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ABSTRACT 

This paper presents the Neural Network modeling and simulation of a 265 Watts photovoltaic array installed at the Faculty of 

Engineering and Engineering Technology of Abubakar Tafawa Balewa University, Bauchi, Nigeria. Hitherto, Mathematical 

modeling is the favoured method for characterizing photovoltaic (PV) arrays. This approach would require detailed information on 

the physical parameters relating to the solar cell material, which may not be readily available. Even in situations where the required 

information is provided on the manufacturer’s datasheet, it tends not to be very accurate as it is not representative of the actual field 

performance of the array. Thus results obtained from mathematical modeling of photovoltaic arrays are only accurate to the extent of 

the accuracy of the model parameters. A better PV array characterization approach is to use Neural Network modeling because it 

does not require any physical definitions of the array and hence has the potential to provide a superior method of characterization 

than the already established conventional techniques. In this paper, two Radial Basis Function Neural Network (RBFNN) trained 

models are employed to simulate the performance of a 265 Watts photovoltaic array. The first model predicts the array I-V and P-V 

curves while the second predicts its maximum power for all operating weather conditions. Results of array performance plots show 

close correlation with those obtained through conventional mathematical modeling. RBFNN returned absolute errors of 1.794 %, 

1.594 % and 1.262 % with respect to PV maximum power predictions for harmattan, cloudy and clear sunny seasons respectively. 
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1. INTRODUCTION 

 

Photovoltaic power systems have increasing roles in modern 

electric power energy mix due to the continuing decline in the 

world’s conventional sources of energy. The major 

advantages associated with photovoltaic systems are that [1]: 

 They have no moving parts. 

 They don’t produce any noise. 

 They require little or no maintenance. 

 They work satisfactorily with beam or diffuse 

radiation, thereby posing no health or environmental 

hazards. 

These systems have many applications including water 

pumping, refrigeration and vaccine storage, air conditioning, 

light sources, electric vehicles, PV power plants, and hybrid 

systems in military and space applications. 

Photovoltaic arrays are the electric generators of photovoltaic 

systems. They have nonlinear current/voltage characteristics 

under varying solar irradiance and temperature conditions. 

Furthermore, they suffer from the following disadvantages: 

 High fabrication cost. 

 Low energy conversion efficiency (typically 12 – 20%) 

[2]. 

The efficiency can drop further due to a number of factors 

such as array temperature and load conditions. Thus in order 

to use photovoltaic arrays more efficiently, their response to 

various operating conditions must be understood. It is always 

desirable to maximize the power derived from the array and 

thus improve its efficiency by operating it at its optimal 

power point. Unfortunately however, due to its nonlinear 

nature, the current and power of the PV array depend on its 

terminal operating voltage. The conventional photovoltaic 

array mathematical model requires detailed knowledge of 

some physical parameters relating to the solar cell material, 

solar trajectory and wind speed, humidity and illumination 

factor. At times due to lack of or unreliable information, the 

derived mathematical model may be inaccurate [3].  

Artificial Neural Network modeling technique has attracted 

wide spread interest in photovoltaic array modeling because it 

does not require any physical definitions for the array and has 

self adopting capabilities which make it suitable for handling 

nonlinearities, uncertainties and parameter variations which 

may occur even in a controlled PV array generator. Two 

artificial Neural Network architectures have been proposed to 

completely simulate the PV array and both are of the Radial 

Basis Function (RBF) Neural Network type because of its 

obvious advantages. The first RBF Neural Network 

architecture will be trained to predict the array’s maximum 

power point power for Harmattan, Cloudy, and Clear Sunny 

weather conditions. Solar irradiance (G) and Temperature 

(Temp.) are the inputs to this network while maximum power 

current (Imp) and maximum power voltage (Vmp) will be its 

outputs. The second RBF Neural Network architecture is 

trained to predict the array I-V and P-V characteristic curves 

for the three weather conditions. Solar irradiance (G), 

Temperature (Temp.) and Array voltage (𝑉𝐴) are the 

Network’s three inputs while the Array load current (𝐼𝐴) is its 

output. Appropriate test data is used to validate the trained 

Neural Networks and simulation results are presented and 

discussed. 
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2.  RADIAL BASIS FUNCTION NEURAL 

