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This paper presents an optimal sliding mode cascade control for stabilization of a class
of underactuated nonlinear mechanical systems. A discrete-time, nonlinear model predic-
tive control structure is used to optimally select and update the parameters of the sliding
mode control surfaces at specified intervals in order to achieve a desired performance
objective. The determination of these surface parameters is subject to constraints that
arise from the stability conditions imposed by the sliding mode control law and the physi-
cal limits on the system such as input saturation. Nominal stability of the optimal cascade
control structure is demonstrated and its robust performance is illustrated using an
experimental rotary inverted pendulum system. [DOI: 10.1115/1.4005367]

1 Introduction

Model predictive control (MPC) has been widely applied to non-
linear systems as discussed in the extensive review article by Ref.
[1]. MPC allows for optimal performance based on a specified
objective, while satisfying all the constraints arising from stability
and system’s physical limitations. However, predictive control
requires on-line optimization resulting in computation times that can
limit its applicability in mechanical systems with fast dynamics.
Recent progress in fast nonlinear MPC algorithms have begun to
address this issue [2], however, the complexity involved in the algo-
rithm development and numerical solution techniques still pose a
challenge. The robustness of these controllers to numerical failure of
the on-line optimization algorithms also remains a limitation.

MPC application to underactuated nonlinear mechanical sys-
tems with fast dynamics has been limited. Oh and Sun [3] devel-
oped an MPC for line-of-sight path generation and way-point
tracking of underactuated surface vessels with input constraints
where computational speed is not critical. Wen et al. [4] applied a
nonlinear MPC to three-axis attitude control of fully actuated and
underactuated spacecrafts where the control action at each time
instance is determined based on the future predicted trajectory.
Oliveira and Lages [5] applied nonlinear model based on the pre-
dictive control to develop a control input sequence that moves for-
ward a brachiation robot on a horizontal line. Varga and Lantos
[6] developed an MPC for underactuated nonlinear mechanical
systems moving along a known reference path such as the inverted
pendulum. However, they generalized the predictive control algo-
rithm of linear time-invariant systems to linearized time variant
systems rather than using a truly nonlinear controller. Jung and
Wen [7] presented a nonlinear MPC for swing-up of a rotary
inverted pendulum with iterative refinement and where the only
objective is to reduce error. The experimental results show a lack
of consistency and robustness in the balancing.

Sliding mode control (SMC) [8] is a robust stabilizing nonlinear
control law that computes quickly and reliably, making it suitable
for systems with fast dynamics. The dynamic performance of a

sliding mode controller, however, is a complex function of the
effort, surface, and system parameters. The control law is com-
prised of a reaching phase where the trajectory reaches the surface
and a sliding phase where it slides to the origin. The main disad-
vantage of SMC is chattering around the surface during the sliding
phase due to use of the discontinuous sign function, which is nor-
mally approximated by a continuous function. Another disadvant-
age of the controller is that it normally requires high gains
particularly during its reaching phase. Hence, there have been
some attempts to optimally redefine the sliding surfaces [9–13].

SMC has been widely used for underactuated mechanical sys-
tems. Bergerman and Xu [14] introduced variable structure con-
trollers for robots by physically locking joints that are not being
controlled using an iterative process. Lee et al. [15] developed
specific set point sliding control laws for planar 2-link and 3-link
robots under the influence of gravity. Su and Stepanenko [16]
introduced a SMC for serial underactuated robots under the influ-
ence of gravity. Xu and Ozgüner [17] propose a sliding mode con-
trol law for a class of underactuated mechanical systems that can
be represented in normal form and satisfy invertability conditions
as discussed by Olfati-Saber [18]. They apply this method to flight
control of a quad-rotor helicopter. Park et al. [19] and Martinez
et al. [20] developed sliding mode controllers for two degrees-of-
freedom (DOF) underactuated mechanical systems. The earlier
method is based on decomposition of the system into two subsys-
tems and was applied to simulate the inverted pendulum on the
cart problem, while the later method used dry friction to essen-
tially lock a joint (DOF) when positioning the other. Lee et al.
[21] also developed an SMC by decomposing the underactuated
mechanical system into subsystems and applied it to an overhead
crane (pendulum on a cart) system. Sankaranarayanan and Mahin-
drakar [22] present a sliding mode control algorithm to stabilize a
class of underactuated mechanical systems that are not linearly
controllable and violate Brockett’s necessary condition for smooth
asymptotic stabilization of the equilibrium point [23]. Riachy
et al. [24] propose a second order sliding mode control for under-
actuated systems that are applied to stabilization of an inverted
pendulum. Santiesteban et al. [25] apply the same approach to
swing-up control of the inverted pendulum. Ashrafiuon and Erwin
[26] presented a sliding mode control for two different classes of
mechanical systems based on the existence of isolated equilibrium
and Brockett’s necessary condition for smooth asymptotic stabili-
zation and applied it to the inverted pendulum on a cart problem.
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The approach was later applied to an experimental rotational/
translational proof-mass actuator system by Avis et al. [27].

Model predictive and sliding mode control approaches have
been previously combined to produce more effective controllers
[28–30]. However, none seem suitable for underactuated nonlin-
ear mechanical systems with fast dynamics. Zhou et al. [30] intro-
duced a discrete-time nonlinear sliding mode model predictive
controller where MPC is used to predesign the switching function
and applied it to simulate a simple second order undamped sys-
tem. Garcia-Gabin and Camacho [28] developed a predictive slid-
ing mode controller for nonlinear nonminimum phase systems and
demonstrated considerable improvements in terms of stability and
robustness in a reactor system example compared with MPC.
Perez et al. [29] introduced a predictive sliding mode controller to
improve performance and robustness of nonlinear processes that
can be represented as first order system plus a dead time.

