold (red-line) and trading-system 
(blue- line) performance for smoothed daily-close data for Apple-stock, 
(appl). Note that the system follows synthetic data set that was developed by 
application of median-filter to the original data set. 

6. Conclusion 
This paper presents a novel approach to the design of 

series predictors which blends some techniques that are 
developed in the area of observers’ design and numerical 
solvers for ODEs. To assess it accuracy, we apply this 
predictor to various kinds of data including synthetic 
multifrequency series which were also corrupted with 
different kind of noises, data produced by simulating of 
chaotic Lorenz system and various volatile data sets 
comprising of historical prices for different securities trading 
on stock exchanges. We found out that this technique 
delivers rapid and fairly accurate forecast which could be 
used in various online applications. In the same time, the 
accuracy of this forecast declines for steeply trending and 
volatile series which qualitatively matches the corresponding 
behavior of ODEs solvers. Indeed, for multifrequency and 
chaotic data our forecast horizon exceeds the maximal time 
step that typically could be used in numerical simulations of 
comparable ODE- solutions while we did not assume any 
knowledge of the underlined models for these data in our 
simulations. 

We also demonstrated that adding substantial uniformly 
distributed or normal noises to deterministic data increases 
forecast errors up to the levels comparable to noise to signal 
ratios for these series. Next we show that smoothing the data 
by application of exponential moving average proportionally 
reduces forecast error measures for these noisy data. These 
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observations embrace splitting the forecast of noisy data into 
two successive steps –denoising/smoothing and subsequent 
forecasting of deterministic series. The first step could be 
accomplished by application of various techniques that will 
best utilize the information available for the noise 
component in the data.  

Application of our technique to forecast of the most 
volatile series comprising of stocks and etfs-prices produce 
some encouraging results as well. Indeed, a trading system 
which generates buys/sells signals due to this forecast 
consistently beats by a large margin a buy-and-hold 
approach on long time intervals while remains practically as 
volatile as the underlying series. In turn, forecasting these 
series using ARIMA significantly amplifies the running-time 
in our simulations and delivers inferior prediction on 
corresponding time-intervals. 
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