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Dynamic realization of statistical state in finite systems
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Evolution of the large-amplitude dissipative collective motion in a simple soluble model is studied within the
time-dependent Hartree-Fock theory, by using a general microscopic transport theory, which optimally divides
the total system into the collective and intrinsic subsystems. Even though the total system reaches some
statistical stationary state, it is shown that the subsystem cannot alone remain stationary by being separated
from the other subsystem, when they are strongly correlated with each other. Dynamic response functions are
used in exploring an instantaneous structure of each subsystem. When the total system reaches a statistical
stationary state, it is shown by using the dynamical response function that the influence of the intrinsic
subsystem on the collective one can be effectively taken into account by replacing the intrinsic system by the
heat bath.

PACS number~s!: 24.60.Ky, 03.65.Sq, 21.10.Re, 21.60.Jz
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I. INTRODUCTION

One of the basic problems in the nuclear physics is
microscopically understand phenomena such as damp
dissipation, fluctuation, and diffusion processes, which
pear in the giant resonance of hot nuclei, fission, fusi
heavy-ion deep-inelastic collisions, etc. They involve a co
plex interplay between the collective and intrinsic degrees
freedom, the latter one usually expressed by a statistical
ject like the thermal heat bath or the Gaussian orthogo
ensemble~GOE!. In such a finite many-body system as t
nucleus, however, the Born-Oppenheimer approximation
divide the total system into the collective and intrinsic su
systems is by no means trivial, nor is the statistical assu
tion.

Since we are interested in the large-amplitude dissipa
collective motion whose energy is much smaller than
Fermi energy of the single-particle motion, its microscop
dynamics ought to be studied within the time-depend
Hartree-Fock~TDHF! theory. As is well known, the TDHF
equation is formally equivalent to the Hamilton canonic
equations of motion within the TDHF symplectic manifol
Therefore, the study of nuclear dissipative dynamics ha
large overlap with the celebrated ergodic problem which p
vides us with the dynamical foundation of classical statisti
mechanics@1,2#. In the case of the ergodic problem, on
treats a long time evolution of the single trajectory and d
cusses a relation between the phase-space average an
time average. In the case of nuclear physics, one may
with a time development of a bundle of TDHF trajectories
approximately represents a wave packet consisting of m
eigenfunctions which are expressed by the direct produc
intrinsic and collective components. When one treats a
sipative collective motion, these eigenfunctions at the ini

*Permanent address: Institute of Nuclear Science and Techn
Vietnam Atomic Energy Commission, 67 Nguyen Du, Hanoi, Vie
nam.
530556-2813/96/53~3!/1233~11!/$10.00
to
ing,
p-
n,
-
of
ob-
nal
e
to
b-
p-

ive
he
ic
nt

al
.
s a
o-
al
e
is-
d the
eal
It
ny
of
is-
ial

time are supposed to have a different structure for the intr
sic component, whereas they have almost the same struc
for the collective component. To investigate the dynamic
evolution process of the bundle of trajectories, one has
answer the following important questions:~a! a relation be-
tween the dynamics of individual trajectories and that of th
bundle of trajectories,~b! how and why the system described
by the bundle of trajectories reaches its stationary state, a
what the final state looks like,~c! the dynamical relation
between two subsystems which are composed of the coll
tive and the intrinsic degrees of freedom, respective
namely, how the collective subsystem is affected by its pa
ner during the evolution process in a strongly interactin
finite system, and~d! how to macroscopically describe the
evolutional process of the bundle of trajectory. In othe
words, how to microscopically derive a Fokker-Planck- o
Langevin-type transport equation for the collective degre
of freedom.

These investigations involve a vast number of theoretic
subjects. In the realistic case, an initial wave packet is co
posed of many different intrinsic excitations with almost th
same collective component. Even in this specific problem
later-on time evolution may show quite a different develop
ment depending on its initial condition. In this paper, we wi
concentrate our discussion on how a statistical state in
finite system is realized dynamically.

The general microscopic transport theory@3–6# has been
proposed to describe the collective motion displayed by t
bundle of trajectories. In this theory, the total system is o
timally divided into the collective and intrinsic subsystems
and the dynamic response and correlation functions ha
been introduced@5# for studying the evolution process of the
bundle of trajectories. By applying the theory to a simp
model Hamiltonian in the previous paper@5#, it was illus-
trated that thedynamic response functiongives important
information in understanding the dynamical process of t
total system as well as the subsystems. In the present pa
we further analyze the later-on time evolution of the bund
of trajectories by using this general theory.
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Using a simple model Hamiltonian, in Sec. II, we discu
the importance of analyzing the structure of the TDHF ma
fold, which gives full information of the individual trajecto
ries. In Sec. III, we explore the evolution process of
bundle of trajectories. By performing numerical calculatio
we found an important condition where the total system
sists being divided into two subsystems. Namely, we foun
condition for characterizing the specific situation where
total system converges to some~statistical! stationary state
whereas the subsystem cannot alone stay in the statio
state without its partner.