In this work, a multirate cascade control structure is proposed that
optimally adjusts the parameters of SMC developed in Ref. [26]
using an MPC controller. By combining MPC and SMC in this fash-
ion, it is possible to achieve near-optimal performance while also
providing the computation time necessary for predictive control. A
simple block diagram of the control structure is shown in Fig. 1.
There are a number of advantages to the proposed approach. Stabili-
zation of the nonlinear system can be maintained even when the pre-
dictive controller fails to obtain a numerical solution to the on-line
optimization problem. This aspect of the approach is particularly
attractive when the controlled target is an unstable equilibrium point
of the system. Common performance objectives, such as minimum
energy and minimum time, can easily be incorporated into the slid-
ing mode control framework. By optimizing the specified perform-
ance objective under sliding mode control, undesirable state
trajectories can be eliminated through the use of dynamic state con-
straints in the optimization problem. Constraints in this optimization
can also include maximum and minimum saturation limits on the
control actuators. The result is a nonlinear optimization problem
similar to that posed in nonlinear predictive control. In this case,
however, the decision variables are the surface parameters for the
sliding mode controller as opposed to the future control trajectory.

The paper is constructed as follows. A brief discussion of the
sliding mode controller for underactuated nonlinear systems with
bounded disturbances begins the presentation. The proposed opti-
mizing sliding mode control structure is presented and nominal
stability is demonstrated. Minimum-time problems are then
addressed. The paper closes with an experimental example based
on the Quansar SRV-02 rotary inverted pendulum.

2 Sliding Mode Controller

Sliding mode control law is based on defining exponentially
stable sliding surfaces as a function of the output errors [8]. It is
constructed such that the nominal error trajectories reach these
surfaces in finite time, referred to as the reaching phase, and then
follow the sliding surfaces toward the origin, referred to as the
sliding phase. The derivation and application of sliding mode con-
trol laws to fully actuated nonlinear mechanical systems is well
documented in the literature. A detailed derivation can be found
in the texts by Slotine and Li [31] and Khalil [32]. However, the
SMC law for fully actuated systems cannot be applied to an
underactuated system without modifications.

Consider an n DOF underactuated mechanical system with a

generalized position vector, q 2 Rn, partitioned as q ¼ qT
a ; q

T
u

� �T
,

where qa 2 Rm is a vector of actuated coordinates and qu 2 Rn�m

is a vector of unactuated coordinates. Then, the equations of
motion for this system can be written as

MaaðqÞ MauðqÞ
MT

auðqÞ MuuðqÞ

� �
€qa

€qu

� �
¼ faðq; _qÞ

fuðq; _qÞ

� �
þ u

0

� �
þ gaðq; _qÞ

guðq; _qÞ

� �
(1)

where u 2 Rm is the control input, f ðq; _qÞ ¼D ½f T
a ðq; _qÞ; f T

u ðq; _qÞ�T
is the vector of Coriolis, centrifugal, conservative, and nonconser-

vative forces, and gðq; _qÞ ¼D ½gT
a ðq; _qÞ; gT

u ðq; _qÞ�T represents the
vector of bounded disturbances and uncertainties in the system.
The positive definite inertia matrix is accordingly partitioned
into positive definite matrices Maa : Rn ! Rm�m and Muu :Rn

!Rðn�mÞ�ðn�mÞ, and an off-diagonal matrix Mau :Rn!Rm�ðn�mÞ.
Note that since the inertia matrix is positive definite, it follows
and can be easily verified that

MaaðqÞ �MauðqÞM�1
uu ðqÞMT

auðqÞ > 0 (2)

It follows from Eq. (1) that

€qu ¼ M�1
uu ðqÞ½�MT

auðqÞ€qa þ fuðq; _qÞ þ guðq; _qÞ� (3)

and, consequently

€qa ¼ ðMaaðqÞ �MauðqÞM�1
uu ðqÞMT

auðqÞÞ
�1½faðq; _qÞ þ gaðq; _qÞ

�MauðqÞM�1
uu ðqÞðfuðq; _qÞ þ guðq; _qÞÞ þ u� (4)

Next, using partial feedback linearization, the controller is given by

u ¼ ðMaaðqÞ �MauðqÞM�1
uu ðqÞMT

auðqÞÞv� faðq; _qÞ
þMauðqÞM�1

uu ðqÞfuðq; _qÞ (5)

where v 2 Rm is the new controller and Eqs. (3) and (4) can be
rewritten as

€qa ¼ vþ ~gaðq; _qÞ (6)

€qu ¼ M�1
uu ðqÞfuðq; _qÞ �M�1

uu ðqÞMT
auðqÞvþ ~guðq; _qÞ (7)

and the new uncertainty vectors are given by

~gaðq; _qÞ ¼D ðMaaðqÞ �MauðqÞM�1
uu ðqÞMT

auðqÞÞ
�1

� ½gaðq; _qÞ �MauðqÞM�1
uu ðqÞguðq; _qÞ� (8)

~guðq; _qÞ ¼D M�1
uu ðqÞ½guðq; _qÞ �MT

auðqÞ~gaðq; _qÞ� (9)

Note that in this work, we assume a zero state target such that the
position and velocity vectors ðq; _qÞ represent the tracking error for
the mechanical systems.

Next, consider a vector function s ¼D ½s1;…; sm�T : Rn �Rn

! Rm given by

sðq; _qÞ ¼ aa _qa þ kaqa þ au _qu þ kuqu

¼ aa _qa þ au _qu þ srðqÞ (10)

where s ¼D ½s1;…; sm�T : Rn �Rn ! Rm, sr qð Þ ¼D kaqa þ kuqu,

and aa 2 Rm�m, ka 2 Rm�m, au 2 Rm�ðn�mÞ, ku 2 Rm�ðn�mÞ are
the matrices of surface parameters such that aa 2 Rm�m,

ka 2 Rm�m are invertible and aa � auM�1
uu qð ÞMT

au qð Þ
� ��1

exists for

all q 2 M � Rn. We define the sliding surface as the null space of
s(�,�), that is

S ¼ fðq; _qÞ 2 Rn �Rn : sðq; _qÞ ¼ 0g (11)