NETWORK MODELING APPROACH  

The alternative PV array modeling approach involving radial 

basis function type neural network as against mathematical 

modeling is proposed in this paper. In order to achieve the 

desired objective, suitable RBF Neural Network architectures 

have been proposed and discussed herein. 

2.1  Proposed Architecture of RBF Neural Network for 

PV Array Modeling 

The generalized architecture of RBF neural network model 

for the experimental PV array test rig is shown in Fig. 1 

comprising multi-inputs mapped into multi-outputs via N 

dimensioned hidden layer. The hidden layer nodes are defined 

by parameter vector and scalar quantity called ‘center’ and 

‘width’, respectively whilst each hidden layer node (also 

known as RBF unit) uses Gaussian density function as 

activation function. The admissible input signals for 

comprehensive solar energy modeling are as shown in Fig. 1 

but the most critical signal inputs being solar irradiance G, 

PV array temperature, T and PV array voltage, 𝑉𝐴.  The 

desired output signals: 𝐼𝑚𝑝
𝐴 , 𝑉𝑚𝑝

𝐴  and 𝐼𝐴 are also assigned to 

the nodes of the output layer.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the sake of generalization, let the assumed input signals 

(solar radiation, temperature, wind, humidity and array 

voltage) be denoted as (𝑥1, 𝑥2. 𝑥3, 𝑥4 𝑎𝑛𝑑 𝑥5) and output 

signals (𝐼𝑚𝑝
𝐴 , 𝑉𝑚𝑝

𝐴  and 𝐼𝐴) be denoted as (𝑦1, 𝑦2𝑎𝑛𝑑 𝑦3).  If the 

output layer is a set of linear mapping functions of the hidden 

layer, then the input-output mapping for the RBFNN can now 

be cast by equation (1) as follows: 

 ŷk = ak + ∑ vjkη
j
 H

j=1 ; k = 1,2 … n′              (1) 

Where  η
j

= exp (− ∑
[xi − x̂ij]

2

σj
2⁄N

i=1 ) ; ŷk:  is the final 

output at node k; n′ : is the number of output nodes; H:  is the 

number of hidden layer nodes; ak: is the bias of the kth output 

node; N is the number of input nodes; x̂ij: is  center of jth 

RBF unit for input variable i; σj is the width of  jth RBF unit 

and vjk is the weight between kth  output and jth node of 

hidden layer.   

 

The parameters of RBFNN that need to be determined include 

RBF unit centers, widths and weights.  These parameters are 

usually determined through three steps of training activity [4].  

The RBF centers are usually determined via k-means 

clustering algorithm and once established, the width  σj of the 

jth RBF unit in the hidden layer is computed by equation (2) 

as: 

  σj =  (
1

H
∑ ∑ ‖x̂mj − x̂mi‖

n
i=1

H
j=1 )

1/4

              (2)   

 

 

 

Where   x̂mj and  x̂mi  are the mth element of the center of jth 

and ith RBF units.   

The literature is quite rich in methods for determining RBF 

centers and widths as well as other pertinent parameters.  

Moody and Darken, [5] have presented such methods for the 

computation of RBF parameters and are adopted for 

implementation in this paper. 

 

It is worthy of mention again that the RBFN has been 

established to be superior to back- propagation Neural 

Network from the standpoint of predictive accuracy [6]. 

Different configurations of Radial Basis Function Networks 

will therefore be trained to simulate the performance of a 

stand-alone photovoltaic array of fixed orientation to predict 

its maximum power outputs for different microclimatic 

conditions.  The training of RFBN must of necessity rely on 

field measurements with respect to the experimental PV array 

test rig.  In the next section, the modalities for the acquisition 

of field data on the PV array are described in sufficient detail. 