We also found that the dynamic response functions for
subsystems show quite different behavior from that of
usual linear response function@7,8#. When the total system
reaches a statistical stationary state, it is shown in Sec. IV
using the dynamical response function that the intrinsic s
system is effectively expressed by a heat bath. Since
response function is directly related to experimental obs
ables, all of these findings will certainly provide us wi
further insight into the statistical description of larg
amplitude dissipative collective motion in finite systems.

II. MODEL HAMILTONIAN AND STRUCTURE
OF THE TDHF MANIFOLD

In understanding the large-amplitude dissipative coll
tive motion, the importance of mutual dependence betw
the collective and the single-particle motion has been poin
out repeatedly. One of the main issues in this respect
been to make clear whether the single-particle motion de
ops along the adiabatic basis or the diabatic one, which
defined by referring to the time-dependent variation of
mean field induced by the collective motion. This proble
has been usually discussed to describe the dynamical e
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tion of the collective motion near the level-crossing regio
@9–11#. Since the adiabatic assumption is strongly violate
near the level-crossing point, the dynamical evolution of th
system cannot be expressed by the adiabatic collective va
ables alone or the diabatic path. In this case one faces
dynamical problem as to how many additional degrees
freedom are necessary in describing the collective motio
besides the collective variables.

In order to understand the microscopic dynamics respo
sible for the dissipation process by going beyond the adi
batic assumption, therefore, it is indispensable to explore t
structure of the TDHF manifold, which determines wha
kinds of dynamics can occur in the finite system. Until quit
recently, it was not well recognized in nuclear physics tha
there is exceedingly rich structure in the TDHF manifold
which is not simply expected from the shape of the potenti
energy surface. In order to find various modes of motion
appearing in the TDHF manifold, one has to numericall
solve the TDHF equation with different initial conditions.

To get a fully microscopic understanding of the comple
structure of the classical phase space, there has been de
oped the general theory of nonlinear dynamics~GTND! @2#.
The basic ideas of the GTND have been mainly develope
by using the classical system with 2 degrees of freedom
even 1.5 degrees of freedom like the kicked rotor mode
Since our main concern is to explore the justification of a
introduction of some statistical treatment in the finite syste
through what is happening during the time evolution of
bundle of trajectories, we study the relation between th
characteristic features of the individual trajectories and tho
of the bundle of trajectories in the TDHF manifold. For this
aim, we take the following system with two degrees of free
dom:
H~q1 ,p1 ;q2 ,p2!5H11H21Hcoupl,

Hi5
1

2
« i~qi

21pi
2!1

1

2
Vi~N21!~qi

22pi
2!2

N21

N

Vi

4
~qi

42pi
4!, i51,2,

Hcoupl5(
i
AiBi ,

Ai5AVi~12N!

4N
@q1

21~21! i p1
2#, Bi5AVi~12N!

4N
@q2

21~21! i p2
2#. ~2.1!
-
s re

n
in

in
The above Hamiltonian is a classical realization of t
quantum mechanical SU~3! Hamiltonian for the many-
fermion system by applying the TDHF formalism~the con-
vention\51 is applied!. The structure of the TDHF mani
fold ~which is formally equivalent to the classical pha
space! is numerically obtained by solving the canonic
equations of motion given by

q̇i5
]H

]pi
, ṗi52

]H

]qi
. ~2.2!
he

e
al

In Fig. 1, the Poincare´ section map constructed on the
(q1 ,p1) plane with conditionsq250 andp2.0 is shown.
The parameters used in our calculation are«050, «151,
«252, andN530, and the total energy is fixed atE540.
From Fig. 1, one may learn how many rich structures a
there in the TDHF manifold depending on the interactio
strengthVi . In Fig. 1, the essential phenomena discussed
the GTND are clearly displayed. The objective of the GTND
has been to understand how the adiabatic invariants~con-
stants of motion! characterizing the individual trajectories
undergo a change depending on their amplitudes at the orig
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FIG. 1. Poincare´ section map on the (q1 ,p1) plane.~a!, ~b!, and~c! are forV520.01,20.03, and20.07, respectively.
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of the coordinate system, how there appears a new type
motion forming a resonant island structure which surroun
the main island, how and why the local adiabatic invaria
characterizing the motion belonging to the resonant islan
disappears~appearance of local chaoticity!, and how there
finally appears the global chaoticity. To get an analytical u
derstanding of these phenomena, it turns out to be decisiv
introduce themost natural coordinate systemfor each trajec-
tory. It may not be an exaggeration to say that the history
the nonlinear dynamics has been the struggle to develo
proper classical perturbation theory capable of defining
most optimum coordinate system, where an approxim
adiabatic invariant of a given trajectory is expressed in t
simplest way. In the nuclear physics, this problem is equiv
lent to developing a method which optimally divides the tot
system into the collective and intrinsic degrees of freedom

Here it should be noticed that the Hamiltonian in Eq.~2.1!
satisfies the relations

]H

]q2
U
p25q250

5
]H

]p2
U
p25q250

50,

~2.3!

