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Calculation of Cascade Profiles From 
the Velocity Distribution 
The method using the properties of analytical functions is applied to a plane, steady, in-
viscid, everywhere subsonic flow. From data fixed a priori concerning the external flow 
and some details of the profile, the hodograph is obtained as an analytical function 
whose real part is known on a contour. The set of imposed conditions being in general 
superabundant, the proposed Mach number distribution is corrected by means of a func­
tion whose form is fixed a priori, or rejected altogether. The problem is treated on a 
graphic display console connected with a computer, which provides also the profile corre­
sponding to the calculated hodograph. 

I Introduct ion 

The method which is proposed here is due for the main part to 
R. Legendre [ l ] . 1 It gives the possibility of obtaining the geomet­
ric shape (profile) of blades pertaining to a regular cascade. The 
method used is an inverse one, that is to say, instead of calculat­
ing the flow on a given profile, we try to find a profile fulfilling two 
different classes of conditions: 

1 Strict conditions: velocity direction at infinity upstream 
and downstream, upstream Mach number, profile angle at the 
leading and at the trailing edges. 

2 Nonstrict conditions: Mach number distributions at the 
upper and lower surfaces must be as near as possible to distribu­
tions proposed by the user. 

If, instead of the condition 2, one wants the velocity distribu­
tions to be strictly equal to a given one, the problem has usually 
no solution, the set of constraints being superabundant. At the 
end of the calculation, the user will obtain a profile fulfilling 
strictly conditions 1, the velocity distribution differing from the 
proposed distribution by a certain correction. 

If the data given by the user were close to a possible solution 
the correction will be small and the user can accept them; if it is 
not the case, he has to propose new ones until a compromise is 
obtained. 

For more convenience, the method works on an interactive 
graphic display connected to a computer. 

II B a s i c Hypothes i s 
The described method applies to plane, inviscid, steady, irrota-

1 Numbers in brackets designate References at end of paper. 
Contributed by the Gas Turbine Division and presented at the Gas 

Turbine Conference, Zurich, Switzerland, March 31- April 4, 1974, of THE 
AMERICAN SOCIETY OF MECHANICAL ENGINEERS. Manuscript re­
ceived at ASME Headquarters, November 27, 1973. Paper No, 74-GT-70. 

tional, everywhere subsonic flow. 
The fluid is supposed to be compressible but schematized by a 

fictitious fluid, so-called "Chaplygin fluid." In such an approxi­
mation the arc of the isentropic curve which represents the set of 
physical conditions reached in the flow is approximated by a 
straight line in the pressure-density plane; we can write: 

P/P0 = c- Bp/Po 

where B and C are constants and where the reference point is set 
at the stagnation point of the leading edge. 

I l l P h y s i c a l P l a n e Descr ipt ion 
Fig. 1 shows a part of the notations used for the physical plane. 

The parameters pertaining to infinity upstream are characterized 

Fig. 1 Physical plane z = x + iy 
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by subscript 1 and those related to infinity downstream by the 
subscript 2. 

The user provides Mach number Mi, angles fli, and 02 fixing 
the direction of velocity and profile angles at the leading edge 
(ai) and at the trailing edge (0:2). 

The pitch is conventionally set to one. The abscissae axis is 
chosen parallel to the cascade plane. 

IV Complex Potent ia l 
In the particular case of incompressible fluid, it is well known 

that a complex analytic function of the complex variable z = x + 
iy exists; it is called complex potential and is such that: 

F(z) = <p + i ' * 

where </> is the velocity potential and \[/ is the stream function. In 
the case of a so-called Chaplygin fluid it is possible to show that a 
complex potential exists but it is now an analytic function of the 
complex variable: 

X = a + i 0 so that F(X) = <p + i * (1) 

where 6 is the angle of the velocity direction with the abscissae 
axis in the flow and 

cho = 1/M 

where M is the local Mach number. 
The following equation which relates the physical plane to the 

X (or hodograph plane) is also established: 

A dz =[sh a d(p + i ch ad * ] exp (i9) (2) 

where A is a scale factor. 
The whole problem is then to calculate F(X). Later on, there 

are no difficulties to obtain the velocity field and the correspond­
ing physical coordinates. 

Instead of calculating directly F(X), it is easier to introduce an 
intermediate complex variable fj. and to separate the problem into 
two parts: determination of F(n), determination of X(/x), these two 
functions being analytic. 

