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Abstract

Appropriate monitoring of the depth of anaesthesia is crucial to prevent deleterious effects of insufficient anaesthesia on
surgical patients. Since cardiovascular parameters and motor response testing may fail to display awareness during surgery,
attempts are made to utilise alterations in brain activity as reliable markers of the anaesthetic state. Here we present a novel,
promising approach for anaesthesia monitoring, basing on recurrence quantification analysis (RQA) of EEG recordings. This
nonlinear time series analysis technique separates consciousness from unconsciousness during both remifentanil/
sevoflurane and remifentanil/propofol anaesthesia with an overall prediction probability of more than 85%, when applied to
spontaneous one-channel EEG activity in surgical patients.
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Introduction

In today’s clinical practice, routine monitoring of general
anaesthesia is based mainly on cardiovascular parameters and motor
responses. If surgical stimulation provokes neither movement, nor an
increase in heart rate or blood pressure, it is assumed that the
anaesthesia is sufficient. However, during neuromuscular blockade, in
the presence of beta-blockers, or in patients who only tolerate ‘light
levels’ of anaesthesia, these clinical parameters may fail to reliably
monitor the depth of anaesthesia. Despite the stability of these
parameters, patients may become conscious during surgery, poten-
tially leading to explicit memory of words spoken in the operating
room, discomfort, or pain. In addition, if the central processing of
stimuli is not sufficiently blocked, implicit memories may be acquired
via auditory or other sensory input under general anaesthesia. Possible
consequences of intraoperative awareness include nightmares, or even
symptoms of a posttraumatic stress disorder [1].
As recently suggested by us [2,3] and others [4], RQA of EEG

recordings appears to be a highly promising tool for monitoring
the depth of anaesthesia. One of the basic requirements for
monitoring the hypnotic level of anaesthesia is the ability to
separate consciousness from unconsciousness. The present analysis
was performed to assess the ability of RQA to separate between
consciousness and unconsciousness at the transition between these
clinical stages.

Methods

RQA was applied to EEG data from two clinical studies
comprising 40 patients each (study I and study II). In both studies,

patients were randomly assigned to receive either remifentanil/
sevoflurane or remifentanil/propofol anaesthesia. In 30 s intervals,
patients were asked to squeeze the investigator’s hand. Anaesthesia
was slowly induced until patients stopped following this command
(first loss of consciousness, LOC 1). Subsequently, anaesthetic
concentrations were increased to reach an appropriate level of
anaesthesia for intubation. The isolated forearm technique [5] was
used to maintain the patient’s ability to follow commands, and
succinylcholine was given to facilitate endotracheal intubation.
After intubation, propofol or sevoflurane administration was
stopped until the patients followed commands again (first return
of consciousness, ROC 1). Propofol or sevoflurane concentrations
were increased, until the patients stopped squeezing the hand
(second loss of consciousness, LOC 2), and surgery was performed.
At the end of the surgical procedure, remifentanil and sevoflurane
or propofol were discontinued and patients were assessed again for
their ability to squeeze a hand on command (second return of
consciousness, ROC 2).
A single-channel EEG was recorded from an electrode at the

left temporal region (between the lateral edge of the eye and the
upper edge of the ear, AT1) and referenced at Fpz (with the
ground electrode at Fp1). The sampling frequency of the EEG
data in study I was 250 Hz. No low pass was used and the notch
filter (50 Hz) was enabled. The sampling frequency of the data
in study II was 1 kHz, digitized with 12 bit amplitude
resolution. To achieve equal sample rates, the EEG data from
study II were resampled offline at 250 Hz, after low-pass
filtering at 125 Hz. From both studies, data were selected from
LOC (1 and 2) as well as from ROC (1 and 2) for analysis. All
analyzed data segments were 30 s long, comprising the last 30 s
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before the last unanswered command (LOC, unconsciousness),
and the first 30 s after the first answer to command (ROC,
consciousness), respectively.