]H

]q1
U
p15q150

5
]H

]p1
U
p15q150

50,

which are called themaximal decoupling conditions. Equa-
tions ~2.3! simply mean that the trajectory starting wit
the initial condition q1(t50)5q10, p1(t50)5p10,
q2(t50)50, p2(t50)50 is always running on the sub
spaceS1 $q1 ,p1 ;q250,p250%, whereas the trajectory with
the initial condition q1(t50)50, p1(t50)50,
q2(t50)5q20, p2(t50)5p20 is always on the subspac
S2 $q150,p150;q2 ,p2%. In this sense, the coordinate sys
tem $q1 ,p1 ;q2 ,p2% satisfying the conditions~2.3! gives the
most optimal coordinate system for the trajectories which
sticking to either the subspaceS1 or to S2 . In other words,
the division of the total system into therelevant coordinates
$q1 ,p1% and theirrelevant coordinates$q2 ,p2% has a sense
in a region near these subspaces. In Fig. 1, the trajecto
sticking to the subspaceS2 form an innermost concentric
of
ds
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circle structure centered at the origin, whereas those sticki
to the subspaceS1 form an outermost concentric circle struc-
ture. Trajectories starting far away from both the subspac
S1 andS2 show a crescent structure in Fig. 1~a!. In this case,
the coordinate system$q1 ,p1 ;q2 ,p2% has no advantage, be-
cause their adiabatic invariants cannot be simply express
by either one of these two. As is seen from Fig. 1, in th
cases withVi520.01 and20.03, these trajectories still rep-
resentregularmotion, forming an island structure surround-
ing the main island. For these trajectories, one may introdu
another most natural coordinate system called theresonant
coordinatescharacterized by the nonlinear resonance@2,13#.

Trajectories having different adiabatic invariants are sep
rated by the separatrix. As the nonlinear interaction becom
large, it is well known that the chaotic motion starts to occu
near the separatrix. In the case withVi520.07, the trajecto-
ries starting far from the subspaceS2 mainly represent the
chaoticmotion. Since there are no constants of motion fo
the chaotic trajectory, there does not exist any optimal coo
dinate system.

As is stated in the Introduction, large-amplitude dissipa
tive collective motion can be explored by a time evolution o
a bundle of trajectories within the TDHF theory. The time
evolution of a bundle initially distributed near the subspac
S1 was studied extensively in Ref.@12#. In this paper, we
restrict ourselves to the case where a bundle is initially lo
cated far away from the subspacesS1 andS2 with a sharp
distribution.

III. COUPLED-MASTER EQUATION

A. Evolution of bundle

The time evolution of a bundle of trajectories is describe
by the Liouville equation given by

ṙ~ t !52 iLr~ t !, L[(
i51

2 S ]H

]qi

]

]pi
2

]H

]pi

]

]qi
D . ~3.1!

The dynamical relation between the two degrees of freedo
is studied by introducing a pair of partial distribution func-
tions
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r1~ t ![E E dq2dp2r~ t !5Tr2r~ t !, r2~ t ![E E dq1dp1r~ t !5Tr1r~ t !. ~3.2!

With the aid of the partial distribution functions defined in Eq.~3.2!, one may introduce the time-dependent projection operat
@14#

P~ t ![r1~ t !Tr11r2~ t !Tr22r1~ t !r2~ t !Tr1Tr2 . ~3.3!

Then the total distribution functionr(t) is divided into a separable partrs(t) and a correlation partrc(t) defined through

rs~ t ![P~ t !r~ t !5r1~ t !r2~ t !, rc~ t ![$12P~ t !%r~ t !5r~ t !2r1~ t !r2~ t !. ~3.4!

By means of the distribution functions defined in Eqs.~3.2! and ~3.4!, the coupling Hamiltonian in Eq.~2.1! is expressed
as

Hcoupl5Haver~ t !1HD~ t !2E0~ t !, ~3.5!