As in standard SMC theory, the control law v is calculated by set-
ting _sðq; _qÞ ¼ 0 for the nominal system and adding a signum func-
tion to address uncertainties. Hence, using Eqs. (6) and (7)

u (t) (t)xx k

tΔ

tΔ

s k

MPC ProcessSliding
Mode
Control

Fig. 1 Cascade controller block diagram

021020-2 / Vol. 134, MARCH 2012 Transactions of the ASME

Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



v ¼ �ðaa � auM�1
uu ðqÞMT

auðqÞÞ
�1½auM�1

uu ðqÞfuðq; _qÞ þ _srðqÞ
þ Kðq; _qÞsignðsðq; _qÞÞ� (12)

where signðsðq; _qÞÞ ¼D ½signðs1ðq; _qÞÞ;…; signðsmðq; _qÞÞ�T, Kðq; _qÞ
¼D diag½k1ðq; _qÞ;…; kmðq; _qÞ�,

kiðq; _qÞ ¼ gi þ rowT
i ðaaÞ

��
1k ~gaðq; _qÞk 1k

þ rowT
i ðauÞ

��
1k ~guðq; _qÞk 1k ; i ¼ 1;…;m (13)

gi> 0, and rowi(�) is the ith row of a matrix.
Remark 1. Note that a less conservative than Eq. (13) but con-

stant estimate of the control gain ki, i¼ 1,…,m, can be chosen to be

ki ¼ gi þ rowT
i ðaaÞ

��
1k sup
ðq; _qÞ2Rn�Rn

~gaðq; _qÞk 1k

þ rowT
i ðauÞ

��
1k sup
ðq; _qÞ2Rn�Rn

~guðq; _qÞk 1k (14)

provided that the above supremums are finite.
Remark 2. Sliding mode control will always result in chattering

around the surfaces due to the signum function in Eq. (12). In prac-
tice, the discontinuous sign function is often approximated by a con-
tinuous function, such as the hyperbolic tangent, or by a linear
saturation function inside a boundary layer around each surface
sðq; _qÞ ¼ 0 to avoid chattering. A similar approximation may be
applied to the underactuated sliding mode control law presented here.

Next, we show that with the feedback control law (12), the tra-
jectories of the closed-loop system (6), (7) converge to the sliding
surface (11) in finite time. To see this, consider a Lyapunov func-
tion given by

Vðq; _qÞ ¼ 1

2
sTðq; _qÞsðq; _qÞ (15)

The Lyapunov time derivative, _Vðq; _qÞ ¼ sTðq; _qÞ _sðq; _qÞ, is
derived using the derivative of the surfaces defined in Eq. (11)
and by substituting from Eqs. (6), (7), and (12)

_Vðq; _qÞ � �
Xm

i¼1

kiðq; _qÞ � rowT
i ðaaÞ

��
1k ~gaðq; _qÞ 1kk

�
� rowT

i ðauÞ
��

1k ~guðq; _qÞk 1k
�
jsiðq; _qÞj

Substituting from Eq. (13) into the previous equation and noting
that s 2kk ¼

ffiffiffi
2
p
ðVðq; _qÞÞ

1
2, the finite time reaching condition can

be determined as

_Vðq; _qÞ ¼ �
Xm

i¼1

gijsiðq; _qÞj � �
ffiffiffi
2
p

min
i¼1;…;m

fgigðVðq; _qÞÞ
1
2;

ðq; _qÞ 2 M�Rn (16)

It was shown in Ref. [33] that condition (16) guarantees that the
closed-loop system trajectories converge to the sliding surface
(11) in finite time and remain on this surface, while the value of
mini¼ 1;…;m gif g determines the rate of convergence. Further-
more, while on the sliding surface, the closed-loop dynamics are
given by the following reduced-order system:

0 ¼ aa _qa þ kaqa þ au _qu þ kuqu (17)

€qu ¼ ~M1ðqÞfuðq; _qÞ þ ~M2ðqÞðka _qa þ ku _quÞ þ ~guðq; _qÞ (18)

where the second equation is derived by substituting for the con-
trol law in Eq. (12) into Eq. (7) and letting sðq; _qÞ ¼ 0 and

~M1ðqÞ ¼D M�1
uu ðqÞ þM�1

uu ðqÞMT
auðqÞ

� ðaa � auM�1
uu ðqÞMT

auðqÞÞ
�1auM�1

uu ðqÞ (19)

~M2ðqÞ ¼D M�1
uu ðqÞMT

auðqÞðaa � auM�1
uu ðqÞMT

auðqÞÞ
�1

(20)

The stability of the reduced order closed-loop dynamics repre-
sented by Eqs. (17) and (18) can be established based on the exis-
tence of isolated equilibrium points.

Remark 3. Isolated equilibrium points can be determined for
a given system if they are constrained to a manifold of dimen-
sion less than or equal to m. This constraint is only possible in
the presence of potential energy where conservative forces are
only a function of position. Otherwise, there are infinitely many
equilibrium points. Systems with infinite number of equilibrium
points are not time-invariant continuous feedback stabilizable
[23]. For these systems, only marginal stability exists in cases
where momentum is conserved and a discontinuous control law
is necessary. Further discussion on this topic can be found in
Ref. [26].

In this work, systems with isolated equilibrium points are con-
sidered where the system is linearly controllable around these
points as shown in Ref. [34].

Remark 4. Stabilization of a nonlinear system under sliding
mode control can be established through the use of a system spe-
cific Lyapunov function as presented in Ref. [35] and adopted in
Appendix for the experimental system considered in this work.

3 Model Predictive Control

The primary controller in the proposed cascade control struc-
ture is a discrete-time, nonlinear model predictive controller that
re-optimizes the sliding mode controller linear surface parameters
at each sample period. In addition to improving performance, the
control structure ensures asymptotic stability in presence of actua-
tor input and other system constraints.

3.1 Infinite Horizon Problems. An infinite horizon perform-
ance objective following the Lagrange cost function in optimal
control [36] is considered

min
p

Jk ¼
ð1

kDt

Uðx; uÞdt (21)

where Jk 2 R is the objective function value at sample time k,
Dt is the discrete sample period, U : ðRn �RnÞ ! R is the per-
formance penalty function, p 2 R4m is the vector of linear sur-
face parameters, x ¼ ½qT ; _qT �T 2 R2n is the state vector of the
system, and u 2 Rm is the control. The objective function is
minimized over the surface parameters p subject to the following
constraints

_x ¼ hðx; uÞ (22)

u ¼ cðx; pÞ (23)

p 2 P; x 2 X ; u 2 U (24)

wðx; uÞ � 0 (25)

in which h : ðR2n �RmÞ ! R2n is the dynamic equality con-
straint arising from the system equations, c : ðR2n �R4mÞ ! Rm

is the sliding mode control law, P 2 R4m is the constraint space
for the surface parameters p, X 2 R2n is the constraint space for
the state, U 2 Rm is the constraint space for the control, and
w : ðR2n �RmÞ ! Rr represents r general inequality constraints
on the states and control. We note that P represents the inequality
constraints on the surface parameters that arise from the surface
stability criteria for underactuated systems [26] and X , U repre-
sent inequality constraints on the state and control. Incorporating
the sliding mode control law into the performance penalty func-
tion U(�) in Eq. (21)

Wðx; pÞ ¼ Uðx; cðx; pÞÞ (26)

It is assumed that /(�) is a positive function with the following
properties:
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c1 xk k2� /ðx; sÞ � c2 xk k2
(27)

Wðx; pÞ ¼ 0 iff x ¼ 0 (28)

for all p 2 P and t � 0 where c1 and c2 are strictly positive real
constants.