EEG Data Analysis
The recorded EEGs were analyzed by RQA. RQA is a

nonlinear time series analysis technique developed by J. P. Zbilut
and C. Webber [6] on the basis of previous research from J. P.
Eckmann and colleagues [7]. RQA quantifies the number and
duration of recurrences of a dynamical system presented by its
phase space trajectory. Compared to other techniques of
nonlinear signal analysis it has the advantage that it requires no
assumptions, on stationarity or linearity, concerning the analyzed
data [8]. Amongst other parameters, RQA evaluates the
determinism D of a time series, which has been shown to be a
highly sensitive measure of predictability (regularity) [6,8].
Mathematically, D is defined as the percentage of recurrence
points, which are placed along diagonal lines of minimal length
lmin in the recurrence plot of the investigated dynamical system. A
value of D approaching 100% indicates almost perfect predict-
ability, e.g. a straight line; a value approaching 0% indicates the
absence of almost any predictability, e.g. Gaussian white noise.
For EEG analysis we defined the complexity C as an inverse

function of D:

C~{20:log Dð Þ ð1Þ

According to (1) high values of C indicate that an EEG is highly
irregular (‘chaotic’), low values indicate that it contains a certain
amount of repetitive structures and thus is predictable to a certain
extent. We performed RQA in non-overlapping time windows,
each 5 s (1250 sample points) wide (windowed RQA [8]). From six
consecutively calculated values of C we only used the largest value
Cmax for generating a single prediction value by comparison of
Cmax with a fixed threshold CT. Thus, one prediction value p was
generated per 30 s interval (Figure 1).
RQA requires the specification of four preset parameters: a) An

appropriate embedding dimension m b) A time lag t for
appropriate time-delay embedding of the EEG data according to
Taken’s theorem [9]. c) A value rmax, describing the radius of the
sphere in which radius neighboured phase space locations are
assumed to be recurrent. rmax was always scaled to the highest
occurring distance in phase space for the current data segment. d)
The minimal length lmin of the left-upward diagonals in the
recurrence diagram were taken into account for the calculation of
D [6]. Unlike Zbilut and Webber [6], we used a Manhattan (City-
block) metric for calculating phase space distances, i.e. the phase
space distances were calculated as:

d x,yð Þ~
Xm

i~1

xi{yij j ð2Þ

d: distance between to vectors x and y, m: embedding dimension.
Compared to Euclidean metrics (L2-norm), city-block metric

(L1-norm) reveals more information about the local behaviour of
recurrences [10]. Furthermore, it is computationally more
efficient, whilst being more robust in its significance, with respect
to an increase in recurrence numbers [10].

Optimization of RQA Parameters-Assessment of RQA
Results
We employed a box bounded global mixed-integer optimization

algorithm [11] to determine best possible values for the RQA
parameters m, t, rmax, and lmin with respect to an optimal prediction
probability pk for the ‘awake’ state using a training procedure.
Mixed integer optimization uses a special algorithm, which enables
the optimization variables to be fixed to discrete values as is

Figure 1. Principle of analysis. 5 s long successive data segments
are analyzed by RQA yielding complexity values C1…Cn. From 6
consecutive Ci’s, the largest values Cmax are compared with a threshold
CT to generate the decision values pi for making a conscious/
unconscious decision.
doi:10.1371/journal.pone.0008876.g001

Table 1. Optimization of RQA parameters.

N
RQA parameters as determined in 5 training runs, each using one randomly selected third of
the ROC’s of study I.

p
k
for complete study I

(ROC + LOC)

m t [ms] rmax [%] lmin [ms] pk

1 3 16 70 20 0.88 0.86

2 3 4 66 24 1.0 0.84

3 6 4 55 12 0.87 0.82

4 2 20 70 20 0.96 0.84

5 3 4 57 32 0.91 0.83

RQA parameters were optimized using 5 sets of training data, each comprising one randomly selected third of the ROC events in study I each. The parameter
combination used for further evaluation is printed in bold.
doi:10.1371/journal.pone.0008876.t001
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required for the embedding dimension m. Pk describes the
correlation between an anaesthetic depth indicator value and
observed anaesthetic depth. It has a value of 1 when the indicator
predicts observed anaesthetic depth perfectly and a value of 0.5
when the indicator predicts no better than a 50:50 chance [12].
For two-state systems, such as the regarded conscious/unconscious
decisions, pk is equal to the area under the receiver-operator
characteristics (roc) curve [12–13]. The numerical parameter
range in which numerical optimization was performed was 1 to 25
for m, 4 to 200 ms for t, 1 to 75% for rmax, and 4 to 400 ms for lmin.
For training the algorithm, we used five different data subsets
taken from study 1. Each of the training data subsets comprised
one randomly selected third of the ROC events contained in
study. The length of the training segments always was 30 s,
comprising the values from the last 30 s before the last unanswered
command (LOC, unconsciousness), and the first 30 s after the first
answer to command (ROC, consciousness), respectively. The
parameter values obtained in the five optimization runs varied
between 2 and 6 for m, between 4 ms and 20 ms for t, between
55% and 70% for rmax, and between 12 ms and 32 ms for lmin.
As two signals were analyzed at every clinical event LOC1,

LOC2, ROC1, and ROC2, a maximum of 320 signals was
available from studies I and II. The signals are situated either
completely in a phase of consciousness or in a phase of
unconsciousness. For study I, 282 signals and for study II 302
signals were used for pk analysis. Thus 38 signals were excluded
from study I and 18 signals were excluded from study II. These
signals contained artefacts expressed by signals of constant
amplitude (flat line), values exceeding the measuring range of
250 mV, or were not of sufficient length.