Haver~ t ![H1~ t !1H2~ t !,

HD~ t ![Hcoupl2Haver~ t !1E0~ t !5(
i51

2

~Ai2^Ai& t!~B
i2^Bi& t!,

E0~ t ![E E dp1dq1dp2dq2Hcouplr1~ t !r2~ t !5(
i51

2

^Ai& t^B
i& t ,

H1~ t ![E E dp2dq2Hcouplr2~ t !5(
i
Ai^Bi& t ,

H2~ t ![E E dp1dq1Hcouplr1~ t !5(
i

^Ai& tB
i ,

^Ai& t[E dq1dp1A
ir1~ t !, ^Bi& t[E dq2dp2B

ir2~ t !, ~3.6!

whereH1(t) @H2(t)# denotes a time-dependent Hamiltonian for the first@second# degree of freedom obtained fromHcoupl by
averaging over the second@first# distribution function. The total Hamiltonian is then represented as

H5H1,mean~ t !1H2,mean~ t !1HD~ t !2E0~ t !, ~3.7!

H1,mean~ t !5H11H1~ t !, H2,mean~ t !5H21H2~ t !, ~3.8!
u

n
f
-
d

where H1,mean(t) @H2,mean(t)# represents the so-called
‘‘mean-field’’ Hamiltonian for the first@second# degree of
freedom, which is obtained by only taking account of a
average effect of the second@first# degree of freedom. Here
HD(t) is the dynamic fluctuation part.

In performing the numerical calculation, the time evol
tion of the distribution functionr(t) organized by Eq.~3.1!
is evaluated by using the pseudoparticle method,

r~ t !5
1

Np
(
n51

Np

)
i51

2

d„qi2qi ,n~ t !…d„pi2pi ,n~ t !…, ~3.9!

whereNp means the total number of pseudoparticles a
qi ,n(t) and pi ,n(t) denote a phase space point of thenth
pseudoparticle at timet, which is determined by integrating
Eq. ~2.2!. We use the fourth order Runge-Kutta method f
integrating the canonical equation of motion andNp is cho-
n

-

nd

or

sen to be 10 000. The initial condition of the distribution
function is given by a uniform distribution in a region

20.05<q120.4<0.05, 20.02<q22q20<0.02,

20.05<p1<0.05, 20.02<p2<0.02, ~3.10!

whereq20 is fixed from the Hamiltonian in Eq.~2.2! by using
q150.4, p15p250, andE540. By comparing the above
initial condition with the Poincare´ map in Fig. 1, it is easily
seen that the initial distribution functionr(t50) is set in a
tiny region near the unstable fixed point, i.e., an intersectio
point of the separatrix for the first two cases. This choice o
initial condition is very interesting because the chaotic fea
ture is known to be first generated near this hyperbolic fixe
point. The initial distribution is indicated in Fig. 1 by a solid
square.
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In Fig. 2~a!, the time dependence of the varianc
^q1

2& t2^q1& t
2 is shown for the cases withVi520.01,

20.03, 20.04, and20.07. A unit of time is given by
tcoll5vcoll/2p, wherevcoll is the eigenfrequency of low-
lying normal mode obtained by applying the random pha
approximation~RPA! to Eq. ~2.2!.

As is seen from Fig. 1, every part of the phase space
the cases withVi520.01 and20.03 is dominated by regu-
lar motion, but by the chaotic sea in the case wi
Vi520.07. In the case withVi520.01, the variance is os-
cillating and even increasing. Since the variance has no t
dency to reach some time-independent value, the system
not expected to converge to some statistical object in t
case. In the case with a much stronger interaction, i
Vi520.03 and20.04, the variance increases exponentia
and seems to oscillate around some saturation value. Ne
theless, the amplitude of oscillation is not small, indicatin
the nonestablishment of a stationary state for a very lo
time. Note that the above result is obtained by choosing
initial distribution around the unstable fixed point wher
many trajectories with different characters come across e
other. If one puts many pseudoparticles around the hyp
bolic point where various types of trajectories are involve
the existence of the invariant~KAM ! torus prevents the sys-
tem from reaching some statistical object. Consequently, o
cannot expect a realization of the statistical state for the n
linear dynamical system where the KAM torus is domina
ing.

In the case withVi520.07, where the chaotic sea dom
nates the phase space, a quite different situation is realiz
In the beginning, the variance increases abruptly, stee
than exponential curve which is realized inVi520.03 and
20.04. In this case, moreover, the time dependence alm
dies out aroundt>25tcoll , indicating the establishment o
the stationary state. Thus the appearance of chaotic mo
for the individual trajectory is strongly related to the realiza
tion of a stationary state for the bundle of trajectories.

As stated in the previous section, the choice of the co
dinate system does not have any sense in the present ch
case. Namely, if the relations

^qi& t<A^qi
2& t2^qi& t

2,
~3.11!