Function X(/i) may be considered as establishing a conformal 
mapping of the hodograph plane X = a + id (Fig. 2) on the n 
plane. To define that mapping more precisely, we set that the 
upper half-plane n corresponds to the useful part of the flow, the 
stagnation point on the leading edge being obtained for ju = 0 and 

the stagnation point of the trailing edge for \i = ±°°, the hodo­
graph itself being mapped on the real axis (Fig. 3). 

V Complex Potent ia l Der iva t ion 
In the physical plane (z plane) the flow may be regarded as re­

sulting of a vortex-source at upstream-infinity discharging in a 
vortex-sink at downstream-infinity. 

Let D4>i and £)02 be the circulation of these two singular 
points. 

The situation is not different in the M plane; let /u and n2 be 
the coordinates of these singular points (Fig. 3). To be sure that 
the real axis be a streamline, it is sufficient to put two new sin­
gular points, mirror images of MI a n d \ii in the real axis. Let fi.^ 
and jj.2 be these two images. 

The potential may then be written: 

2TT F(ii) = (1 - i Dh) Log ( l - j £ ) 

+ ( l+zZ>*i) Log (1 - - £ - ) 
^ (3) 

- ^ ) - ( l + i D * 8 ) L o g ( l - £ - V 

if we require that the stream velocity be zero at the leading edge 
(M = 0) and at the trailing edge (n = ± <») and if we write 

- (1 - iDfy) Log (1 

fj.j = exp [ 7r(fej' + ih-i") ] and fi2 = exp [ij(h2' + ih")] 

it is possible to express h " i and h " 2 as functions of: 

J l> u2> °l> n2 and dh1 = h,1 - h. 

As the length scale in plane n has not been defined up to now, 
it is possible to impose h\ = 0. Only one arbitrary parameter re­
mains: dh'\ it is related to the chord of the profile, but the rela­
tion is quite intricate. In order to fix a length scale in the physical 
plane, we shall take the cascade pitch as unity. By means of rela­
tion (2) we obtain: 

£>$i = — cotfco-j cotg- 9j I ) * , = _ cotfeo-2
 c°tg ' 

A 
chPt _ chO"2 

s in s in 

(4) 

(5) 

Equation (5) is one of the formulations of conservation of mass 
written between upstream and downstream infinity. 

• N o m e n c l a t u r e . 

x, y = coordinates in the physical plane 
2 = x + iy 

M = Mach number 
a — variable defined by cha = 1/M 
8 = angle of the velocity with the ab­

scissae axis 

A = a + id 

M = auxiliary complex variable 

a = sound velocity 

F = complex potential F = $ + iy 

ai = profile leading edge angle 

«2 = profile trailing edge angle 

Subscripts 

1 = upstream conditions 
2 = downstream conditions 
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x proposed Mach distribution. 
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- final result 

Fig. 4 Typical case 
(a) Mach numbers distribution; (b) profile 

Complex potential F(p) is now completely defined. 

VI Der iva t ion of \(fi) 

Let us suppose that the user knows M as a function of p, first 
on the lower surface (p. > 0 real), second on the upper surface (p. 
< 0 real)—we shall see later how this result can be obtained; 
MM) derivation may be regarded as the determination of a func­
tion, analytic in the upper half plane p and, the real part of 
which being known on the real axis; that problem is known as a 
Dirichlet problem, the solution of which is: 

X((J.) = — •/ Log (t - ji) do(t) + Cst (6) 

where t is p taken along the real axis. 
There are many difficulties to obtain a numerical computation 

of that integral: 
—<r is infinite (i.e., M —• 0) when p reaches zero or infinity: 

singularities extraction; 
—computation of the constant; 
—expression of the profile closing condition. 
6.1 Singularities Extraction. It is possible to show that \(p) 

behaves like: 

" 

/ ^ 
**<—— 

x proposed Mach distribution 

final result 

~x x * —— 

S/Sg 

0.75 

2.5-

M,=0.7 
9/ =35 degrees 
Q2=98.4 degrees 
aj=a2=12degrees 

dh'= 4.035 

Fig. 5 First example 
(a) Mach numbers distribution; (b) profile 

for (J. - ± ' 
8 1 1 ( 1 «2 T 

H Log n 
IT 

This fact guarantees that the streamline angle changes by alt 

as p goes from 0 - « to 0 + e; a j is then the leading edge angle. 
Likewise, a2 is the trailing edge angle. 

