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Abstract.  The purpose of this study was to explore the possibility of using 
electrocorticographic (ECoG) recordings from subdural electrodes placed over the 
motor cortex to identify the upper limb motion performed by a human subject.  More 
specifically, we were trying to identify features in the ECoG signals that could help 
us determine the type of movement performed by an individual. Two subjects who 
had subdural electrodes implanted over the motor cortex were asked to perform 
various motor tasks with the upper limb contralateral to the site of electrode 
implantation.  ECoG signals and upper limb kinematics were recorded while the 
participants were performing the movements.  ECoG frequency components were 
identified that correlated well with the performed movements measured along 6D 
coordinates (X, Y, Z, roll, yaw, and pitch).  These frequencies were grouped using 
histograms.  The resulting histograms had consistent and unique shapes that were 
representative of individual upper limb movements performed by the participants.  
Thus, it was possible to identify which movement was performed by the participant 
without prior knowledge of the arm and hand kinematics.  To confirm these findings 
a nearest neighbour classifier was applied to identify the specific movement that each 
participant had performed. The achieved classification accuracy was 89%. 
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1. Introduction 

Brain-computer interfaces (BCI) use signals from the brain to control electronic devices 

such as computers.  Public and scientific interest in this technology is based on the potential for 

these devices to assist individuals with severe mobility impairments such as advanced stages of 

amyotrophic lateral sclerosis (ALS), brain stem stroke, spinal cord injury, and severe cerebral 

palsy [1,2].   

There are three fundamental components of a BCI: an input (i.e., brain signal), an output 

(i.e., control command to an external device), and a translation stage that transforms the input into 

the output (1).  Brain-computer interfacing is an emerging field and researchers are still asking 

fundamental questions such as which type of brain signals are most useful, how to decode or 

classify these signals, which features of these signals to use to perform the classification or 

decoding, and what the potential applications of BCI systems might be. 

One of the most prominent questions in the field of BCI is which neuronal signal, or 

group of signals, is optimal for use as an input to BCI [3].  The types of brain signals that have 

been used as input to a BCI can be classified as magnetic [4,5], metabolic [6] and electrical [1].  

Of these, electrical signals have been used most extensively.  The electrical activity of the brain is 

characterized by ongoing oscillatory activity that has been divided into frequency bands.  Some of 

the primary oscillatory rhythms include the delta rhythm (<4 Hz), the alpha or sensorimotor mu 

rhythm (8-13Hz), the beta rhythm (13 Hz-35Hz), and the gamma rhythm (>35 Hz) [7]. 

 The existing BCI systems can be generally divided into two main categories: 1) systems 

that require the user to produce a specific mental state to generate a desired command that can be 

used to trigger an event (e.g. move a cursor on a screen), and 2) systems that extract information 

about the movement kinematics from the brain signals and use this information to generate a 

similar or identical movement with a prosthetic or a robotic device. Currently, many examples of 

BCI systems that require the user to produce a specific mental state exist.  The mental state 
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produced by the user is not necessarily related with the behavioural outcome.  For example a 

person imagines moving the tongue to move a computer cursor [8].  The different mental states 

are detected as changes in brain activity which can be recorded using different techniques such as 

electroencephalography (EEG) and electrocorticography (ECoG).  EEG records the activity of the 

brain using scalp electrodes and ECoG signals are recorded with subdural electrodes.  These are 

macroelectrodes placed surgically on the surface of the brain underneath the dura.  The changes 

in brain activity convey the user's intentions.  Some of the features that have been used to detect 

different mental states include slow cortical potentials (SCP) [9-12], P300 potential [13-17], as 

well as changes in power (amplitude) of oscillatory rhythms  [18-20].  These systems have been 

used successfully to control computer cursors in one and two dimensions [1,8,19-21] , generate 

text [11,13,22,23], and to select from a small set of options (e.g., yes/no) [15,17].  These 

implementations of BCI's are characterized by a small communication bandwidth making them 

suitable for providing assistance in communication to individuals who have lost all ability to 

perform voluntary movement, such as individuals with locked-in syndrome. 