^pi& t<A^pi
2& t2^pi& t

2

hold, the coordinate system$q1 ,p1 ;q2 ,p2% has no particular
advantage in describing the system under consideration
Fig. 2~b!, the average value of̂p2& t and the variance
^p2

2& t2^p2& t
2 are shown for the case withVi520.07. Since

the square root of the variance is much larger than the av
age, the choice of a paticular coordinate system does
have any profit for the present case. As is well known, t
nearest-neighbor level-spacing statistics of the quantum s
tem is well described by the GOE, when the phase space
its classical correspondent is covered by the chaotic sea@15#.
Here, it should be noticed that the chaotic phase space st
ture is generated by a single trajectory, whereas the near
neighbor level spacing expresses a statistical property
many eigenstates. Since the GOE is derived under the
sumption that the final result should not depend on t
e
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choice of representation, and since the time-independent s
tionary state realized aftert>25tcoll does not depend on the
choice of the coordinate system either, we may draw th
conclusion that the bundle of trajectories reaches a statisti
object aftert>25tcoll .

B. Energy distribution

From the saturation property of the variance depicted
Fig. 2, it is expected that the stationary statistical state
established dynamically for the chaotic case withVi
520.07. It is the aim of the present subsection to invest
gate what kind of final distribution is established for the cas
with Vi520.07 and how two subsystems described b
r1(t) and r2(t) are correlated with each other. Since the
energy of each pseudoparticle is chosen to beE540 in the
initial condition, there are no fluctuations in the total Hamil
tonianH; i.e., ^H2& t2^H& t

250 at any time.
Now, let us consider the distribution of the partial Hamil-

tonian. In Figs. 3~a! and 3~b!, the time-dependent averages
defined through

^Hi& t5E E dqidpiHir i~ t !, i51 and 2,

FIG. 2. ~a! Time-dependent variancêp1
22^p1& t

2& t for the cases
with V520.01,20.03, 20.04, and20.07. ~b! Averaged value
^p2& and variance ^p2

22^p2& t
2& t as a function of time for

V520.07.
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FIG. 3. ~a! Time dependence of averaged values^H2& t , ^H2(t)& t , and ^H21H2(t)& t , ~b! time dependence of averaged value
^HD(t)& t and^Hcoupl& t , ~c! energy distribution ofH1 ~dashed line! andH11H1(t) ~solid line! for different timest I , ~d! energy distribution
of H2 ~dashed line! andH21H2(t) ~solid line! for different timest I , ~e! energy distribution ofHcoupl ~dashed line! andHD ~solid line! for
different timest I , ~f! time-dependent variancêHD

22^HD& t
2& t and ^H1

22^H1& t
2& t , for the case withV520.07.
a-
^Hi1Hi~ t !& t5E E dqidpi$Hi1Hi~ t !%r i~ t !,

i51 and 2,

^Hcoupl& t5E E dp1dq1dp2dq2Hcouplr~ t !5E0~ t !,
^HD~ t !& t5E E dp1dq1dp2dq2HD~ t !r~ t !50

~3.12!

are shown.^H1& t , ^H1(t)& t , and ^H11H1(t)& t are not
shown in Fig. 3, but have similar behavior witĥH2& t ,
^H2(t)& t , and^H21H2(t)& t . These averages reach their st
tionary values att>(25230)tcoll , after a violent exchange
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of energy in the region oft,5tcoll . Note that ^H1(t)& t ,
^H2(t)& t , and^Hcoupl& t are equivalent toE0(t) by definition.
This convergence property is consistent with the saturat
property of the variance in Figs. 2~a! and 2~b! discussed in
the previous subsection.

A convergence of these average values does not nece
ily indicate the establishment of the statistical state for ea
subsystem. To make this point clear, let us notice that a g
eral relation for various variances of partial Hamiltonian
always holds,

G2
~ i !>G1

~ j !>G0~50!, i , j51 and 2,

G0[^H2&2^H&2,

G1
~ i ![^Hi ,mean

2 ~ t !&2^Hi ,mean~ t !&
2,

G2
~ i ![^Hi

2&2^Hi&
2, ~3.13!

which is easily proven. When the mean-field approximati
gives a reasonable description, the relationG0>G1

( i ) holds.
When the coupling interaction is sufficiently small, the oth
relation is also satisfied, i.e.,G1

( i )>G2
( j ) . In Figs. 3~c! and

3~d!, the distributions ofHi andHi1Hi(t) with i51 and
2 calculated for each trajectory in the bundle are shown
functions of energy, which give the same information as t
variances in Eq.~3.13!. As is seen from Figs. 3~c! and 3~d!,
our numerical result well realizes the general inequal
0,G1

(1)>G1
(2),G2

(1)>G2
(2) . Namely, there are two kinds o

width which tell us how two subsystems accommodate ea
other. It is also seen that the stationary state is establishe
t>25tcoll , because the distribution of the partial energy h
no strong time dependence aftert>25t coll . This situation
also coincides with the calculation in Fig. 2 and Figs. 3~a!
and 3~b!.