Results

Training of the Algorithm
Table 1 shows the prediction probabilities obtained in the

five training runs performed with different randomly selected
data subsets taken from study 1. Obviously, the combination
m= 3, t= 16 ms, rmax= 70%, and lmin= 20 ms yielded the
highest pk (0.8660.023, errors are always specified as standard
error with non-parametric assumptions), if applied to the entire

study I, i.e. to all 282 considered LOC/ROC and ROC/LOC
transitions (Table 1). We therefore decided to use this
parameter set for all further evaluations of the ability of RQA
to separate consciousness from unconsciousness by means of
studies 1 and 2.

Prediction Probabilities
The achieved prediction probability for the complete study I

was 0.8660.023 (ROC + LOC). For this evaluation ROC and
LOC transitions were pooled and one common pk was calculated.
In two further calculations we considered only the ROC
transitions or only the LOC transitions of the study, respectively.
Considering only the ROC events resulted in a higher value
(0.8960.029), considering only the LOC events yielded a lower
value (0.8360.037) than that obtained if ROC and LOC events
were pooled (Figure 2).
Our results were verified by means of study II. For this

evaluation no modifications to the algorithm or to the RQA
parameters as determined from study 1 were made. We obtained a
pk of 0.8660.022 (ROC and LOC events), notably, this was
identical to the pk obtained from study I. As in study I, ROC and
LOC transitions were pooled and a common pk was obtained.
Again, we found the pk was higher when considering only the
ROC events (0.9360.020) and lower (0.7760.039) when consid-
ering only the LOC events (Figure 2).

Figure 2. Complexities C and prediction probabilities pk obtained by RQA of the wake-sleep (LOC) or sleep-wake (ROC) transitions
from studies I and II.
doi:10.1371/journal.pone.0008876.g002

Table 2. Verification of the algorithm by means of study II.

m t [ms] rmax [%] lmin [ms] pk (ROC + LOC)

1 3 16 70 20 0.86

2 3 4 66 24 0.78

3 6 4 55 12 0.81

4 2 20 70 20 0.82

5 3 4 57 32 0.81

As in study I the parameter combination m=3, t= 16 ms, rmax= 70%, and
lmin=20 ms gave the highest pk.
doi:10.1371/journal.pone.0008876.t002
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Additionally, we tested the other four RQA parameter sets,
determined in the five training runs (Table 1) by means of study
II. Consistently, the pk values obtained with these parameter sets
were all lower than the pk values obtained with the parameter set
found optimal for study I (Table 2). Thus, the results obtained
from study II are remarkably close to those obtained from study I.
This clearly demonstrates that no over-fitting occurred during the
training procedure.

Homogeneity of the Data
To test if the quality of our EEG data is homogeneous, or if it

might suffer from outliers, we repetitively drew random samples
from studies I and II, consisting of 10 transition (ROC or LOC)

events each. This procedure was repeated 1000 times, resulting in
10000 randomly composed data subsets for each study. For all of
these subsets we determined the according pk values and binned
the results into a histogram. As is obvious from Figure 3, the pk
values were strictly normal distributed for both studies
(p=0.88660.005 for study I and p=0.89060.004 for study II,
Kolmogorov-Smirnov Test), suggesting that the quality of the
EEG data in studies I and II is not critically suffering from outliers.

Specificity and Sensitivity
To determine cut-off values CT for C which would allow a best

possible decision between consciousness and unconsciousness, we
calculated roc-curves for studies I and II, illustrating the
relationship between sensitivity and specificity for given values of
CT [13] (Figure 4, Table 3). Considering ROC and LOC events
together, a sensitivity of about 0.90 is achieved with a specificity of
about 0.56 (for study I, as well as for study II). For the ROC events
alone, a sensitivity of 0.90 corresponds to a clearly improved
specificity of about 0.68 (study I) or 0.8 (study II).