3.2 Nominal Stability. Nominal stability of the closed-loop
cascade control structure shown in Fig. 1 with the infinite horizon
Lagrange cost function in Eq. (21) subject to the constraints and
restrictions in Eqs. (22)–(28) is demonstrated in this section. We
assume no disturbances and begin with some preliminary results
concerning feasibility and boundedness. Note that, however,
bounded disturbances are accounted for in the SMC.

Lemma 1. Feasibility of the constrained optimization problem
in Eqs. (21)–(25) at sample time k¼ k* for the nominal system
with no disturbances implies feasibility at every sample time
k> k*.

Proof. Feasibility implies a set of nominally stable surface pa-
rameters that satisfy the constraints in Eqs. (22)–(25) for all t �
k*Dt. Therefore, this set must also be feasible for all future sample
times for the disturbance-free nominal system. Since at least one
feasible set of surface parameters exist, the constrained optimiza-
tion problem is feasible for all k> k*.

Lemma 2. Feasibility of the constrained optimization problem
in Eqs. (21)–(25) at sample period k implies that the objective Jk

is bounded.
Proof. Feasibility implies the existence of an exponentially sta-

ble sliding mode controller that reaches the surface in finite time.
Exponential stability of the sliding mode controller implies that
the integral

Ð1
kDt xk k2dt is bounded, which then implies that the

objective Jk is bounded from the inequality in Eq. (27).
Lemma 3. The sequence of open-loop optimal objective func-

tion values for the feasible constrained optimization problem in
Eqs. (21)–(25), f~Jkg, converges to some non-negative value ~J1
for the nominal system.

Proof. Let ~Jk denotes the optimal value of the objective in Eq.

(21) at time k, and Ĵkþ1 denotes the value of the objective at time
kþ 1 using the same surface parameters as time k. From Lemmas

1 and 2, Ĵkþ1 exists and is bounded. The following relationship
then holds:

~Jk ¼ Ĵkþ1 þ bJkþ1; bJkþ1 ¼
Ð ðkþ1ÞDt

kDt Wðx; pÞds

Optimization at time kþ 1 results in an objective value that can
be no greater than Ĵkþ1 which implies ~Jkþ1 � Ĵkþ1 and the follow-
ing inequality:

~Jk � ~Jkþ1 þ bJkþ1

Since W(�) is a positive function, ~Jk and bJk are both positive func-
tions, and the sequence f~Jkg is nonincreasing and bounded below
by zero. Therefore, it converges to a non-negative value.

Theorem 1. For the closed-loop cascade control structure with
the infinite horizon objective function in Eq. (21) subject to the
constraints in Eqs. (22)–(25) and no disturbances, the origin is
nominally asymptotically stable for all feasible initial states.

Proof. Nominal asymptotic stability of the origin follows from
stability of the origin and convergence. Feasibility of the con-
strained optimization problem in Eqs. (21)–(25) for the initial

state implies convergence of the sequence f~Jkg from Lemma 3.

Convergence of the sequence f~Jkg implies that the sequence f bJkg
converges to zero as follows. Since the sequence f~Jkg is nonin-

creasing and converges to ~J1, it follows that bJkþ1 � ~Jk � ~J1 for
all k> 0. It also follows that for every e> 0, there exists a k*(e)
such that ~Jk � ~J1 � e for all k> k*(e). Therefore, bJk � e for all
k> k*(e)þ 1. Since W(�) is a positive function, the mean value
theorem ensures that the function W(�) converges to zero if its

time integral over one sample period Dt converges to zero. From
Eq. (28), the state must then also converge to zero.

Remark 5. The infinite horizon may be approximated by finite
horizon using a finite prediction horizon, while maintaining the
stability as suggested in Ref. [37]. However, a large finite horizon
could result in large computation times. Thus, a terminal zero
state penalty, as presented in Sec. 3.3, is used for a finite horizon
approximation.

3.3 Minimum-Time Problems. Nominal stability for the
cascade control structure presented in Sec. 3.2 is a consequence of
the infinite receding horizon employed for the objective in Eq.
(21). A second common method for ensuring nominal stability for
model predictive control is through the use of a terminal state con-
straint [1]. This formulation is applicable to minimum-time prob-
lems where the time interval is minimized subject to achieving
some desired final value of the state. The objective becomes

min
p

Jk ¼
ðtfk
þkDt

kDt

1dt ¼ tfk (29)

minimized over the surface parameters p subject to a terminal
state constraint at the final time tfk

hðxðtfk ÞÞ ¼ 0 (30)

and the constraints in Eqs. (22)–(24). The dependence of the final
time on the sample period is denoted by the subscript k. The ter-
minal state constraint in Eq. (30) may be specified such that the
‘2-norm of the state vector is equal to zero. However, since sliding
mode control is exponentially stable and does not reach the origin
exactly in finite time, the terminal state constraint is defined in the
following inequality form:

xk k2¼ ½xTx�1=2 � � (31)

where 0<� << 1
Lemma 4. Feasibility of the constrained optimization problem

in Eqs. (29), (30), (22)–(24) at sample time k¼ 0 for the nominal
system with no disturbances implies feasibility at every sample
time k> 0.

Proof. Feasibility at sample time k> 0 follows in the same
manner as Lemma 1. Satisfaction of the terminal constraint in Eq.
(30) implies that is tfk bounded for all k � 0.