As is easily verified, the following relations also hold:

^HD
2 & t2^HD& t

25^Hmean
2 ~ t !& t2^Hmean~ t !& t

2>G1
~ i ! ,

~3.14!
ion
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^Hcoupl
2 & t2^Hcoupl& t

25^~H11H2!
2& t2^H11H2& t

2>G2
~ i ! ,
~3.15!

where Hmean(t)[H11H21H1(t)1H2(t). From Eqs.
~3.13!, ~3.14!, and~3.15!, one gets the relation

^HD
2 & t2^HD& t

2<^Hcoupl
2 & t2^Hcoupl& t

2 . ~3.16!

The inequality relation~3.16! is well realized in our calcula-
tion which is illustrated in Fig. 3~e!. In Fig. 3~f!, the time
dependence of the variance^HD

2 & t2^HD& t
2 is shown. As is

shown in Eq.~3.14! and is seen from Fig. 3~e!, the variance
^Hmean

2 (t)& t2^Hmean(t)& t
2 has the same order of magnitude a

G1
( i ) .
Since the square root of the variance^HD

2 & t2^HD& t
2 is

much larger than thêHD& t , which is understood by com-
paring Figs. 3~b! and 3~f!, a large energy exchange goes o
between the two subsystems, even though^Hi ,mean(t)& t have
reached the time-independent object, indicating no ene
transfer in average. Namely, each subsystem cannot rem
stationary alone by being separated from the other s
system, when the following condition

A^HD
2 & t2^HD& t

2 . ^HD& t50 ~3.17!

holds, although the total system is in a statistical station
state. In other words, the effect ofrc(t) is so large that the
total system cannot be divided into two subsystems when
relation ~3.17! is valid.

C. Dynamic response function

In order to study what is happenning between two su
systems, let us use the dynamic response function which
pears in the coupled master equation given below. By swit
ing off the fluctuationHD(t) between two subsystems at tim
t I , and by evaluating its effects perturbatively in a small tim
increment aftert I , one gets a set of approximate couple
master equations given by
ṙ1~ t !52 i @L11L1~ t !#r1~ t !2 iTr2P~ t !Lg~ t,t I !rc~ t I !

2E
0

t2t I
dt(

lm
x lm~ t,t2t!$Al ,G1~ t,t2t!~Am2^Am& t2t!r1~ t2t!%PB

2E
0

t2t I
dt(

lm
f lm~ t,t2t!$Al ,G1~ t,t2t!$Am,r1~ t2t!%PB%PB, ~3.18!

ṙ2~ t !52 i @L21L2~ t !#r2~ t !2 iTr1P~ t !Lg~ t,t I !rc~ t I !

2E
0

t2t I
dt(

lm
X lm~ t,t2t!$Bl ,G2~ t,t2t!~Bm2^Bm& t2t!r2~ t2t!% PB

2E
0

t2t I
dt(

lm
F lm~ t,t2t!$Bl ,G2~ t,t2t!$Bm,r2~ t2t!%PB%PB, ~3.19!
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where the symbol$,%PB denotes a Poisson bracket with re
spect to the canonical variables (pi ,qi , i51 and 2!. In Eqs.
~3.18! and ~3.19!, the fluctuation effects are retained up
the second order inHD(t), andg(t,t8) represents a propa
gator

g~ t,t8![TexpH 2 i E
t

t8
@12P~t!#LdtJ . ~3.20!

Approximate expressions in Eqs.~3.18! and ~3.19! are good
enough, provided the difference between the present timt
and the switching-off timet I is sufficiently small.

The functionsx lm(t,t2t) andX lm(t,t2t) appearing in
Eqs. ~3.18! and ~3.19! are thedynamic response functions,
whereasf lm(t,t2t) andF lm(t,t2t) are thedynamic cor-
relation functions. These are functions of two time argu
ments. The explicit expression of the dynamical respon
function is given by

X kl~ t,t2t![E E dp1dq1$G1~ t2t,t !Ak,Al%PBr1~ t2t!,

xkl~ t,t2t![E E dp2dq2$G2~ t2t,t !Bk,Bl%PBr2~ t2t!,

G1~ t,t8![TexpH 2 i E
t8

t

dt@L11L1~t!#J ,
G2~ t,t8![TexpH 2 i E

t8

t

dt@L21L2~t!#J , ~3.21!

whereL1 , L1(t), L2 , andL2(t), are the Liouvillian cor-
responding toH1 , H1(t), H2 , andH2(t), respectively.