Let us set:, ••. 

cr(f) = o^t) - ^ Log. \t\ + \ + "» Log(*2 + a2) (7) 

We then have 

A(jn) = Log (i + —' *- Log(fJ. + la) 

- - 1 Log \i for /J. — 0 

+ ^ J^ Log (f - (i)**1© + Csi (8) 

where <r' is now finite when p tends to zero or infinity and where 
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proposed Mach distribution 

- final result 
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Fig. 6 Second example (a) Mach numbers distribution; (b) profile 

a is an arbitrary positive real. 
Using the residue theorem, the following relation also holds: 

A.(fx) = L Log /u. + - J L Log (fi + ia) 

+ ±f?M*. +Cst (8') 

6.2 Computation of the Constant. We have computed /»i pre­
viously (and also ^2); moreover Ai is known: Xi = <r± + i6i 

Let us write 

If we express that A(MI) = Ai, then it comes: 

7T 
X(/i) = X 1 - ^ - L o g ^ + i f ^ ^ L o g 

Mi IU.J + ia 

+ i[G(/i)-G0i1)] (9) 

6.3 Profile Closing Condition. If the Mach number distribu­
tion M(t) (01 <r{t)) is chosen arbitrarily there is no reason for the 
relation X(^2) = X2 to be satisfied, whereas X2 and /*2 are known. 
This results in a profile which does not close. We shall then add to 
\(n), as given by expression (9), a correcting function dX(fi), 
analytic in the upper-half plane and sufficiently well behaved on 
the real axis not to disturb X(M) in the neighbourhood of the leading 
or trailing edge. 

From a practical point of view it is convenient to choose that 
function in the following form: 

6x(/i) = aFx{u) + /3F2(u) (10) 

where a and 0 are real and are obtained through resolution of: 

X2 = \(a2) + aiF'dV-i) ~ ^i(Mi)] + P[F2(H2) - F2(Hi)] (11) 

i.e, through resolution of a system of two linear equations with two 
real unknowns. 

When a and 0 are obtained, we have: 

j£ a< + a 

Ml 
A = Ai 1 log — + 

1 TT ° II. 

•> , i± + ta 
- log — fa Hi + ia 

77 
•G(Mi)]+ 5A(M)-6A(Mi) (12) 

VII H o w to Choose the Correct ing Funct ion 
This choice is difficult. After a large number of tests we presently 

use the function: 

M - M3 6A = ia log 
li + Hi, 

+ ij3 log 

in which: 

\h = 2 1̂ 21 , lh = 
1-i 

2 / 2 
H 

li + «M5 

_ i± i 
2,/2 

(13) 

The real part of that function goes to zero when JX goes to infinity 
(real), and is discontinuous at the origin (the discontinuity is (a + 
/3)M). This may be approximately regarded as two different shifts on 
the lower and upper surfaces. 

VIII Profile Calculation 
We have already seen that in any case we have: 

A dz = [sh cr d * + i ch 0" d * ] exp i0, 

with (5) 

ch ffj __ ch CT2 A = 
s in JJ Bin v2 

Along the profile, d\p = 0 and fi is real. It comes: 

dF 
A dz = exp sho- — da 

dji 

(2) 

(14) 

With the origin of coordinates at the stagnation point of the 
leading edge, we integrate the foregoing function of fi = t from 0 
to +00 to obtain the lower surface and from 0 to — <» to obtain the 
upper surface. 

IX Different Stages of a Typical Computation 
First of all the user has to provide the following quantities: 

M, o r au 8U 02, au a2, dhx; 
M2 and a2, Mi and M2> D<PI, and D<j>2 are then obtained. Using 
equation (3), there is ho difficulty to compute the complex poten­
t i a l ^ ) . 

The user has now to give the Mach number distributions he 
wishes on the lower and upper surfaces. As a matter of fact what 
is needed is a and it may be obtained either from M(cha = 1/M) 
or from V(sha = ao/V). 

Suppose that he knows these distributions as a function of the 
reduced curvilinear abscissa (s = 0 at the leading edge stagnation 
point and s = 1 at the trailing edge upper or lower surface). How­
ever this curvilinear abscissa cannot be directly introduced in the 
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computation. It has been noticed that in most cases the beha­
vior of the quantity 4>/4>o (where 0 is the velocity potential with 
0 = 0 at the leading edge and <j> = 0O at the trailing edge, differ­
ent on the lower and upper surfaces) looks sufficiently like curvi­
linear abscissa behavior. 

