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Molecular dynamics (MD) methods compute the trajectory of a system of point particles in response
to a potential function by numerically integrating Newton’s equations of motion. Extending these basic
methods with rigid body constraints enables composite particles with complex shapes such as anisotropic
nanoparticles, grains, molecules, and rigid proteins to be modeled. Rigid body constraints are added to
the GPU-accelerated MD package, HOOMD-blue, version 0.10.0. The software can now simulate systems
of particles, rigid bodies, or mixed systems in microcanonical (NVE), canonical (NVT), and isothermal-
isobaric (NPT) ensembles. It can also apply the FIRE energy minimization technique to these systems. In
this paper, we detail the massively parallel scheme that implements these algorithms and discuss how
our design is tuned for the maximum possible performance. Two different case studies are included to
demonstrate the performance attained, patchy spheres and tethered nanorods. In typical cases, HOOMD-
blue on a single GTX 480 executes 2.5–3.6 times faster than LAMMPS executing the same simulation on
any number of CPU cores in parallel. Simulations with rigid bodies may now be run with larger systems
and for longer time scales on a single workstation than was previously even possible on large clusters.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Molecular dynamics (MD) simulations and related methods are
powerful tools for modeling systems of particles [1]. The basic MD
technique computes the trajectory of n particles under the influ-
ence of a potential V (�r1,�r2, . . . ,�rn), the negative gradient of which
gives a conservative force �F = −�∇V , by integrating Newton’s equa-
tions of motion over discrete time steps that each advance the
state of the system from [�ri(t), �pi(t)] to [�ri(t + �t), �pi(t + �t)].
The quantities �ri and �pi are the position and momentum of the
i-th particle, respectively, t is the current simulation time, and �t
is the step size. Many applications of MD, such as soft matter self-
assembly [2–4] and protein folding [5–7], necessitate running hun-
dreds of millions of time steps per run and thousands of individual
runs. Accelerating the rate at which time steps are performed re-
duces the time to discovery and enables better predictions through
the use of higher fidelity models.

Classical MD breaks the potential into pair-wise and bond terms
V = ∑

pairs i, j V p(ri j) + ∑
bonds i, j Vb(ri j). Smooth, “soft” potentials

V p(r) and Vb(r) can be used in conjunction with a large step size.
On the other hand, steep, “hard” potentials, such as bonds with
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stiff spring constants, require using a prohibitively small step size
to maintain accuracy and stability. Potentials with infinitely steep
interaction terms can only be achieved with extensions to the basic
MD framework.

One such extension is SHAKE [8]. The SHAKE algorithm en-
forces fixed bond distances between two particles. Via an iterative
method, any number of bonds in the system can be constrained.
A set of particles may be combined into a single rigid body with
an appropriate choice of bond constraints while taking special care
not to over-constrain the system. However, certain rigid shapes,
such as planar and linear molecules, cannot be created in three di-
mensions by setting bond distances alone because the constraint
matrix is singular. Although the SHAKE algorithm has been ex-
tended to handle arbitrary shapes, for example, via angle and
dihedral angle constraints, [9,10] the computational cost of these
algorithms often becomes prohibitive for parallel simulation codes
as the number of constraints per cluster increases.

Modeling large or generic rigid arrangements of particles can
also be achieved by treating each defined set of particles as a sin-
gle rigid body with only three translational and three orientational
degrees of freedom (or two and one, respectively, for 2D simula-
tions) [11]. Such a method can be added to an MD package with
minimal modifications by taking advantage of the existing code
that computes particle–particle interactions. Rigid body constraints
are available in MD software packages such as DLPOLY [12] and
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LAMMPS [13], and have been used to model cubes, rods, bent rods,
jacks, plates, bumpy spheres, water molecules and ions, and bucky-
balls [2,14–20].

One problem that arises for both rigid body and SHAKE con-
straints is that they often cannot be used with complementary
methods that would violate the constraints, such as energy min-
imization. Local energy minimization methods find a local mini-
mum of the potential energy landscape given an initial configura-
tion, in effect quenching the system. Such methods are used to re-
lax initial configurations, find zero temperature equilibrium config-
urations of crystalline solids, native configurations of biomolecules,
and low energy atom clusters [21], and can be an important step
in protein folding algorithms [22].