Discussion

Our results support the view that monitoring of the activity of
the main target organ of general anaesthetics, i.e., the brain, may
provide a method to assess the level of consciousness. The
obtained pk value of .0.85 reflects an encouraging result for the
analysed challenging data sets.
Selection of a 30 s period immediately preceding LOC or

following ROC provides data, which are very close to each other
in terms of not only time but also clinical status. As a consequence,
we showed that RQA of the EEG is a method to separate ‘just
unconscious’ from ‘just conscious’. The same data sets were
presented to different monitors, the majority of which separated
consciousness from unconsciousness with considerably lower pk
values (0.5–0.8) [14–17]. So far, the best results have been
obtained by the GE Entropy module, which analyses spectral
entropy of the EEG, i.e., also a parameter of irregularity. As both
entropy and RQA quantify the degree of regularity in the EEG
signal, this may be a strong indication of an increase of EEG
regularity as a general mechanism underlying anaesthesia-induced
unconsciousness.

Figure 3. Homogeneity test. 1000 random samples comprising 10
ROC or LOC events each were drawn from studies I and II respectively.
The figure shows a histogram of the pk values calculated from these
subsamples.
doi:10.1371/journal.pone.0008876.g003

Figure 4. Roc-curves describing the relation between sensitivity and specificity of conscious/unconscious decisions using different
threshold values CT.
doi:10.1371/journal.pone.0008876.g004
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The cut-off values CT slightly differed between study I and II. A
sensitivity of 0.9 corresponds to a CT of 0.0325 in study I, and to a
CT of 0.0235 in study II (Table 3). This may be because the
complexity values obtained from study II were generally larger
than those obtained from study I (Figure 2). This is probably due
to differences in the EEG-amplifiers that were used in the study.
A potential limitation of the present approach may be the

selection of the maximum complexity value from a 30 s interval. If
implemented in a monitor, this approach could produce a delay of
up to 30 s before the state of consciousness is correctly indicated.
This 30 s delay reflects a critical time interval. As Dutton et al.
(1995) showed, the risk of postoperative recall increases, if patients
are intraoperatively awake for more than 30 s. [18].
In this regard, consciousness (or wakefulness) during anaesthesia

may be seen as an early warning sign of possible awareness with or
without implicit or explicit recall. Therefore, the present study was
designed to separate consciousness from unconsciousness. Con-
sciousness was defined as an adequate response to a particular
command. This reflects an intact working memory. The working
(or short-term memory) spans a short time interval (approx. 30 s)
and contains everything an individual thinks or perceives. After
processing in the working memory, contents may either be

forgotten or stored and form conscious (explicit) or unconscious
(implicit) memory [19]. As a consequence, prevention of
consciousness will prevent formation of both implicit and explicit
memory.
Currently, available monitors require even longer time intervals

before they reflect a change in the level of anaesthesia as indicated
by changes of the EEG [16]. However, we expect that with higher
sampled EEG data (1 kHz or above), combined with further
improvements in the algorithm, shorter response times ,10 s may
become possible.
A potential limitation of the approach is that the analysis also

includes high frequency components of the EEG signal.
Particularly if electrodes are placed on the forehead, high
frequency EEG signals may be contaminated with an electro-
myogram (EMG) of the frontal muscle, which is in the same
frequency range and has higher amplitudes. As a consequence,
analysis may be based on (unspecific) EMG rather than (specific)
EEG. It has been shown for the EEG bispectral index (BIS), that
with such an approach a patient who is fully awake but
paralyzed may be classified as unconscious, because high
frequency signals are diminished or blocked by neuromuscular
blockade [20].
The selection of a maximum within a 30 s. interval may induce

a bias towards higher values indicating ‘consciousness’. This may
increase RQA values before LOC and after ROC (towards
consciousness values). Conversely, results from ‘‘unconsciousness’’
should also be biased towards higher values in this case and,
therefore, the overall statistical result should remain nearly
unchanged.
Unfortunately, it is almost impossible to measure the brain

concentration of an anaesthetic drug. Therefore, it is extremely
difficult to test whether a parameter reflects a certain drug
concentration in the brain. On the other hand, loss and return
of consciousness are clinically relevant measures of the main
effect of anaesthetic drugs, which can readily be assessed. Our
study showed that RQA can be a useful measure of this main
effect of general anaesthesia for both propofol and sevoflurane.
In a test with two independently acquired EEG studies we
achieved an overall prediction probability pk of .0.85. This
value is considerable better than the pk’s obtained with devices
being presently commercially distributed [14–15]. The de-
scribed RQA-based algorithm is easily implemented on a
modern personal computer in real-time. Thus, our study opens
a new avenue for the development of improved future
anaesthesia monitoring devices.
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