Recently, there has been an increased interest in exploring the use of BCIs to restore 

movement in individuals with paralysis.  This broadens the clinical population that can benefit 

from BCIs to include individuals with spinal cord injury or stroke.  Inherently, this application 

carries the notion of using prosthetic devices, functional electrical stimulation systems, and 

external actuators (such as a robotic arm) as an extension or substitution of a body part that is 

affected by the disability.  For a transparent and intuitive operation of these devices through a 

BCI, it would be ideal to use neural activity which is correlated with the desired output to 

command the device.  For example, if the desired action was to open a prosthetic hand a BCI user 

would only have to focus on opening his or her own hand and the BCI would detect changes in 

brain activity resulting from the intention of opening the hand and would perform the desired 

action.  It has been shown that this type of correlation between neural signals and behaviour can 

be found in an individual engaged in voluntary movement (performed, imagined, or during 



preparation to perform a movement). 

The current challenges facing BCIs intended for restoration of movement are the 

detection and estimation of kinematic information as well as identification of specific movements.  

Some of the most important results in the detection and estimation of kinematic parameters in 

brain activity come from recordings of populations of single neurons using micro electrodes.  The 

firing frequency of neurons in the primary motor cortex [24-26] has been decoded to generate 

continuous control signals using both linear and nonlinear algorithms.  With this approach it has 

been possible to control a computer cursor in two [24, 27] and three dimensions [26] (within a 

simulated/virtual three-dimensional space), and control a robotic arm [26, 27].  This work has 

been conducted with monkeys and more recently with human participants [27, 28]. 

There are still important concerns regarding the stability and reliability of long-term 

single neuron recordings.  Two alternatives to recording the activity from individual neurons are 

local field potentials (LFP) and ECoG recordings.  LFPs are recorded using the same 

microelectrodes used to record the activity of individual neurons but they record the activity of a 

group of neighbouring neurons.  The analysis of LFPs and ECoG signals has shown that changes 

in amplitude of several frequency components in these signals reflect some kinematic aspects of 

arm movements.  These kinematic parameters include amplitude (range of motion) [29], direction 

of movement [3, 29-32], velocity, and position [33]. 

The detection of specific movements has included imagined movements, performed 

movements, and the intention to perform these movements.  Using EEG recordings it has been 

possible to discriminate between imagination of finger, tongue, left and right hand movements 

[34] as well as the intention to generate shoulder or elbow isometric contractions [35].  Using 

ECoG recordings, it has been possible to identify extension of the middle finger, palmar pinch, 

tongue protrusion and lip protrusion [36, 37], wrist extension, target tracking, finger sequencing 

and threading [38, 39] movements, hand and face movements as well as verbalization [40, 41].  It 

has also been possible to identify the body part (tongue, face, arm or leg) used to perform 
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sustained contractions [42, 43]. 

Recently a system proposed by Pfurtscheller et al. was also capable of discriminating 

between imagined foot, tongue, left hand, and right hand movements using EEG recordings [18].  

The same group has demonstrated that this type of BCI system can be used to control orthotic 

[44], prosthetic or neuroprosthetic [23, 45, 46] systems that would operate as state machines [47].  

Today we can confidently say that recordings from micro electrodes implanted in the 

motor cortex can be used to extract reliably, and in real-time, upper limb kinematics.  However, it 

remains unknown if similar information can be extracted using a system that applies significantly 

less specific recordings, such as ECoG recordings.  There are at least two advantages for using 

ECoG-based system.  First, ECoG electrodes are minimally invasive, especially those with four 

or six contacts, and have been used extensively and reliably for diagnostic and treatment purposes 

in the past [48, 49].  Second, using four or six recording sites dramatically simplifies the BCI 

system design and makes the system more feasible from engineering and clinical perspectives.  