Theorem 2. For the closed-loop cascade control structure with
the minimum-time objective function in Eq. (29) subject to the
constraints in Eqs. (22)–(24), (30) and no disturbances, the final
state satisfies the terminal constraint in time t < tfo for all feasible
initial states.

Proof. Initial feasibility of the minimum-time optimization
problem implies that it is feasible for all k> 0 and that tfo

is
bounded from Lemma 4. Using the argument presented in the
proof of Lemma 3, optimization guarantees that

tfkþ1
� tfk � Dt

which implies that

tfk � tfo � Dt

by induction. Since tfo is bounded, there exists a k* such that tfk	 is
minimum. Therefore, the sequence ftfkg is bounded above by
tfo � Dt for all k< k*, which proves the theorem.

Remark 6. The sliding mode control derived in Eq. (12), guar-
antees closed-loop stability during each progressing Dt sample pe-
riod for all bound uncertainties and disturbances, which are
presented in Eq. (1) as gaðq; _qÞ and guðq; _qÞ. These uncertainties/
disturbances are only accounted for in terms of their bounds in the
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control gains presented in Eqs. (13) and (14). Thus, the optimal
parameter selection will be unaffected if the bounds for uncertain-
ties and disturbances remain the same and there are no time vary-
ing structural changes. However, the cascade structure is open-
loop and predictive only. Thus, optimality of the solution cannot
be guaranteed if there are any unpredicted changes in the structure
and magnitude of disturbances or uncertainties.

4 Experimental Example

The model-based cascade sliding mode control structure is
applied to the Quansar SRV-02 rotary inverted pendulum experi-
mental system in this example. A schematic of the rotary inverted

pendulum is shown in Fig. 2. The system has two degrees-of-free-
dom, the pendulum arm angle, /, and the rotating arm angle, h.
The single actuator is a dc motor and gearbox connected to the
rotating arm. The equations of motion for the system are [38]

c €/� b cos /€h ¼ d sin /þ c sin / cos / _h2 (32)

�b cos / €/þ ðaþ c sin2 /Þ€h ¼� b sin / _/2 � 2c sin / cos / _/ _h

� be
_hþ aeu (33)

where the pendulum arm angle / and the rotating arm angle h are
the outputs, the dc motor voltage u is the input, ro is the length of
the rotating arm, l is one half the length of the pendulum arm, de

is the equivalent system damping coefficient, and ae is the motor
actuator torque constant, c ¼ 4

3
mol2, b¼molro, a ¼ Ie þ mor2

o , Ie is
the equivalent inertia of the rotating arm, motor, and gearbox, mo

is the pendulum arm mass, and g is the gravitational constant. The
parameter values for the experimental system are as follows:
l¼ 0.1675 m, ro¼ 0.215 m, m¼ 0.125 kg, Ie¼ 0.0036 kg m2,
de¼ 0.073 N m s/rad, and ae¼ 0.1285 Nm/V.

The sliding mode control law is derived by defining the scalar
sliding surface

s ¼ aa
_hþ kahþ au

_/þ ku/ (34)

and using Eqs. (5) and (12). The closed-loop dynamics and expo-
nential stability of the system specific sliding mode controller is
presented in Appendix. However, simpler conditions for stability
of the sliding surface, which can be incorporated into constraints
in Eq. (24) may be derived as

aa; ka < 0 au; ku > 0 (35)

ka

aa
<

ku

au
(36)

θ

g φ

l

r

X

Y

Z

m

Fig. 2 The rotary inverted pendulum
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Fig. 3 Comparison of simulation and experimental results; (top) pendulum arm angle (middle),
rotating arm angle (bottom), control input voltage
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caa þ b cos hau > 0 (37)

The sliding mode control law u is updated by the discrete model
predictive controller at a control interval of Dt¼ 0.1 s. There are
four surface parameters that can be selected and updated to mini-
mize a given performance objective in this example. However,
due to normalization, only three are independent. The last three
surface parameters are selected as the decision variables for the
optimization resulting in p¼ [ka, au, ku]T The first surface param-
eter is selected as aa¼�1 since surface normalization will result
in only three independent surface parameters. A gain of g¼ 20 is
used for the effort parameter in the reaching condition. The maxi-
mum motor voltage input position constraint is

uj j � vmax (38)

where vmax¼ 15 V. Also, a linear saturation function is used to ap-
proximate the signum function in order to avoid chattering

satðs=esÞ ¼
s=es if sj j � es

signðsÞ if sj j > es



(39)

where the surface boundary layer thickness is selected as es¼ 0.1.
The minimum-time control problem in this example has discontin-

uous gradients requiring the implementation of a nongradient
based optimization procedure in this example. A similar result
was observed in previous work with the inverted pendulum on a
cart system in Ref. [13].

The performance of the MPC cascade control structure in this
work is compared to that of a base case feasible surface design
and an initial optimal surface design. A single optimization of the
surface parameters is carried out at time t¼ 0 for the initial opti-
mal surface. Both minimum energy and minimum-time perform-
ance objectives are considered. In these examples, it is desired to
move the system to the origin from an initial pendulum arm angle
|/(0)| between 40 deg and 45 deg. Note that, a swing-up control
algorithm such as the one presented in Ref. [7] may be used to
swing the pendulum arm to the initial angle.

In order to demonstrate model fidelity, the simulated and actual
experimental state trajectories and control input of the sliding
mode controller for the rotary inverted pendulum system are com-
pared in Fig. 3. The surface parameters selected for this demon-
stration are those derived for the “initial optimal” minimum-time
values presented in Table 2. The results are shown for three
repeating experiments where very good agreement with the simu-
lation results can be observed. The small differences in the experi-
ments are mainly due to motor friction.

4.1 Minimum Energy Controller. The minimum energy
control objective at each sample period is

min
p

Jk ¼
ð1

t¼kDt

u2dt (40)

subject to the model equality constraint in Eqs. (32) and (33), sur-
face parameter constraints in Eqs. (35)–(37), and the control satu-
ration bound in Eq. (38). We have also used the terminal state
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Fig. 4 Comparison of experimental initial feasible design (base case), one-time optimization
(initial optimal), and MPC cascade control (MPC cascade) for the minimum-energy problem;
(top) pendulum arm angle, (middle) rotating arm angle, (bottom) control input voltage

Table 1 Surface parameters and objective function values for
the minimum energy problem

Parameter Base case Initial optimal MPC cascade

au 5 1.94 1.94, 2.18, 2.5, 2.46
ku 10 11.14 11.14, 13.37, 15.27, 15.25,…
ka �0.5 �0.248 �0.248, �0.1, �0.107, �0.1,…
Total cost 44.7 17.6 15.7
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constraint in Eq. (31) with �¼ 0.01 to approximate the infinite ho-
rizon problem with a finite horizon one.