 

3.  EXPERIMENTAL PV ARRAY TEST RIG: 

DATA   COLLECTION AND CREATION 

OF DATABASE 

 The principal goal of this research effort concerns the 

acquisition of long term PV array test rig field measurement 

data.  Towards the realization of this goal, an in-depth 

experimental PV array test rig and fairly elaborate 

measurement procedure was setup. The field data acquisition 

Figure 1: Generalized RBF Neural Network Architecture for Array Performance Modeling 
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scope encompasses hourly solar irradiance, cell temperature, 

array current and voltage over a prolonged period.  More 

specifically, a methodology is evolved for the collection and 

creation of database in order to characterize the PV array 

current/voltage relationships and maximum power point 

values as functions of irradiance, G and PV array 

temperature, Tcell. 

 

The flowchart depicted in Fig. 2 constitutes the experimental 

procedure with which to create the necessary current/voltage 

database on the experimental PV array test rig.  We reiterate 

again that the prime objective of field measurements is to 

underpin realistic model development for the polycrystalline 

silicon type PV array test rig for its performance evaluations 

under different microclimatic conditions of the site. 

  

For the avoidance of doubt, the depth and scope of the field 

measurements embarked upon with respect to the 

experimental PV array test rig entail the executions of the 

following: 

 

 Hourly PV array open circuit voltage, Voc, short 

circuit current, Isc as well as hourly irradiance, G and 

PV cell temperature, Tcell  measured from daily 

sunrise to sunset for some selected days within each 

Bauchi microclimatic period considered i.e. 

harmattan, cloudy and clear sunny seasons. 

 

  I-V curve trace data generated by discretely varying 

load across the PV array from minimum to 

maximum at fixed G and T for some selected days 

within each Bauchi microclimatic condition.   

 

 At constant solar irradiance G, quickly pre-cool the 

experimental PV array temperature (via PV surface 

heat extraction and shading earlier described) below 

ambient temperature;  turn off cooling system, un-

shade the PV array and  measure its voltage/current 

relationship per incremental rise in  PV array 

temperature. Repeat experimentation to capture all 

microclimatic attributes at experimental PV array 

site. 

 

 Entry of all the PV array measurements into 

microcomputer computing facility to create 

necessary database and data classifications in 

accordance with climatic attribute of the PV array 

site.  

 

 Extensive pre-processing of PV array data and 

plotting of benchmark I-V curves as well as 

extracting their respective maximum power points 

(𝐼𝑚𝑝 , 𝑉𝑚𝑝) as functions of G and T with respect to all 

microclimatic conditions of the site. 
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Implementation of PV Array Experimental Setup 

Equipped with Two Measurement Channels–Manual and 

Automated Measurement Options 

Select Mode of 

Measurements 

Manual measurement option configured around use 

of Digital meters (ammeter, voltmeter, K-type 

thermocouple based Digital thermometer and 

pyranometer) connected to PV array test rig loaded 

by variable resistor box or rheostat.  

Automatic Data Acquisition System (DAS) option 

configured around Multi-channel Data logger (Type 

DL2e) current, voltage sensors; cell temperature via 

K-type thermocouple and pyranometer sensors linked 

to PV array test rig under variable resistive load.  

Manual Automatic 

Using manual or automatic option measure:  

 Hourly G, PV- Tcell, Voc & Isc  within daily sunrise to sunset duration; 

 At each fixed G & Tcell : PV array V and I for discretely varied PV load; 

 Pre-cool PV array, un-shade and measure V &I at constant G but variable 

T. 