Few recent studies have tried to address this challenge.  Some studies have been able to 

demonstrate that specific movements can be identified from ECoG recordings using 16 to 126 

ECoG electrodes.  Graimman et al. [37] were able to identify specific movements using a single 

ECoG electrode.  However, they first had to implant a group of 63 to 126 electrodes and through 

an elimination system were able to select the single electrode used for motor task identification 

through the ECoG recordings.  

The purpose of this study was to explore the possibility of identifying specific 

movements performed by an individual from four ECoG recordings.  The movements were 

performed using the same upper limb and likely involved areas of the body with close or similar 

representations in the motor cortex. A feature extraction algorithm was developed that was able to 

determine which arm movement was executed based on ECoG recordings alone.  The ECoG 

recordings were performed using standard subdural four-contact electrodes placed over the 

primary motor cortex (MI). 



2. Materials and Methods 

 

2.1 Participants 

Two individuals participated in this study.  Subject 1 was a 73 year old male individual with 

Parkinson’s Disease, and subject 2 was a 65 year old female with Essential Tremor. Both were 

recruited from the Movement Disorder Clinic of the Toronto Western Hospital. Neither subject 

exhibited action tremor or rigidity.  They were both medicated at the time of testing.  Subject 1 

showed mild signs of tremor and subject 2 did not show any signs of tremor after the electrode 

implantation. The participants gave written informed consent to participate in the study, which 

was approved by the University Health Network Research Ethics Board. 

Both participants received a system for direct brain stimulation (DBI) for the treatment of 

tremor.  This procedure began with the implantation of subdural electrodes followed by a period 

of several days in which the electrode leads were externalized and the characteristics of the 

electrical stimulation (i.e., amplitude, polarity, etc.) were fine tuned.  Both subjects had electrodes 

implanted in the left hemisphere.  This was followed by implantation of the pulse generator.  The 

study presented in this article was conducted during the time period when the electrode leads 

were externalized and at least two days after the electrodes were implanted.  

 

2.2 Electrodes 

Each participant was implanted with subdural 'Resume' electrodes (Medtronic 3586, 

Minneapolis, MN) consisting of a single row of four platinum discs (contacts) of 4 mm diameter 

and a centre-to-centre distance of 10 mm embedded in a silicone membrane (figure 1). Patients 

underwent craniotomy under local anaesthesia.  The electrode strip was implanted over MI area 

associated with the upper extremity representation.  The location of the electrodes was confirmed 
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using electrical stimulation and by observing contractions of the muscles on the contralateral 

upper limb (100 Hz, 100 ms, monopolar, 3-10 mA) [50].  Specifically, when stimulated subject 1 

produced the elbow flexion movement and subject 2 produced the hand closing movement.  For 

both participants, the electrodes were implanted for clinical and investigational reasons 

independent of the study presented here. 

 

2.3 Experimental Setup 

The study was conducted in the Epilepsy Monitoring Unit at the Toronto Western 

Hospital. The ECoG signals were acquired in a monopolar configuration referenced to Fz using 

an electroencephalographic digital system (XLTEK, Canada) on a dedicated personal computer 

with a sampling rate of 200 Hz and a bandwidth limited between 0.3-100 Hz. 

The movement of the upper limb was recorded using a six-dimensional (X, Y, Z, roll, 

pitch, and yaw) electromagnetic movement measurement system (Fastrak by Polhemus Inc., 

USA) and customized data acquisition software written in Visual Basic.  One Fastrak sensor was 

placed over the dorsal aspect of the third metacarpal bone. Three-dimensional position and 

rotation of this sensor was recorded at 40Hz.  The electromagnetic nature of the measurement 

system makes it vulnerable to interference from nearby large metallic objects and metallic objects 

placed between the transmitter and the receiver [51].  Metallic furniture was moved away from 

the experimental area in an effort to ensure that the recordings were unaffected by these objects.  