One minimization technique commonly employed for uncon-
strained particles is the conjugate gradient (CG) method [23]. Ap-
plying this method to a system of rigid bodies may be possible,
however we are unaware of any existing adaptation and do not at-
tempt to derive one. Instead, we find that a straightforward appli-
cation of the Fast Inertial Relaxation Engine (FIRE) [21] algorithm
works for both unconstrained particles and rigid bodies while us-
ing the basic framework of the rigid body NVE dynamics method.

1.1. GPU overview

Modern graphics processing units (GPUs) deliver tremendous
computational performance at a fraction of the cost and power
consumption of a cluster of traditional CPUs. On a single silicon
chip with three billion transistors, current GPU models provide a
theoretical peak 1.3 teraflops of compute throughput and 177 gi-
gabytes per second of memory bandwidth from off-chip, or global,
device memory [24]. In our experience, it is easier to write a small
application that achieves a higher fraction of the theoretical peak
performance on a GPU than a CPU.

The GPU hardware is unlike a CPU in many ways. First and fore-
most, while a CPU core executes a single instruction at a time,
a GPU executes hundreds. The processor chip on the NVIDIA®

GeForce® GTX 480 (GF100), for example, contains 480 individual
CUDA cores. Each core is capable of processing one single precision
floating point or integer operation per clock tick. The CUDA cores
on the GTX 480 are grouped into 15 multiprocessors (MPs), which
perform instruction scheduling and are each capable of maintain-
ing up to 1536 independent computation streams or threads in
flight at any one time. Thus the GPU is only fully occupied when
more than 23 thousand threads are executing on the device.

When launched, threads are grouped into blocks. Each thread
can locally access its index within the block, threadIdx, the in-
dex of its block, blockIdx, and a small (up to 48 kb) pool of
shared memory also available to the other threads in the same
block. For global memory transactions, the GF100 includes a full
cache hierarchy with up to 48 kilobytes of hardware managed L1
cache in each streaming multiprocessor, 768 kilobytes of shared L2
cache, and up to six gigabytes of device memory.

The performance of functions executed on the GPU, or kernels,
can be limited by either the memory bandwidth between the pro-
cessor and device memory, or the rate at which arithmetic instruc-
tions are retired. In most molecular dynamics applications, the
bottleneck is the device memory bandwidth. Optimal performance
is obtained in these cases by carefully minimizing the amount of
memory accessed and by tuning the access pattern to maximize
cache hits.

While the device memory bandwidth is fast, transfers between
host memory (accessible by the CPU) and device memory are typi-
cally between two and six gigabytes per second, depending on the
hardware configuration. Thus, in order to maximize overall applica-
tion speed, transfers between the host and device must be avoided
whenever possible.
1.2. MD on GPUs

The CUDA C programming environment, which was the first
to enable truly general purpose computing on massively parallel
GPUs, was released in 2007. GPU-accelerated MD methods were
developed shortly thereafter [25–27]. HOOMD-blue [25,28] differs
from most other GPU-accelerated MD methods in that it imple-
ments every step of the computation on the GPU and avoids all
host/device transfers, except when needed for disk I/O. By avoiding
both serial code bottlenecks and slow memory transfers between
the host and device, HOOMD-blue reaches maximum performance
on a single GPU. As of this publication, the most recent release
version 0.9.1 deployed on a single GTX 480 performs at a speed
equivalent to LAMMPS [13] parallelized over 50–90 CPU cores on a
Xeon E5540 cluster with Infiniband for a wide range of molecular
dynamics simulations.

HOOMD-blue, available under an open source license [28],
implements the standard algorithms employed by classical MD
frameworks. In each time step, the state of system is updated
in Θ(N) time in a number of phases. First, the particles are
(1) binned into a cell list. From this cell list (2) a neighbor list
is constructed for each particle that contains the indices of all the
particles within the specified interaction range. The neighbor list
is consulted when (3) computing the pair forces between all inter-
acting pairs of particles. Finally, (4) the computed forces are used
to update the particles forward to the next time step. Each phase
(1–4) consists of one or more kernels that are executed on the
GPU, and all necessary data structures are stored in device mem-
ory [25,28]. Different versions of each phase can be interchanged
to implement numerous force fields and ensembles, thereby en-
abling diverse simulation possibilities in a single code package.