 

 
Is 
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J = J+1 

Is 

L > MSEASON 

? 
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L = L+1 

No 

 Store PV array Data Acquired in structured  format: 

 Pre-process structured data to extract  Imp & Vmp for all climatic conditions 

Pre-process PV array  

No 

Yes 
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END 

Start PV 

Array Data 
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Figure 2:  Flowchart of Experimental PV Array Test Rig Data Acquisition Framework 
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4. ALGORITHMIC FLOWCHARTS FOR 

SOFTWARE IMPLEMENTATIONS 

This section presents computational procedure driven 

flowcharts to facilitate software implementation of the 

proposed simplified analytical and RBFNN models for the 

experimental PV array test rig. The two proposed models are 

so structured to rely exclusively on long-term field 

measurements with respect to the experimental PV array test 

rig.  For the purpose of comparative evaluations, we have 

extended the existing techniques that rely entirely on 

manufacturer data specifications to the proposed simplified 

analytical model. 

 Fig. 3 provides the generalized flowchart for the training 

requirements of the proposed RBFNN so as to be able to 

predict the performance of the experimental PV array test rig.  

As matter of fact, determining the structure of the RBF 

Neural Network is based on the underlying theory about what 

influences the dependent variables. This involves choosing 

input variable(s), number of input neurons, number of hidden 

neurons, the transfer function type, choosing the output 

variable(s) and the number of output neurons. The PV array 

field measurements naturally constitute the training and 

verification data to be used in determining the optimum 

configuration and parameters of the RBFNN. 

An integrated functional block diagram portraying the inter-

relationship among the three models studied and for which 

results are compared is depicted in Fig. 4.  Against this 

backdrop, the training and ultimate implementation of the 

proposed RBFNN PV model has been fully explored in 

MemBrain software platform.  
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Initialize RBFNN Model as follows:  

 Array I-V and P-V Performance (Model 1) 

 Array Maximum Power (Pmp) Prediction (Model 2) 

Select RBFNN Model 

Construct an RBFNN Network with the following Structure: 

 Input Layer Neuron(s) (I) = n1 

 Hidden Layer Neuron(s) (H) = n2 

 Output Layer Neuron(s) (J) = n3 

 

Normalize the Learning Data 

Calculate Network Parameters Using Gradient 

Descent Learning Algorithm 

     is H 

maximum? 

No 

Read the following Learning Data: 

 INPUTS – G , T and  VA 

 OUTPUT –Imp
A  , Vmp

A  and IA 

H = H +1 
Compute and Save Mean 

Square Error (MSE) 

Save the RBFNN Structure 

with the Least MSE  

Yes 
Stop 

Figure 3: Generalized Flowchart for the Training of the RBFNN Models 
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5. DEVELOPED RBF NEURAL NETWORK 

ARCHITECTURES  

The exact structures of the proposed Neural Networks for 

modeling the photovoltaic array and maximum power point 

prediction are indicated in Figs. 5 and 6 respectively. The 

input to the array current/voltage performance modeling 

Network (Fig. 5) is a linear layer consisting of three neurons 

whose inputs are solar irradiance, temperature and array 

voltage. The hidden layer consists of 5 neurons with radial 

basis function. The output layer consists of one neuron which 

gives the values of array load current. Similarly, the input to 

the maximum power prediction network (Fig. 6) is also a 

linear layer consisting of two neurons whose inputs are solar 

irradiance and temperature. 

 

 

 

 

 

 

 

 

 

The hidden layer consists of sixty neurons with radial basis 

function. The output layer consists of two neurons which give 

the values of maximum power current (Imp) and maximum 

power voltage (Vmp). Every neuron in both network structures 

is appropriately biased. 
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Figure 4:   Integrated Functional Block Diagram of PV Array Models Studied and Compared 
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5.1 Training of the Radial Basis Function Neural 