It is then asked to the user to give M(t) but M is presented on 
the screen of the graphic display unit as a function of 0/0o- He 
has to adjust the values of t until he obtains a sufficient resem­
blance with the curve M(s/so) he wishes. 

As a matter of fact, only ten to twenty points are needed on the 
upper and on the lower surface, as the neighborhoods of the stag­
nation points are provided by the program itself. When the points 
are given, one hundred points are interpolated by means of cubic 
spline functions so as to allow a sufficient accuracy in the numer­
ical computation of G(n) • 

If the user is satisfied with those curves the computation may 
then be carried to its end: profile and corrected Mach numbers 
distribution computation. 

The actual Mach number distribution as a function of reduced 
curvilinear abscissa is presented on the graphic display unit as 
well as the initially given distribution. 

If the result is unsatisfactory, the user has to move a few points 
until it suits him. 

The chord has also to be adjusted for it is known only at the 
very end of the computation. Parameter dh' must be used for 
that purpose. 

Fig. 4 shows on one hand the points proposed by the user and 
the interpolated curves going through these points and necessary 
for. the numerical computation of F in (12). On the other hand the 
final curve obtained has been drawn. A rather large discrepancy 
between the two curves corresponding to the upper surface may 
be seen. 

Fig. 4(b) shows the profile obtained as well as a detail of the 
leading edge where it appears that the introduced discontinuity 
has no noticeable effect on its shape. 

Upstream Mach number was 0.5, fa was 30 deg and 02 .90 deg, 
the leading edge was rounded (ai = TT) and the trailing edge had 
an angle ai = 15 deg. 

X Examples of Results 
Fig. 5 shows a first example of results, in a case where the 

agreement between the wished Mach number distribution and 
the curves finally obtained is very good. The profile is sharp at 
both ends (12 deg angle) for an upstream Mach number of 0.7; 
chord pitch ratio is 2.5. 

Fig. 6 shows a second example. The profile is rounded at both 
ends. Upstream Mach number is 0.8 and deflexion (S2 - fa) is 55 
deg. 

Contrary to the former example, a Mach number distribution 
on the upper surface showing a quite steep descent after maxi­
mum velocity was requested. This particular result was only par­
tially fulfilled. 

XI Compar i son With a D irec t Method 
The described method is exact as far as principles are concerned. 

Practically, the only possible inaccuracy may come from numerical 
calculation of integral: 

a'(0 

0.8-

G{li) =-J 
/ - M 

dl 

There is no difficulty to obtain a sufficient accuracy. The result 
may be checked when looking at the precision with which the upper 
and lower part of the profile close at the trailing edge stagnation 
point. Some parts of the calculation have to be made with double-
precision arithmetic (when t is near n). Usually the result is ob­
tained with an accuracy better than 1 percent. 

Finally the only point which has to be checked is the quality of 
Chaplygin approximation for the fluid. 

For flows in which maximum Mach number is quite low the ap­
proximation will be good but as this Mach number raises and ap-

M,=07 
6) =35 degrees 
&2 "90 degrees 

direct method 

inverse method 

Fig. 7 Comparison with a direct method 

proaches unity the results will depart from those obtained with 
exact compressibility calculations. 

Comparison was made with a direct method3 (finite differences 
method) using perfect gas approximation with exact compressibil­
ity law. 

Of course, that comparison is possible only if one first cal­
culates with the inverse method. A profile corresponding to a given 
Mach number distribution is obtained. The direct method is then 
used to compute the flow on that profile. Finally the Mach number 
(or velocity or pressure) distributions are compared. 

This was first done for an upstream Mach number 0.5 with a 
profile very similar to Fig. 7. No visible differences are noticed. 

Fig. 7 shows Mach number distribution on the upper part of the 
profile (as a function of reduced curvilinear abscissa s/so) and the 
profile itself for an upstream Mach number 0.7. The agreement is 
quite good mainly on the lifting part of the profile. 

XII Conclusion 
The method proposed in this paper brings a noticeable im­

provement as far as user point of view is concerned, compared 
with a former method [2] in which X(/t) w a s chosen inside a set of 
curves depending on four real parameters: in that case these pa­
rameters had no physical meaning and the only way to choose 
them was by trial and error. On the other hand, to impose a par­
ticular set of curves was of course a restriction. 

In the new method, what is asked from the user has a physical 
meaning, and the set of possible solutions is much larger. 

Computer time is about 30 sec for one execution of the program 
but it has usually to be run many times before a compromise is 
obtained. The computer used was an IRIS 80 of CII (Compagnie 
Internationale pour l'lnformatique). 