In this paper, rigid body constraints are implemented in
HOOMD-blue with the inclusion of new data structures and an
additional version of phase 4 that updates the position, velocity,
and orientation of defined rigid bodies. Rigid bodies are built out
of particles so that the existing modules that compute particle–
particle interactions (phases 1–3) may be used without modifica-
tion. We present the algorithm in Section 2 and its implementation
in HOOMD-blue in Section 3. We present validation and perfor-
mance metrics in Section 4 and concluding remarks in Section 5.

2. Algorithm

First, the terminology of a system of rigid and non-rigid bodies
is introduced. A system contains n particles, each of which may
belong to one rigid body or none at all, for a total of Nbodies rigid
bodies such that Nbodies � n. The center of mass and velocity in the
space frame shall be indicated by lowercase �r and �v for a particle
and uppercase �R and �V for a rigid body with appropriate subscript
indices.

Consequently, each rigid body b is composed of Nb particles in-
dexed by Bbk = [Bb1, Bb2, . . . , BbNb ]. The center of mass of body
b is located at position �Rb , moving at a velocity �Vb . Body b has
a mass Mb and moment of inertia Ib . The orientational degrees
of freedom include its angular momentum �Lb and a normalized
quaternion qb representing its orientation. In the body frame, a
body’s center of mass is at the origin and Ib is diagonal.

Thus, the position and velocity of a particle in the space frame
can be calculated as follows:

�rBbk = �Rb + R(qb) · �Dbk, (1)

�v Bbk = �Vb + �ωb × (
R(qb) · �Dbk

)
, (2)

where �Dbk is a displacement vector that defines the position of
the particle relative to the center of mass (COM) in the body frame
and �ωb = R(qb)I−1RT (qb)�Lb is the body’s angular velocity about its
b
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COM. R(q) is a 3 × 3 matrix that rotates vectors from the body
frame to the space frame [29].

The net force �F and torque �τ acting on body b in the space
frame are the sums of the individual forces and torques resulting
from the particle–particle forces �f i computed by existing algo-
rithms. The sums

�Fb =
Nb∑

k=1

�f Bbk (3)

and

�τb =
Nb∑

k=1

[
R(qb) · �Dbk

] × �f Bbk (4)

are performed over all constituent particles.

2.1. NVE integration scheme

In the microcanonical NVE ensemble, Newtonian mechanics
[29] governs the motion of rigid bodies with the following equa-
tions

�̇Rb = �Vb, (5)

�̇V b = �Fb/Mb, (6)

�̇Lb = �τb, (7)

q̇b = 1

2
A( �ωb) · qb, (8)

where A( �ωb) is a 4 × 4 matrix defined in Ref. [29].
These equations are numerically integrated in a way analogous

to the velocity Verlet discretization scheme used for unconstrained
particles [1]. The velocity and angular momentum of each rigid
body are first updated to t +�t/2, and the position and orientation
are updated to t + �t by the equations

�V (t + �t/2) = �V (t) + �t

2M
· �F (t), (9)

�R(t + �t) = �R(t) + �t · �V (t + �t/2), (10)

�L(t + �t/2) = �L(t) + �t/2 · �τ (t), (11)

q(t + �t) = Q
(
q(t),�t, �L(t + �t/2), I

)
, (12)

where the function Q is an application of the Richardson meth-
od [30].

Forces and torques are then calculated based on the updated
positions and orientations, and the velocity and angular momen-
tum are advanced fully to t + �t ,

�V (t + �t) = �V (t + �t/2) + �t

2M
· �F (t + �t), (13)

�L(t + �t) = �L(t + �t/2) + �t/2 · �τ (t + �T ). (14)

2.2. NVT and NPT integration schemes

One method to model a system of rigid bodies in a canonical
NVT ensemble is to combine a Langevin thermostat with an NVE
integration scheme, also known as Brownian dynamics (BD) [1].
The thermostat is applied to each individual particle in the system,
which effectively thermalizes the rigid bodies without momentum
conservation.