Network  

There is no ‘rule of thumb’ on the optimum number of 

neurons in a given Network structure. However, the number 

of neurons in the input layer equals the number of input 

variables while the number of neurons in the output layer 

equals the number of output variables. For our proposed 

structure (Fig. 5), the number of input layer neurons equals 3, 

since there are three input variables while only 1 neuron is 

used in the output layer. The number of neurons in the hidden 

layer was determined by trial and error via suitably modified 

MemBrain neural network that faithfully implemented the 

RBFNN. This was then achieved by training different 

structures with arbitrarily chosen number of hidden neurons 

and selecting the structure with the lowest Mean Square Error 

(MSE). Table 1 provides the summary of MSEs as obtained 

from some selected trained Networks. From Table 1, the 

lowest mean square error of 407.1 x10-6 is obtained from the 

structure with five neurons in its hidden layer. This structure 

is therefore adopted and appropriately re-trained. The 

required database that is created was first divided into training 

and testing (validation) sets. In this case, there were a total of 

983 data patterns, out of which 25 % was set aside as the 

testing set (246 data patterns). The remaining 737 data 

patterns constitute the training set and were used to train the 

network.  

The trained RBF neural network was then validated by using 

the testing set of 246 patterns. Both training and testing 

sessions were preceded by appropriate normalization of the 

data. 

5.2 Training of the Maximum Power Prediction Network 

 The proposed structure for the maximum power point 

prediction has two input variables and two output variables 

(see Fig. 6). Thus the number of neurons in the input and 

output layers are 2 each. To determine the number of neurons 

in the hidden layer, a number of training sessions for different 

arbitrarily chosen number of hidden neurons was carried- out 

with the results summarized in Table 2. 

From Table 2, the lowest mean square error of 299.40 x10-6 is 

obtained from the Network structure having 60 neurons in its 

hidden layer. This structure is therefore adopted and re-

trained for maximum power point prediction. The database 

created was also divided into training and testing sets. There 

were a total of 60 data patterns, out of which 25 %, i.e. 25 

data patterns were set aside for testing and validation. The 

remaining 45 data patterns constitute the training set and used 

to train the Network. Herein, both the training and testing 

data sets were appropriately normalized.  
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     Figure 6: RBF Neural Network Architecture for Maximum Power 
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Table 1: Mean Square Error for Different 

Numbers of Hidden Layer Neurons as 

Obtained from the Array Modeling Network 
 

 

 

 

                 Table 2:Mean Square Error for Different 

Numbers of Hidden Layer Neurons as 

Obtained from the Maximum power 

Prediction Neural Network 

5.3  Simulation Results of RBFNN Based PV Array 

Performance Evaluation 

The simulation results based on RBF neural network, for I-V 

and P-V performance modeling of the experimental PV test 

rig, are shown in Figs. 7 to 9 that principally reveal the effects 

of harmattan, cloudy and clear sunny season, respectively at 

the experimental site. These figures essentially combined the 

results of I-V and P-V plots of RFBN and field measurement 

approach for the three principal seasons considered.  

 

Furthermore, simulations based on RBF neural network of 

Fig. 6 were done to characterize PV maximum power, Pmp as 

function of PV temperature or solar irradiance. With each 

season fixed at its average seasonal irradiance, Figs. 10 to 15 

depict, in pair of, field measurement and RBFN prediction of 

the variations of Pmp versus temperature for harmattan, cloudy 

and clear sunny seasons.
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S/N Hidden Layer 

Neurons 

Mean Square Error 

(MSE) x 10-6 

1 3 368.0 

2 4 762.6 
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4 6 672.4 

5 12 1029.6 

6 20 1171.0 

7 30 1312.0 

8 50 1190.6 

9 150 2777.0 
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Mean Square Error 
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Figure 7: I-V and P-V Plots of Measured and 

RBFNN Simulated Results for Harmattan Season 

 

 

           Figure 8: I-V and P-V Plots of 

Measured and 

RBFNN Simulated Results for Cloudy 

Season 

 



International Journal of Engineering and Technology (IJET) – Volume 5 No. 3, March, 2015 

 

ISSN: 2049-3444 © 2015– IJET Publications UK. All rights reserved. 122 

 