Table 1 presents a comparison of the surface parameters and
total cost for the base case surface parameters (base case), the ini-
tial surface optimization (initial optimal), and the model predic-
tive cascade control in this work (cascade MPC). The base case
parameters were selected based on the stability conditions pre-
sented in Eqs. (35)–(37) to yield a feasible solution for optimiza-
tion. The initial set of surface parameters for the cascade
controller is the same as the initial one-time optimization solution.
Only the first four sets of surface parameters are presented for the

cascade control because the surface parameters essentially con-
verged to these values after four sample periods. The total cost is
computed from the control trajectory determined by the sliding
mode controllers in each case. As shown in Table 1, initial one-
time optimization of the surface parameters results in a significant
cost reduction of almost 61%. The cascade controller results in an
additional 11% reduction in cost compared to the initial optimal
surface. Note that, the finite time horizon implemented based on
Eq. (31) with �¼ 0.01 varies during the optimization but never
exceeds 17 s.

The surface parameters listed in Table 1 were experimentally
implemented for real-time sliding mode control of the rotary
inverted pendulum. Figure 4 compares the controller performance
for the base case feasible surface, the initial one-time optimal sur-
face, and the MPC cascade control optimal surfaces. It is clear
that the parameters derived from initial optimization and MPC
cascade control improve the performance if the controller both in
terms pendulum arm stabilization and control effort with the MPC
cascade control outperforming the one-time optimal controller.
However, the rotating arm stabilizes at a much slower rate for the
MPC cascade controller compared to the other two (approxi-
mately 14 s) since there is no penalty associated with its tracking
error. Essentially, the optimal solution sacrifices the rotating arm
position, which is not crucial to the pendulum stabilization in
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Fig. 5 Experimental reaching and sliding phases with the sur-
face changes for the minimum-energy MPC cascade controller
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Fig. 6 Comparison of experimental initial feasible design (base case), one-time optimization
(initial optimal), and MPC cascade control (MPC cascade) for the minimum-time problem; (top)
pendulum arm angle (middle), rotating arm angle (bottom), control input voltage

Table 2 Surface parameters and objective function values for
the minimum-time problem

Parameter Base case Initial optimal MPC cascade

au 5 1.96 1.96, 1.5, 1.49, 1.49
ku 10 12.1 12.1, 9.69, 9.66, 9.66
ka �0.5 �1.59 �1.59, �2.36, �2.4, �2.4
Total cost 16.2 2.8 2.0
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order to minimize controller effort. The phase plot of the experi-
mental pendulum arm angle trajectory versus the surface changes
in the MPC cascade control is shown in Fig. 5. It can be seen from
the experiment that the surface changes, as observed in the discon-
tinuities in the surface plot, result in apparent jumps toward the
trajectory hence reducing the total effort for the MPC cascade
controller. Note that, the surface as displayed in the pendulum
arm angle phase plot is not a linear line due to its dependency on
h and _h.

4.2 Minimum-Time Controller. The minimum-time control
objective at each sample period is

min
p

Jk ¼ tfk (41)

subject to the model equality constraint in Eqs. (32) and (33), sur-
face parameter constraints in Eqs. (35)–(37), the control saturation
bound in Eq. (38), and the terminal constraint on the ‘2-norm of
the system state presented in Eq. (31) with �¼ 0.01 where the
state vector is defined as x ¼ ½h;/; _h; _/�T. Table 2 presents a com-
parison of the surface parameters and total time for the base case
surface parameters (base case), the initial one-time optimization
(initial optimal), and the model predictive cascade control (cas-
cade MPC). Only the first four sets of surface parameters are pre-
sented for the cascade control because the surface parameters in
this example also essentially converged to these values after four
sample periods. The total time is computed from the state trajec-
tory in each case. Initial one-time optimization of the surface pa-
rameters results in a significant cost reduction of almost 83%.
While the cascade controller provides an additional 29% reduction
in cost compared to the initial optimal surface.

The surface parameters listed in Table 2 were experimentally
implemented for real-time SMC of the rotary inverted pendulum.
Figure 6 compares the controller performance for the base case
feasible surface, the initial one-time optimal surface, and the MPC
cascade control optimal surfaces. It can be seen that the parame-
ters derived from initial one-time optimization and MPC cascade
control improve the stabilization time for both pendulum and
rotating arm angles with the MPC cascade control outperforming
the one-time optimal controller. However, larger efforts with
larger variations are required for both the initial optimal and the
MPC cascade controllers.

5 Conclusions

A nominally stabilizing, nonlinear, model-based sliding mode
cascade control structure is demonstrated in this work where dis-
turbances are accounted for in the context of the sliding mode

control. Nonlinear model predictive control is used as the primary
loop in this control structure to update the surface parameters of
the secondary sliding mode controller in order to achieve a speci-
fied performance objective. As indicated by the rotary inverted
pendulum experimental results, significant improvement in the
sliding mode controller performance can be achieved by optimally
updating the sliding surface using this approach for both minimum
energy and minimum-time control objectives.
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Appendix

In this Appendix, we show that the controlled system, while on
the sliding surface, is locally exponentially stable. To see this,
consider the sliding surface equation

0 ¼ ah
_hðtÞ þ khhðtÞ þ a/

_/ðtÞ þ k//ðtÞ; t � t	 (A1)

along with the closed-loop system dynamics given by

ðahcþa/bcos/ðtÞÞ €/ðtÞ¼�bk/
_/ðtÞcos/ðtÞþahd sin/ðtÞ

�khb _hðtÞcos/ðtÞ

þahml2 _h2ðtÞsin/ðtÞcos/ðtÞ;

/ðt	Þ¼/	; _/ðt	Þ¼ _/	 (A2)