Simulations in the NVT ensemble, as well as isothermal–
isobaric NPT ensemble, can also be accomplished with the ap-
plication of a Nosé–Hoover thermostat (and for NPT, a barostat)
with an extended Hamiltonian. Miller and coauthors [29] derive a
Algorithm 1 Update bodies, step 1
Require: �Nbodies/blockDim� blocks are run on the device

1: b ← blockIdx · blockDim + threadIdx

2: if b � Nb then

3: Mb ⇒ M

4: Ib ⇒ I

5: �Rb ⇒ �Rold

6: �Vb ⇒ �V old

7: �Lb ⇒ �Lold

8: qb ⇒ qold

9: �Fb ⇒ �F
10: �τb ⇒ �τ
11: �V ← �V old + �t

2M · �F
12: �Vb ← �V
13: �Rb ⇐ �Rold + �t · �V
14: �L ← �Lold + �t/2 · �τ
15: �Lb ⇐ �L
16: qb ⇐ Q(qold,�t, �L, I)

17: end if

Hamiltonian formulation of the NVE rigid body equations of mo-
tion by introducing the conjugate quaternion momentum. Kameraj
and coauthors [31] extend it with requisite thermostat and baro-
stat and derive the resulting numerical integration steps similar to
Eqs. (9)–(14).

3. Implementation

Augmenting HOOMD-blue to include rigid body constraints is
accomplished in two parts. First, the following data structures are
added to hold the dynamic, static, and computed properties for
each body: �Rb , �Vb , qb , �Lb , Mb , Ib , Nb , Bbk , �Dbk , �Fb , and �τb . Each
quantity with a single subscript is stored in a simple array. Those
with two subscripts are stored in rectangular matrices where the
second index is the fastest varying index. Dimensions are sized
to the largest body and the leftover space padded with zeroes.
Second, new routines are written that integrate the equations of
motion of the rigid bodies in the system, with separate versions
for the NVE, NVT, and NPT ensembles.

To optimize performance, all data structures are stored in de-
vice memory and all integration steps are carried out on the GPU.
No communication is required between the host and the device to
advance the system. Although padded matrices waste some mem-
ory in systems where different bodies contain different numbers of
particles, they enable contiguous memory accesses in the integra-
tion kernels.

3.1. NVE integration kernels

In HOOMD-blue, the integration of Newton’s equations of mo-
tion for rigid bodies, Eqs. (9)–(14), is distributed over five kernels.
The first two kernels update the state of the body and its con-
stituent particles. Next, one kernel sums the force and torque on
each body from the forces applied to its particles. Finally, two ker-
nels apply the second half of the update to the state of the body
and its particles.

Pseudocode describing the basic structure of these kernels is
provided in Algorithms 1 and 2. Within the pseudocode, device
memory reads/writes are indicated by a double arrow ⇒/⇐ and
local memory writes by a single arrow ←. The performance of
each of these kernels is bound by device memory bandwidth.
Memory accesses are ordered to be contiguous so as to best uti-
lize the cache hierarchy on the GF100 and maximize their perfor-
mance.

The first kernel, detailed in Algorithm 1, updates the state of
the rigid body at the beginning of the time step. Each thread loads
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Algorithm 2 Update particles
Require: Nbody blocks are run on the device

Require: N I , �R , q, �V , and �ω are stored in shared memory.

1: b ← blockIdx

2: if threadIdx == 0 then

3: Nb ⇒ N

4: Ib ⇒ I

5: �Rb ⇒ �R
6: qb ⇒ q

7: �Vb ⇒ �V
8: �Lb ⇒ �L
9: �ω ← RT (q)I−1R(q)�L

10: end if

11: syncthreads()

12: for w = 1 to �N/blockDim� do

13: k ← w ∗ blockDim + threadIdx

14: if k � N then

15: Bbk ⇒ i

16: �Dbk ⇒ �D
17: �ri ⇐ �R + R(q) · �D
18: �vi ⇐ �V + �ω × (R(q) · �D)

19: end if

20: end for

state data for its assigned body from global memory, updates the
position, orientation, velocity, and angular momentum following
Eqs. (9)–(12), and writes the updated state back to global mem-
ory. All memory transactions made by Algorithm 1 are contiguous.