 Simulated Results

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

 Measured Data for training

P-V Curve

I-V Curve

G = 950.6 W/m
2

T = 46 
0
C

A
rr

a
y
 C

u
rr

e
n

t 
(A

)

Array Voltage (V)

0

50

100

150

200

250

A
rr

a
y
 P

o
w

e
r 

(W
)

 

The same simulations were repeated to characterize the 

variations of Pmp with the solar irradiance and compared with 

its counterpart field measurements for the three seasons at 

their respective average seasonal temperature. The field 

measurements paired with their counterpart simulation results 

for this scenario are shown in Figs. 16 to 21.   In summary, 

these figures are essentially plots of measured and RBFN 

predicted Pmp of the experimental PV array as function of 

solar irradiance for all seasons also parameterized by their 

respective specified average seasonal temperatures. 
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Figure 9: I-V and P-V Plots of Measured and 

RBFNN Simulated Results for Clear Sunny 

Season 

 
 

 

 

Figure 10: Plot of Measured Array Pmp  

versus Temperature for Harmattan Season 

  

 

Figure 11: Plot of RBFNN Predicted Array  

Pmp  versus Temperature for Harmattan Season 

  

 

Figure 12: Plot of Measured Array Pmp 

Versus Temperature for Cloudy Season 

 

 

Figure 13: Plot of RBFNN Predicted Array Pmp 

versus Temperature for Cloudy Season 
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Figure 16: Plot of Measured Array Pmp 

Versus Irradiance for Harmattan Season 

  

 

Figure 17: Plot of RBFNN Predicted Array 

Pmp versus Irradiance for Harmattan Season 

 

 

 

 

  

 

Figure 18: Plot of Measured 

Array Pmp 

versus Irradiance for Cloudy 

Season 

Figure 19: Plot of RBFNN Predicted Array 

Pmp versus Irradiance for Cloudy Season 

  

 

Figure 14: Plot of Measured Array Pmp 

versus Temperature for Clear Sunny Season 

  

 

Figure 15: Plot of RBFNN Predicted Array 

Pmp versus Temperature for Clear Sunny Season 
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6. RESULTS OF PV ARRAY MAXIMUM 

POWER OUTPUTS FOR EACH 

CLIMATIC CONDITION USING RBFNN 

AND OTHER METHODS   

 
The major goal of this paper is to test Radial Basis Function 

Neural Network and Simplified Analytical Models that we 

developed by way of predicting the operational performance 

of a PV array under different climatic conditions and 

benchmarking them against similar results via field 

measurements. From this standpoint, the operational 

performance of the PV array is principally characterized in 

terms of its maximum power delivery capability during solar 

irradiance period and throughout the year. As a corollary, the 

maximum power delivered by the experimental PV array test 

rig was done via the following methods: 

 PV array  based  field measurements during 

harmattan, cloudy and clear sunny climatic 

conditions; 

 

 Field Measurement Based PV Simplified Analytical 

Model (FMB-PV-SAM) maximum power 

computations for harmattan, cloudy and clear sunny 

climatic conditions; 

 

 Manufacturer Datasheet Based PV Simplified 

Analytical Model (MDB-PV-SAM) maximum 

power computations for harmattan, cloudy and clear 

sunny climatic conditions; 

 

 RBFNN based maximum power computations for 

harmattan, cloudy and clear sunny climatic 

conditions; 

 

A comprehensive summary of the results obtained are 

presented in Table 3. 

  

7. COMPARATIVE EVALUATION OF 

ANALYTICAL MODELS AND RBFNN 

SIMULATION RESULTS  

   

  Mathematical and Neural Network modeling have been 

carried-out on a 265 W photovoltaic array. Power outputs 

from the array for harmattan, cloudy, and clear sunny seasons 

have been determined and the main results are summarized in 

Table 3.   This table is essentially a compendium of the 

overall results achieved.  With the field measurement results 

admitted as the benchmarks, error analyses revealed that 

FMB-PV-SAM returned absolute errors of 0.110 %, 0.106 % 

and 0.063 % with respect to PV maximum power predictions 

for harmattan, cloudy and clear sunny seasons whilst, for the 

same scenario, RBFNN returned  absolute errors of  1.794 %, 

1.594 % and 1.262 %.  Finally, the predictive errors returned 

by MDB-PV-SAM are 4.900 %, 5.148 % and 1.311 %.  