A n n e x 
Complex Potential Derivation. A complex analytic function 

is completely defined by its singularities. From an hydrodynamic 
point of view, it is equivalent to say that the flow is completely 
defined by its source or sinks, vortices, double-sources and by the 
singularities corresponding to the solid walls. 

In the physical plane, the flow results from a source placed at 
upstream infinity discharging in a sink at downstream infinity with 
a vortex superimpose in each of these points. 

The potential may be obtained through addition of the potentials 
of the singularities already mentioned to which new ones, placed 
inside the contour, must be added in order to satisfy to velocity 
tangency on the profile. 
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It is well known that: 

K 
F(z) = ~ log (1 -) = cp + tip 

is the expression of the potential of a source placed at point a in 
complex plane. 

The source output (integral of \p on a closed contour around a) is 
equal to k. 

In the same manner 
IT z 

F(z) = - T " log (1 - - ) = (p + iip 
in a 

is the potential of a vortex placed in a, the circulation (integral of 
V on a closed contour around a) of which is T. 

If one names /*i and ^2 the images in the n plane of upstream and 
downstream infinity in the physical plane, D<i>i and D<I>2 the cir­
culations around these points, it is easy to write an expression of 
the corresponding potential with the supplementary condition that 
the real axis (image of the profile) is a stream line. 

One obtains equation (3) 

2nF(,i) = (1 - ? £ ) * ! ) l o g ( 1 - - f ) + (1 + « D # i ) I o g ( l - J"1) 

(1 - - / D * 2 ) l o g ( l - ^ ) - ( l + » D * 2 ) l o g ( 2 - J i ) 

where /ii and /Z2 are conjugate to ^ ! and ^2-
At the present time neither ^1 and M2 nor ,D<f>i and D $ 2 are 

known. 
We shall calculate m and /*2 when writing that the flow velocity 

is zero at the two stagnation points (leading edge corresponding to 
M = 0 and trailing edge corresponding to n = ± <= on the real axis). 

In a point of the flow, the velocity is given by: 
dFdi) , 

V = it 
d\i 

After deriving and setting the terms in ]x in order, it comes: 

9 CHL C 0 + Citi+ C2M
2 

£l1J ' . — „ 

d[i D 
where C0, Ci, and C2 are real. Consequently there are, generally 
speaking, two points on the real axis where.the velocity is zero; In 
order to put these points at /J. = 0 and fi = ± <=° we must have Co = 
0 and C2 = 0. 

The solution of these two equations gives/*i and/*2-
The method we choose was to write: 

Mi = e x p M / V + ihi")] i±2 = exp[7r(/z2' + ih2")] 

The length scale in plane ji.was not already fixed; this can be 
done by setting hi' = 0 (we then write hi' - hi' — dh' = h2'. 

Then comes: 

cosirhi' + D<J>2 sinTr/zj" = exp (j7rf/?')[cos vh2" 

+ I 

cos -rrh2" - D$ 2 smnh2" = exp {irdh')[cos nhx" 

D<S>2 smnh,"\ 

Di>j simth\ 
whose solution is: 

lgn{l-lH") 
sk(ndh') s in v± 

ch(irdh') cos vx - cos v2 

, „ shUidh) s in iv, 
tgnh2" = , , „-TT—-1 1 

ck(wak ) cos v2 - cos ^ 
where it has been set: 

vx = Arclg(lhaxtgB^ v2 = Arc!g{tho2l,gB2) 

This gives MI and /x2 providing dh' has been choosen, which cor­
responds to the choice of the profile chord (the pitch being con­
ventionally fixed to unity). 

We then have to calculate D<I>i and D$ 2 . 
Starting from equation (2) 

Adz = [shod® + ichodip] exp (iB) 

in which A is a real scale factor in the physical plane; we shall 
calculate this factor through writing that the pitch is unity. 

When integrating (2) at upstream infinity with with Az = - 1 
and Ai/* = + 1 , it comes: 

— A= (shoxD§i + ichojicos 9l + i s in 6X) . 

As A is real we have: 
0 = s in 9ishaiD^x + cos B^chox = > D^i = -cotg6i cotho-j 

and 

-A = cos BishaiD^i - s in B^cho^ = > A = 
s in 6i 

The same integration at downstream infinity gives the two re­
lations: 

Z><1>2 = - co tg8 2 co tha 2 A = . 2 

s in (92 
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