The second kernel, detailed in Algorithm 2, sets the constrained
position and velocity of each particle that belongs to a rigid body.
One block of threads is assigned to each body. At the beginning
of the kernel, one thread loads the state of the rigid body into
shared memory and a barrier synchronization is performed. Then,
all threads participate in computing �ri and �vi . Each thread com-
putes these quantities for several particles i, where i = Bbk and
k = threadIdx + w · blockDim, in a loop over w = 0,1,2,3, . . . . This
sliding window construction handles bodies of arbitrary size with
a single fixed block size. The matrices Bbk and �Dbk are stored with
k as their fast index so that the reads on lines 15 and 16 of Al-
gorithm 2 by neighboring threads are contiguous in memory. The
writes on lines 17 and 18 may or may not be contiguous, depend-
ing on the order in which particle indices are stored in Bbk . To
avoid this potential performance hit, all particles in body b are
grouped together and listed in order in Bbk .

Next, particle–particle forces are computed via the standard MD
force calculation kernels. Then the net force �Fb and torque �τb on
each body are calculated in the third kernel. As in Algorithm 2, one
block of threads is assigned to each body. Each thread i loads Bbk ,
�Dbk , and the force �fk from global memory and the net force and
torque are summed using a standard parallel reduction performed
in shared memory. The resultant �Fb and �τb are then written out to
global memory.

In the fourth kernel, the velocity and angular momentum of
each rigid body are updated again via Eqs. (13) and (14). One
thread is assigned to each rigid body in a manner analogous to
Algorithm 1.

Finally, in the fifth kernel, each body’s particles are set to their
updated constrained velocity. One block of threads is assigned per
body. The kernel is nearly identical to Algorithm 2, except that only
the particle velocity is calculated and written to global memory.

All particles that are not part of a rigid body are updated to
the next step by the existing standard MD integration kernels. Val-
idation and performance results for these rigid body integration
algorithms are provided in Algorithm 4.
Fig. 1. (Left) Initial configuration of randomly placed rods (blue) intermixed with
free particles (green). Rods are attracted to rods and free particles are attracted to
free particles. (Right) Final configuration after the FIRE energy minimization con-
verges. All system snapshots in this paper are composed in VMD [32] and raytraced
with Tachyon [33]. (For interpretation of the references to color in this figure leg-
end, the reader is referred to the web version of this article.)

3.2. FIRE energy minimization

The FIRE algorithm [21] works in conjunction with any MD in-
tegrator to compute a trajectory to a local energy minimum. At
each iteration step, the integrator is used to advance the posi-
tions and velocities for all the particles in the system, given the
computed forces. FIRE modifies velocities and the step size by the
following prescription. As long as the particles in the system are
moving in directions that lower the energy of the system as a
whole, and have been for a sufficient number of steps, particle ve-
locities and the step size are increased, subject to limits. As soon
as the particles are no longer moving so as to lower the energy
of the whole system, all particles are brought to a halt, the step
size is decreased, and new velocities are generated in the direction
of the force on each particle. Convergence to a minimum energy
is attained when the root mean square force and change in the
energy of the system are below set tolerances. In Ref. [21], FIRE
is demonstrated to be effective and surprisingly fast compared to
competing schemes, even for systems with millions of degrees of
freedom.

We extend FIRE to a system containing rigid bodies by adding
the orientation of the rigid bodies to the degrees of freedom and
use the rigid body NVE integrator to advance the positions, ve-
locities, orientations, and angular velocities of the bodies. Both
the center of mass velocities and the angular velocities of all the
bodies are reset to zero if the energy of the system stops decreas-
ing. Convergence is reached when the root mean square force,
root mean square torque, and change in the energy of the sys-
tem are below set tolerances. Ref. [21] points out that all degrees
of freedom must be comparable for the algorithm to work. In
practice, we find that the orientation is a sufficiently compara-
ble degree of freedom and that it does not require special han-
dling.