Comparison of these errors reveals the superior accuracy 

levels of the PV array analytic models as well as the meta-

heuristic technique based model over existing model based on 

manufacturers’ datasheets. Also noteworthy, is the 

appreciable reduction of power output of the PV array, most 

especially during the harmattan and cloudy or rainy seasons.  

Expectedly, the clear sunny climatic condition yielded the 

highest harvest of solar energy by the experimental PV test 

rig sited at Bauchi locality with 84.34 % of the manufacturer 

specified baseline rating attained.  Conversely, harmattan 

bearing climatic condition at PV site 

yielded one of the least PV array power output predictions 

with only 55 % of the manufacturer specified rating attained 

according to PV model predictions supported by field 

measurement verifications.       

 

8. CONCLUSION 

The results of PV array field measurements, two analytical 

models and radial basis function neural network based model 

have been presented and discussed extensively. More 

specifically, the I-V and P-V characteristic curves of the array 

as determined via field measurements and trained RBF 

Neural Network have been characterized extensively. 

Furthermore, comparative plots of measured array maximum 

power and RBFNN predicted array maximum power have 

also been presented. The far reaching results generated from 

the field measurements and PV models were discussed from 

the standpoints of their capabilities to accurately predict the 

performance parameters of an experimental PV array test rig 

subjected to different climatic conditions.  The field 

measurement based analytical model and RFBNN 

architecture for PV performance evaluation yielded superior 

results when compared with that of the manufacturer 

datasheet based mathematical model. Various algorithmic 

procedures have also been evolved which are aimed at 

Figure 20: Plot of Measured Array Pmp 

versus Irradiance for Clear Sunny Season 
 

Figure 21: Plot of RBFNN Predicted Array 

Pmp versus Irradiance for Clear Sunny Season 
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guiding the development of suitable software programs on MATLAB and other platforms

Table 3: Comparisons of PV Array Power for each Climatic Condition via Different Methods 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 +:Average season Solar Irradiance = 586.7 W/m2 & Average Seasonal Temperature = 29 oC 

*:Average season Solar Irradiance = 600.0 W/m2 & Average Seasonal Temperature = 38 oC 

**: Average season Solar Irradiance = 950.8 W/m2 & Average Seasonal Temperature = 46 oC 

++: Standard test condition (STC): T = 25 oC & G = 1 000 W/m2 irrespective of prevailing weather condition 
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Method 

Climatic  Seasons  

Remarks Harmattan+  

𝑃𝑚𝑝(W) 

Cloudy* 

𝑃𝑚𝑝(W) 

Clear Sunny** 

𝑃𝑚𝑝(W) 

 

Field Measurement 

 

145.51 

 

141.80 

 

223.49 

 

Taken as benchmark 

results 

 

 

 

Manufacturer Datasheet Based PV 

Simplified Analytical Model 

(MDB-PV-SAM) 

 

 

 

152.64 

 

 

149.10 

 

 

226.42 

 

Very 

Popular among 

researchers  in the 

literature 

 

 

Field Measurement Based PV 

Simplified Analytical Model 

(FMB-PV-SAM) 

 

 

 

145.67 

 

 

141.65 

 

 

223.35 

 

Technique based on 

field measurement 

 

 

 

RBFNN Based Model 

 

 

142.90 

 

139.54 

 

220.67 

Neural network 

based on field 

measurement 

 

PV Based++ 

Datasheet Estimate  

 

265 

 

265 

 

265 

 

Based on standard 

test conditions 