ðahcþa/bcos/ðtÞÞ€hðtÞ¼� ck/
_/ðtÞ�a/d sin/ðtÞ

�ckh
_hðtÞ�a/ml2 _h2ðtÞsin/ðtÞcos/ðtÞ;

hðt	Þ¼ h	; _hðt	Þ¼ _h	 (A3)

where t	 2 0;1½ Þ is the instant when the closed-loop system state
reaches the sliding surface (A1) and /*, h*, _/*, _h* 2 R are corre-
sponding system angular positions and velocities at t¼ t*. Next,
introduce state vector x ¼ ½x1; x2; x3; x4�T ¼D ½h;/; _h; _/�T so that
the system dynamics (A2) and (A3) can be rewritten as

_x1ðtÞ ¼ x3ðtÞ; x1ðt	Þ ¼ h	; t � t	 (A4)

_x2ðtÞ ¼ x4ðtÞ; x2ðt	Þ ¼ /	 (A5)

_x3ðtÞ ¼
�ckh x3ðtÞ þ

k/

kh
x4ðtÞ

� �
� a/d sin x2ðtÞ � a/ml2x2

3ðtÞ sin x2ðtÞ cos x2ðtÞ

ahcþ a/b cos x2ðtÞ
x3ðt	Þ ¼ _h	

(A6)

_x4ðtÞ ¼
�khb cos x2ðtÞ x3ðtÞ þ

k/

kh
x4ðtÞ

� �
þ ahd sin x2ðtÞ þ ahml2x2

3ðtÞ sin x2ðtÞ cos x2ðtÞ

ahcþ a/b cos x2ðtÞ
x4ðt	Þ ¼ _/	

(A7)

and the sliding surface Eq. (A1) becomes

0 ¼ ahx3ðtÞ þ khx1ðtÞ þ a/x4ðtÞ þ k/x2ðtÞ; t � t	 (A8)

Note that the closed-loop system (A4)–(A7), while on the sliding
surface (A8), can be characterized by a reduced third-order model.
To obtain the reduced-order system, define an auxiliary variable

z ¼D x1 þ
k/

kh
x2 (A9)

and note that the sliding surface Eq. (A8) becomes

_zðtÞ ¼ � kh

ah
zðtÞ � ax4ðtÞ; t � t	 (A10)
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where a ¼D a/

ah
� k/

kh
. Since _x2ðtÞ ¼ x4ðtÞ and _zðtÞ ¼ x3ðtÞ þ k/

kh
x4ðtÞ,

it follows that, while on the sliding surface, the closed-loop sys-
tem dynamics are given by

€x2ðtÞ ¼
�khb cos x2ðtÞ _zðtÞ þ ahd sin x2ðtÞ 1þ ml2

d
x2

3ðtÞ cos x2ðtÞ
� �

ahcþ a/b cos x2ðtÞ
;

t � t	 (A11)

_zðtÞ ¼ � kh

a/
zðtÞ � a _x2ðtÞ (A12)

Next, introduce state variables y1 ¼D x2, y2 ¼D _x2, y3 ¼D z, and a
constant

e ¼D � ahc

a/b
2 ð0; 1Þ (A13)

so that the closed-loop system dynamics (A11) and (A12) can be
rewritten in the state-space form as follows:

_y1ðtÞ ¼ y2ðtÞ (A14)

_y2ðtÞ ¼

kha
a/

y2ðtÞ þ
k2

h

a/ah
y3ðtÞ

1� e
cos y1ðtÞ

þ ahd tan y1ðtÞ

a/b 1� e
cos y1ðtÞ

� �

�
eml2 aþ k/

kh

� �
y2ðtÞ þ

kh

a/
y3ðtÞ

� �2

sin y1ðtÞ

c 1� e
cos y1ðtÞ

� � (A15)

_y3ðtÞ ¼ �ay2ðtÞ �
kh

ah
y3ðtÞ (A16)

In order to avoid singularity in Eq. (A15), we consider
y1 
 / 2 I ¼D fy1 2 R : � arccosðeÞ < y1 < arccosðeÞg and define
D ¼D fy 2 R3 : y1 2 Ig, where y ¼D y1; y2; y3½ �T. In this case,
1� e

cos y1
> 0, y1 2 I. Next, to show exponential stability of the sys-

tem (A14)–(A16), consider a Lyapunov function candidate

VðyÞ ¼ 1

2
yTPy� b ln

cos y1 � e
1� e

; y 2 D (A17)

where b> 0, P 2 R3�3 is such that P> 0, and

P ¼
p11 p12 p13

p12 p22 0

p13 0 p33

2
64

3
75 (A18)

Note that V(0)¼ 0 and V(y)> 0, y 2 D, y= 0. Next, using the
fact that y1 tan y1 > y2

1, y1 2 I, it can be shown that, with

b ¼ � p22ahd

a/b
> 0 (A19)

and jp12j> jp22j, the Lyapunov derivative along trajectories of
Eqs. (A14)–(A16) satisfies

_VðyÞ � � 1

2
yTRðy1Þy; y 2 D (A20)

where

Rðy1Þ ¼
r11ðy1Þ r12ðy1Þ r13ðy1Þ
r12ðy1Þ r22ðy1Þ r23ðy1Þ
r13ðy1Þ r23ðy1Þ r33ðy1Þ

2
4

3
5 (A21)

where

r11ðy1Þ ¼ �
2p12ahd

a/b 1� e
cos y1

� �

r12ðy1Þ ¼ �p11 þ ap13 �
p12akh

a/ 1� e
cos y1

� �

r13ðy1Þ ¼
p13kh

ah
� p12k

2
h

a/ah 1� e
cos y1

� �

r22ðy1Þ ¼ �2 p12 þ
p22akh

a/ 1� e
cos y1

� �
0
BB@

1
CCA

r23ðy1Þ ¼ �p13 þ ap33 �
p22k

2
h

a/ah 1� e
cos y1

� �

r33ðy1Þ ¼ 2
p33kh

ah

(A22)

Next, we show that if R(y1)> 0, y1 2 ~I � I, then the closed-loop
system (A14)–(A16) is locally exponentially stable. Assume