Due to the constraints of working in a clinical environment it was not possible to verify that the 

kinematic recordings were free of artefacts.  However, the temporal information of the 

movement, which is more important than the magnitude of the movements for the work presented 

here, was unaffected by near by metallic objects. Data collected by the motion recording system 



were synchronized with the data collected by the ECoG recording system using a temporal 

marker. 

 

2.4 Experimental Protocol 

ECoG signals and limb kinematics were recorded while each subject performed 

movements with the upper limb.  The motor tasks for subject 1 included elbow flexion (EF) as 

well as reaching to targets placed 30 cm to the right (RTR) and left (RTL) of the midline.  Subject 

2 performed reaching tasks RTR and RTL, as well as closing of the hand task (CH).  Figure 2 

shows the motor tasks that were performed by both subjects.  Table 1 shows the ranges of the 

performed movements. Since the ECoG electrodes were placed in the MI areas responsible for EF 

(subject 1) and CH (subject 2) tasks, it was an obvious choice to add tasks RTR and RTL to the 

pool of tasks tested because they involve muscle groups with cortical representations either in the 

same location or in close proximity to cortical representation of tasks EF and CH.  

All the movements were performed with the upper extremity contralateral to the site of 

electrode implantation while the subjects were sitting comfortably. The users received an auditory 

warning cue (“ready”) followed by an auditory execution cue (“go”).  The time between the ready 

and go signals was randomized between one and three seconds to avoid anticipation by the 

subjects. After the “go” cue was issued participants performed one of the tasks mentioned above 

(EF, RTR, RTL and CH). From the moment the “ready” cue was given until the participant 

completed the task the ECoG signals and movement kinematics were recorded simultaneously.  

Each movement was repeated 30 times.  The durations of each of the motor tasks are shown in 

table 1. 
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2.5 Analysis 

The kinematic recordings were up-sampled to 200 Hz using cubic spline interpolation 

and then synchronized with the ECoG signals.  The onset of movement was determined by 

observing the instant at which the magnitude of the movement recordings exceeded a threshold of 

5 % of the total movement range.  The initial position and orientation were defined as the value of 

the motion recorded at this instant.  For the purpose of analysis, each trial consisted of data 

starting 1500 ms prior and ending 3000 ms after the beginning of the kinematic recording.  A 

typical trial is shown in figure 3. 

 

Table 1.  Duration of movement, Available Trials, and Movement ranges for all 

kinematic dimensions recorded. 

    Range or Motion (Mean ± SD) 

Subject Task 
Duration  

(s) 

No. of 
good 
trials 

X 
(cm) 

Y 
(cm) 

Z 
(cm) 

ROLL
(deg) 

YAW 
(deg) 

PITCH 
(deg) 

1 EF 
0.94 

 ± 0.26 13/30 17.4 
± 3.4 

5.15 
± 0.8

6.9 
± 0.5 

65.8 
± 3.4 

64.4 
± 6.2 

47.9 
± 3.4 

1 RTR 0.94 
 ± 0.45 8/30 30.2 

± 19.6
25.8 
± 8.8

6.3 
± 1.2 

69.4 
± 23.3

58.2 
± 11.1 

41.8 
± 8 

1 RTL 0.87  
± 0.40 8/30 35.4 

± 4.9 
5.43 
± 1.2 

2.3 
± 0.6 

87.9 
± 3.7 

43.1 
± 13.6 

22.7 
± 4.1 

2 CH 0.99  
± 0.39 13/30 7.3 

± 1.1 
5.7 
± 5.6

7.3 
± 3.3 

157.6 
± 129.4

75.1 
± 13.7  

84.5 
± 44.7 

2 RTR 0.74  
± 0.14 9/30 31.8 

± 8.9 
40.8 
± 4.7

21.4 
± 2.3 

63.6 
± 25.7

27.7 
± 16.7 

51.7  
± 12 

2 RTL 0.83  
± 0.15 10/30 29.2 

± 10.4
43.5 
± 4.9

20.8 
± 6.6 

55.3 
± 14.8

47.7 
± 6.2 

43.6  
± 31.1 

 

Each trial was visually inspected to identify mistrials.  A mistrial was defined as: 1) a 

trial in which the individual had performed a movement different to what had been instructed; 2) 



the participant had started moving before the “go” auditory signal; 3) the movement had lasted 

more than three seconds; or 4) it was not possible to identify the onset of the movement.  