As is clear from Eq.~3.21!, the dynamical response func
tion has two time arguments as compared to the ordin
linear response function. The latter has only one time ar
ment, which measures how the subsystem deviates from
state of equilibration under the influence of an external for
The former contains another important information. Name
it gives the instantaneous dynamical structure of the s
systems at the switching-off timet I[t2t, even though they
are not in the statistical stationary state, and also how t
evolve in time aftert I . It reduces to the conventional re
sponse function with only one time argument, which appe
in the linear response theory applicable to the infinite syst
@see Eq.~4.5! and Ref.@7##, when the subsystems describe
by (q1 ,p1) and (q2 ,p2) reach their thermal equilibrium
states. According to the numerical results discussed in
previous subsections, the statistical stationary state is
pected to be established for the total system, when one ta
t I>20225tcoll .

The numerical method of calculating the dynamic r
sponse function is found in our previous paper@5#. In Fig. 4,
the dynamic response functionsx lm(t I1t,t I) with l5m51
~called collective! and with l5m52 ~called intrinsic! are
shown as functions oft for varioust I . These functions show
how each subsystem responds to an ‘‘external’’ force com
from the coupling to the other subsystem and acting at
switching-off timet I . Since they contain partial derivative
of HD , small fluctuations inHD give a drastic change in the
dynamic response functions.
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As is seen from Fig. 4, the collective and intrinsic dy
namical response functions seem to reach stationary val
aroundt I5(40–50!tcoll which is much larger than~20–25!
tcoll . The difference between ~20–25!tcoll and t I
5~40250!tcoll is understood as follows: Although the vari
ances in Fig. 2 seem to reach some stationary values, th
still remains some small time dependence which can only
detected by their time derivatives. Since the dynamic r
sponse functions depend directly on the time derivatives
^qi

2& t2^qi& t
2 with i51 and 2, the total system is considere

to be in a stationary state when the dynamic response fu
tion has not I dependence. Strictly speaking, therefore, th
stationary state for the total system is not established at~20–
25!tcoll , but around att5~40–50!tcoll .

Let us discuss the dynamic response function aft
t I5(40250)tcoll . Since there is not I dependence in the
dynamical response functions, the total system as well as
two subsystems already reached time-independent station
objects. Note that each subsystem is only stationary un
the influence of the other subsystem. As is seen from Fig.
these dynamic response functions show a remarkable pr
erty: They do not come back to their original value att I ,
unlike the case with the usual linear response function.

IV. RESPONSE FUNCTION FOR NONLINEAR COUPLING

In order to understand the remarkable feature of the d
namic response function shown in Fig. 4, let us introdu
another simple model. The model consists of a harmon
oscillator with the coordinateq, massM , and frequency
v0 , interacting with a heat bath. The heat bath consists
N harmonic oscillators described by coordinatesxi , frequen-
ciesv i , and the common massm. The Hamiltonian is ex-
pressed as

H5HS1HB1HI . ~4.1!

Here,

HS5
p2

2M
1
1

2
Mv0

2q2,

HB5(
j

S pj22m1
1

2
mv j

2xj
2D . ~4.2!

For the interactionHI , we take two kinds of coupling:~a!
linear coupling

HI5q(
j51

N

l j xj , ~4.3!

which is applied in Ref.@16#, and~b! nonlinear coupling

HI5q(
j51

N

l j xj
2 . ~4.4!

In order to study the behavior of the response function f
the subsystem of the heat bath, which is coupled to the h
monic oscillator through the above two kinds of interaction
let us introduce the response function
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x~t!5TrB$GHB~t!B,B% PBrHB . ~4.5!

Here,B denotesBlin5( j51
N l j xj for the linear coupling case

and Bnon5( j51
N l j xj

2 for the nonlinear coupling case
GHB(t) means a propagator of the heat bath and is expre
as

GHB~t!5exp$2 i tL%; L*5$HB ,* %PB. ~4.6!

For rHB , we take the canonical ensemble with temperat
T. The response functionx(t) then takes the form

x lin~t!5 i(
j51

N

l j
2 1

mjv j
sinv jt,

xnon~t!5 i(
j51

N

l j
2 1

mj
2v j

2coth
v j

2T
sin2v jt, ~4.7!

for the linear and the nonlinear coupling interactions, resp
tively. By introducing the Debye spectrum for theN har-
monic oscillator system given by

FIG. 4. ~a! Dynamic response function with different switchin
times t I for collective subsystem, and~b! for the intrinsic syb-
system, for the case withV520.07.
.
sed

re

ec-

r~v j !5
2hv j

2mj

pl j
2 , ~4.8!