Fig. 1 demonstrates FIRE applied to an arrangement of rods and
free particles. The rods are rigid bodies composed of five particles
arranged linearly. Rod particles interact with other rod particles by
the attractive Lennard-Jones (LJ) potential. Free particles also in-
teract by the attractive LJ potential as well. Rod particles and free
particles interact by a WCA volume excluding potential. An energy
minimization is performed with a force tolerance of 1e−4, a torque
tolerance of 0.1, and a change in energy tolerance of 1e−12. The
FIRE energy minimization causes the rods to collapse into a hexag-
onally packed bundle and the free particles to collect into a droplet
outside of the rod bundle after 60 684 iterations. Only the first five
percent of the time steps are spent collapsing the rod bundle. The
rest are needed to collect the dispersed LJ droplets into a single
droplet.
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Fig. 2. A system of 225 patchy spheres, each composed of 90 particles. The red and
blue particles are attractive patches on the surface of the body. A single patchy
sphere is shown in the upper right for reference. As shown by Zhang [34], these
bodies self-assemble into rings of six spheres. The spheres have been made invisible
in the frontmost octant so that the ring structure formed by the invisible spheres
can be shown in green. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

4. Validation and performance

The rigid body constraint algorithm is well established in serial
and parallel CPU codes [12,30] and is mathematically no differ-
ent when implemented on the GPU. However, to verify the correct
function of our code, various quantities are checked for validity in-
cluding energy and momentum conservation in the NVE ensemble,
as well as temperature and pressure stability and the correct dis-
tribution of energy over the degrees of freedom in the NVT and
NPT ensembles. Numerous rigid body systems are also simulated
side-by-side on both the CPU and GPU to compare the results and
evaluate their relative performance.

The performance scaling of the GPU-accelerated algorithm is
tested with simulations of a system of “patchy particles” studied
by Zhang et al. [34]. These rigid bodies shall be subsequently re-
ferred to as “patchy spheres” to avoid confusion with our usage
of the word “particle” to refer to the smallest simulation unit.
Each patchy sphere is a rigid body composed of 90 particles dis-
tributed on the surface of a sphere. Two attractive patches, each
constructed from two linear arrangements of particles that in-
teract with Lennard-Jones pair potentials, are placed at an angle
θ = 2π/5 with respect to the center of the body. Per Zhang et al.
[34], this system self-assembles into rings containing six patchy
spheres. The chosen benchmark systems consist of 225, 667, and
2000 patchy spheres resulting in 20 250, 60 030, and 180 000 in-
dividual particles, respectively. Each system was annealed to an
equilibrium structure at kBT = 1.0ε. Fig. 2 shows the system of
225 patchy spheres.

Each simulation is executed using both the LAMMPS and
HOOMD-blue code packages. LAMMPS simulations are deployed
in parallel over 1, 2, 4, 8, 16, 32, 64, and 128 cores on the Nyx
cluster at the University of Michigan. The nodes used are HP
ProLiant DL1000 models with Intel® Xeon® e5540 processors oper-
ating at 2.53 GHz and connected via 20 GB/s Infiniband. All nodes
have identical software configurations, running an x86_64 install of
Fig. 3. Performance in time steps per second obtained while running a simulation of
225 (dotted lines), 667 (dashed lines), and 2000 (solid lines) rigid bodies consisting
of 20 250, 60 030, and 180 000 particles respectively. LAMMPS performance on 1, 2,
4, 8, 16, 32, 64, and 128 CPU cores is compared to HOOMD-blue performance on a
single NVIDIA GTX 480 (indicated by the horizontal lines).

RHEL 5.5, CUDA 3.0, and NVIDIA drivers 195.36.24. The HOOMD-
blue simulations were performed on a custom built workstation
with a single NVIDIA GTX 480. It also contains an AMD Athlon™ II
X4 630 processor operating at 2.8 GHz and runs CentOS 5.5, CUDA
3.0, and NVIDIA drivers 260.19.21.

Performance results are measured by the number time steps
that are executed per second and are shown in Fig. 3. For the 20 K
and 60 K particle systems, LAMMPS achieves peak performance
at 32 and 64 cores, respectively. For the 180 K particle system
LAMMPS no longer scales well at 128 cores; the performance is
only 11% faster than it is at 64 cores. The reason for the poor scal-
ing is the inter-node communication of the rigid body data struc-
tures during the time step. LAMMPS uses spatial decomposition to
parallelizes an MD simulation over many cores. In simulations of
rigid bodies on a CPU cluster, the particles of a given body can
be distributed over an arbitrary number of cores. The force and
torque summation is performed in LAMMPS by an all-reduce op-
eration that returns results from all nodes to each node [30]. In
comparison, the GPU-accelerated implementation is deployed on a
single GPU and requires no inter-node or even host-device com-
munication. The equivalent operation to the all-reduce operation
is performed within a block on a single streaming multiproces-
sor. Consequently, HOOMD-blue attains a level of performance for
rigid body simulations that cannot be reached with a parallel CPU-
only code. For these patchy sphere benchmarks in particular, over
a wide range of system sizes HOOMD-blue is 2.5–3.6× faster than
LAMMPS at its peak performance for any number of cores.