R(y1)> 0, y1 2 ~I, and note that in this case

0 � inf
y12~I
ðkminðRðy1ÞÞÞI3 � Rðy1Þ; y1 2 ~I (A23)

where kmin(R(y1)) is the minimal eigenvalue of R(y1) for some
y1 2 ~I and I3 2 R3�3 is the identity matrix. Furthermore, it fol-
lows from the Taylor series expansion around y1¼ 0 on the inter-
val y1 2 ~I that, for every e> 0 and b> 0, there exists sufficiently
large c> 0 such that

� b ln
cos y1 � e

1� e
� 1

2
cy2

1; y1 2 ~I (A24)

In this case

VðyÞ ¼ 1

2
yTPy� b ln

cos y1 � e
1� e

� 1

2
yTPyþ 1

2
cy2

1

¼ 1

2
yT ~Py; y 2 eD

(A25)

where eD ¼D fy 2 R3 : y1 2 ~Ig and

~P ¼D
p11 þ c p12 p13

p12 p22 0

p13 0 p33

2
4

3
5 (A26)

Clearly, ~P > 0 since P> 0 and c> 0. Thus, it follows from Eqs.
(A23) and (A25) that

_V � � 1

2
yTRðy1Þy

� � 1

2
inf
y12~I
ðkminðRðy1ÞÞÞyTy

� �
infy12~IðkminðRðy1ÞÞÞ

kmaxð ~PÞ
VðyÞ

¼ �rVðyÞ; y 2 eD

(A27)
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where r ¼D infy12~IðkminðRðy1ÞÞÞ
kmaxð ~PÞ

. Thus, if r> 0, then Eqs. (A14)–(A16)

are locally exponentially stable with the domain of attraction

given by ~D. Hence, the closed-loop system (A4)–(A7), while on
the sliding surface (A8), is locally exponentially stable.

Next, for several cases of the sliding surface parameters, we
show that the closed-loop system (A14)–(A16) is locally exponen-
tially stable. We use numerical procedure involving linear matrix
inequalities to obtain P 2 R3�3 in Eq. (A18) and Rð�Þ 2 R3�3 in
Eq. (A21) such that P> 0 and R(y1)> 0, y1 2 ~I. The following
system parameters in their corresponding units are used below,
that is, b¼ 0.0033, c¼ 0.0047, and d¼ 0.2054.

(1) Base case. ah¼�1, kh¼�0.5, a/¼ 5, k/¼ 10. In this case,
e¼ 0.2834 and we choose p11¼ 50, p12¼ 10, p13¼ 1,
p22¼ 5, and p33¼ 0.04 so that P> 0. Here, b¼ 62.2121 and
~I ¼ fy1 2 R : � arccosðeÞ þ 004 � y1 � arccosðeÞ � 004g
¼ ½�1:24; 124�. The plot of kmin(R(y1)) versus y1 2 ~I is
shown in Fig. 7. It can be seen from the plot that infy12~I

ðkminðRðy1ÞÞÞ > 0, and hence, Eq. (A27) is satisfied with
r> 0, which implies local exponential stability of Eqs.
(A14)–(A16).

(2) Initial one-time optimization-minimum energy. ah¼�1,
kh¼�0.248, a/¼ 1.94, k/¼ 11.14. In this case, e¼ 0.7304,
and we choose p11¼ 100, p12¼ 10, p13¼ 1, p22¼ 2,
and p33¼ 0.03 so that P> 0. Here, b¼ 64.1362 and
~I ¼ fy1 2 R : � arccosðeÞ þ 002 � y1 � arccosðeÞ � 002g
¼ ½�0:73; 073�. The plot of kmin(R(y1)) versus y1 2 ~I is

shown in Fig. 8. It can be seen from the plot that infy12~I

ðkminðRðy1ÞÞÞ > 0, and hence, Eq. (A27) is satisfied with
r> 0, which implies local exponential stability of Eqs.
(A14)–(A16).

(3) MPC cascade controller-minimum energy. ah¼�1,
kh¼�0.1, a/¼ 2.46, k/¼ 15.25. In this case, e¼ 0.4065,
and we choose p11¼ 1000, p12¼ 70, p13¼ 3, p22¼ 10, and

p33¼ 0.02 so that P> 0. Here, b¼ 253.014 and ~I
¼ fy1 2 R : � arccosðeÞ þ 001 � y1 � arccosðeÞ � 001g
¼ ½�0:95; 095�. The plot of kmin(R(y1)) versus y1 2 ~I is
shown in Fig. 9. It can be seen from the plot that infy12~I

ðkminðRðy1ÞÞÞ > 0, and hence, Eq. (A27) is satisfied with
r> 0, which implies local exponential stability of Eqs.
(A14)–(A16).

(4) Initial one-time optimization-minimum time. ah¼�1,
kh¼�1.59, a/¼ 1.96, k/¼ 12.1. In this case, e¼ 0.723, and
we choose p11¼ 100, p12¼ 10, p13¼ 7, p22¼ 2, and p33¼ 1 so

that P> 0. Here, b¼ 63.511 and ~I ¼ fy1 2 R : � arccosðeÞ
þ024 � y1 � arccosðeÞ � 024g ¼ ½�0:52; 052�. The plot of

kmin(R(y1)) versus y1 2 ~I is shown in Fig. 10. It can be seen
from the plot that infy12~IðkminðRðy1ÞÞÞ > 0, and hence, Eq.

(A27) is satisfied with r> 0, which implies local exponential
stability of Eqs. (A14)–(A16).

(5) MPC cascade controller-minimum time. ah¼�1,
kh¼�2.4, a/¼ 1.49, k/¼ 9.66. In this case, e¼ 0.95,
and we choose p11¼ 40, p12¼ 6, p13¼ 10, p22¼ 1, and

Fig. 8 Initial one-time optimization-minimum energy

Fig. 9 MPC cascade controller-minimum energy

Fig. 10 Initial one-time optimization-minimum time

Fig. 7 Base case
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p33¼ 40 so that P> 0. Here, b¼ 41.773 and
~I ¼ fy1 2 R : � arccosðeÞ þ 01 � y1 � arccosðeÞ � 01g
¼ ½�0:22; 022�. The plot of kmin(R(y1)) versus y1 2 ~I is
shown in Fig. 11. It can be seen from the plot that
infy12~IðkminðRðy1ÞÞÞ > 0, and hence, Eq. (A27) is satisfied

with r> 0, which implies local exponential stability of
Eqs. (A14)–(A16).
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