the summation overj in Eq. ~4.7! is replaced by an integral
over frequencyv. Here, the parameterh is known to be
related with the viscosity@16#. The response function is fi-
nally expressed as

x lin~t!5 i
2h

p

1

t FsinVt

t
2VcosVtG ,

xnon~t!5 i
2h

pmE0
V

coth
v

2T
sin2vtdv, ~4.9!

whereV represents the upper limit of the Debye spectrum
the heat bath. In Fig. 5, the numerical results ofx lin(t) and
xnon(t) are shown. The parameters used areh50.5,
V5100, andm51, andt is expressed in units oftcoll . As is
seen from Eq.~4.9!, x lin(t) goes back to its original value of
zero like the usual linear response function irrespective
the temperatureT, when the timet approaches infinity.
However,xnon(t) describing the response to the nonline
external force shows a quite similar feature to Fig. 4. B
taking t infinite, we get

xnon~t→`!5 i
2h

m E
2V

V

v coth
v

2T
d~2v!dv5 i

2hT

m
,

~4.10!

which obviously shows that the response of the thermal eq
librium state to a nonlinear external force does not com
back to its original value, but converges to a constant va
when the time approaches infinity. This remarkable feature
shown in Fig. 5~b! for three cases with different tempera
tures. By comparing Figs. 4 and 5, and by comparingBnon
andBi in Eq. ~2.1!, it is recognized that the specific featur
of the dynamical response function att I.~40–50!tcoll is due
to the nonlinear coupling to the other degrees of freedo
From this comparison, one may understand that the dyna
cal response functionx lm(t I1t,t I) at t I.~40–50!tcoll is ef-
fectively replaced by the response function for the nonline
interaction, xnon(t), defined for the thermal equilibrium
state. Since the effects of the rest subsystem appear
through the dynamical response and correlation functio
which is recognized from Eqs.~3.18! and ~3.19!, the possi-
bility of the above replacement implies that the effects of t
rest degrees of freedom on the subsystem under consi
ation are effectively expressed by the heat bath.

From the above discussion, one may draw the followi
conclusion: When the system with finite degrees of freedo
reaches some statistical stationary state, and when the sy
is divided into two subsystems, the coupling to the oth
subsystem is effectively replaced by that to the heat bath

V. SUMMARY

In order to study how the wave packet develops depe
ing on its initial condition, the time evolution process of th
bundle of trajectories initially located at a tiny unstable r
gion ~i.e., near the hypabolic point! of the TDHF manifold is
studied within the TDHF theory. In this paper, we have stu
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1242 53WU, SAKATA, ZHUO, LI, AND DANG
ied how the strongly correlated system with finite degrees
freedom reaches its stationary state. By dividing the to
system into two subsystems, the time development of
total system as well as the mutual dynamical interplay b
tween two subsystems during the irreversible evolution p
cess has been analyzed by means of the general theory o
coupled master equations. Even when the total system
reached some stationary statistical state, each subsystem
not remain stationary by being separated from the other s

FIG. 5. ~a! Response function for the heat bath with a line
coupling.~b! Response function for the heat bath with a nonline
coupling. The thick solid, solid, and dashed curves are forT51, 5,
and 10, respectively.
of
al
he
e-
o-
the
has
can-
b-

system, when the square root of the variance^HD
2 & t

2^HD& t
2 is much larger than̂HD& t50.

With the aid of the dynamic response functions, variou
dynamical states realized in the subsystem during the evo
tion process of the total system are discussed. When the t
system reaches some stationary statistical state, as is clar
in Sec. III C, the dynamic response function of the su
system shows a remarkable property which is different fro
the linear response function usually used in characterizi
infinite condensed matter. It is shown that this specific pro
erty originates from the nonlinear coupling, and does n
depend on the number of degrees of freedom of the su
system or on the statistical assumption. Therefore, it is co
cluded that the concept of the temperature is justified micr
scopically even in a finite system with a few degrees
freedom. Since the response functions as well as the co
lation functions are directly related to the experimental o
servables, the complex evolution process of finite man
body systems might be explored by means of the
functions.

In this paper, we confined ourselves only to the simp
two degrees of freedom problem where it is not possible
assign the collective degree of freedom or to discuss its d
sipation. In deriving the Fokker-Planck- or Langevin-typ
transport equations microscopically, one needs more th
three degrees of freedom. In this case, one can find a c
where the total system is divided into two weakly couple
systems: One is composed of more than two degrees of fr
dom and is in a chaotic situation, and the other is near t
regular motion almost sticking to the KAM torus. In such
case, the former can be effectively replaced by the heat b
as we learned from the present investigation, and the dis
pation mechanism of the latter would be treated by the tran
port equation. These treatments, applied to the giant dip
resonance in the hot nuclei, are now in progress.
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