We also tested systems that mix rigid bodies and unconstrained
particles. One example, shown in Fig. 4, is a system of polymer-
tethered nanorods originally studied in Ref. [2] using LAMMPS.
In this simulation, each tethered rod is composed of a five par-
ticle rigid rod and a nine particle flexible tether. One thousand
tethered rods, for a total of 14 000 particles, are placed in a box
with packing fraction of 0.22. Rod particles are attracted to each
other via a shifted Lennard-Jones pair potential with an interac-
tion cutoff of 2.5 distance units. All other particle interactions are
WCA volume excluding. The system is in an NVT ensemble with
a kinetic temperature of kBT = 1.4ε, where ε is the well depth
of the Lennard-Jones potential. At these parameters the tethered
nanorods self-assemble into lamellar bilayers [2].

Simulations are executed with HOOMD-blue on three modern
NVIDIA GPUs, a GTX 480, a Tesla S1070, and a Tesla S2050. The
Tesla S1070 and S2050 are installed in the Nyx cluster environ-
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Fig. 4. A system of one thousand tethered nanorods that have self-assembled into
a lamellar bilayer. The upper right inset depicts a single tethered nanorod for ref-
erence. Each tethered nanorod is modeled by five particles rigidly connected in a
line, attached to a flexible tether of nine particles. Bonds, both rigidly constrained
and unconstrained, are shown as cylinders. Tethers have been removed from view
in the right half of the image.

Fig. 5. Performance in time steps per second obtained while running a simulation of
one thousand tethered nanorods (14 000 total particles) on various hardware con-
figurations. Each benchmark is performed 50 times. Bars are plotted at the median
value and error bars display one standard deviation of variability.

ment where they are hosted by IBM System x3455 nodes each
with two AMD Opteron™ 2356 processors operating at 2.3 GHz.
The LAMMPS simulations were deployed over 1, 8, 32, 64, and 128
cores of the Nyx cluster in the same configuration used for the
patchy sphere runs.

The results of this side-to-side comparison is shown in Fig. 5.
HOOMD-blue running on a GTX 480 executes the tethered nanorod
simulation at 1791 time steps per second, which is 2.5× faster
than LAMMPS running at peak performance in parallel on 64 CPU
cores.

5. Conclusion

This paper discusses how a rigid body constraint algorithm
is incorporated into HOOMD-blue, a massively parallel GPU-
accelerated MD application. All data structures are stored on the
GPU in order to attain the highest level of performance possible
by avoiding costly transfers between the host and device. The per-
formance of the kernels implementing the rigid body integration
steps is limited only by the device memory bandwidth. This is
achieved by carefully avoiding unnecessary device memory ac-
cesses and arranging the access patterns so as to make optimal
use of the cache hierarchy on the GF100.

Methods for simulating NVE, NVT, and NPT ensembles of rigid
bodies are implemented in HOOMD-blue version 0.10.0, which is
available free and open source [28]. While two orders of magni-
tude increases in computational speed over a single CPU core have
already been documented for this code package running basic MD
simulations [25,28], the GPU is especially well-suited for rigid body
constraints. Two case studies are presented in this paper where
HOOMD-blue consistently executes a factor of 2.5–3.6 times faster
than the peak performance of the LAMMPS code package paral-
lelized over any number of cores.

This paper also introduces a modest adaptation to the FIRE en-
ergy minimization algorithm that makes it suitable for use with
rigid bodies. To our knowledge, HOOMD-blue is the first MD code
to allow energy minimization to be applied to systems with rigid
body constraints.

With GPU acceleration, MD simulations of systems of rigid bod-
ies can now be carried out on larger systems and for longer time
scales on a single workstation than was previously possible even
on large clusters. This advance will allow simulations of diverse
systems, from molecules and proteins to nanoparticles and col-
loids, and explorations of previously inaccessible phase spaces.
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