Mistrials were excluded from the analysis.  The total number of trials available for analysis after 

removing the mistrials is shown in table 1. 

Labelling contacts 1, 2, 3 and 4 of the ECoG electrodes as ECoG1, ECoG2, ECoG3 and 

ECoG4, respectively, the following combination of signals were subjected to our analysis:  

• four Monopolar (MP) signals: ECoG1, ECoG2, ECoG3 and ECoG4 

• three Differential Adjacent (DA) signals resulting from subtracting potentials of 

the adjacent electrodes: ECoG1 - ECoG2, ECoG2 - ECoG3 and ECoG3 - ECoG4  

• three Differential Nonadjacent signals (DN) representing the difference between 

potentials of the non-adjacent electrodes: ECoG1 - ECoG3, ECoG1 - ECoG4 and 

ECoG2 - ECoG4 

 

2.6 Feature Extraction 

The time-frequency distribution for each ECoG signal was estimated using the following 

method [29, 52].  Each signal was divided into segments of 640 msec (128 samples) by applying 

a Hamming window. A Fourier transform was then computed for the windowed ECoG signal 

resulting in a spectrum with a resolution of 1.56 Hz.  Then the window was shifted to the right by 

one sample and the procedure was repeated until the end of the ECoG signal was reached.  This 

resulted in a spectrogram consisting of a matrix in which each row represented the power 

spectrum of a windowed signal. Each column of this matrix represented a time series of the 

changes in power at different frequencies.  A Pearson correlation coefficient was calculated 

between each one of these time series and each of the six kinematic signals (X, Y, and Z, roll, 

yaw and pitch).  Any correlation coefficient with absolute value greater than 0.1 was considered 
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significant (p<0.01; degrees of freedom of statistics were 600).  For each of the kinematic 

components, we identified the frequency components with the highest absolute correlation 

coefficients. 

The frequencies that were found to be significantly correlated with movement were 

grouped in a histogram. A different histogram was created for each one of the six kinematic 

coordinates of the executed movement.  We explored four cases for the creation of the 

histograms: 1) the columns of the histogram had bin widths of 3 Hz (i.e., 0-3 Hz, 3-6 Hz, …, 96-

99 Hz); 2) the columns of the histogram had bin widths of 5 Hz (0-5 Hz, 5-10 Hz, …, 95-

100 Hz); 3) the columns of the histogram had bin widths of 7 Hz (0-7 Hz, 7-14 Hz, …, 91-

98 Hz); and 4) the columns of the histogram had bin widths of 10 Hz (0-10 Hz, 10-20 Hz, …, 90-

100 Hz).  These widths defined the spectral resolution of the histogram.  An attempt was made to 

use bin widths that would be either narrower or wider than the bandwidth of a common 

oscillatory rhythm.  For example, a 3Hz bin width had a smaller bandwidth than any of the four 

frequency bands (delta (<4 Hz), alpha (8-13Hz), beta rhythm (13 Hz-35Hz), and gamma (>35 

Hz)), while a 5 Hz bin width would cover completely some of the frequency bands. 

The magnitude of each bin in the histogram indicated the probability that the frequency it 

represented was correlated with the movement performed by the subject at the time of the 

recordings. The probability estimate was defined as the number of times a frequency bin was 

found to be correlated divided by the number of frequency components included in the histogram: 

L

FreqBin
P

ijkKin
iFreqBin

jk =_  (1) 

 

where |FreqBinik| is the number of spectral components in the i-th frequency bin FreqBin found to 

be correlated with the j-th kinematic dimension Kin of the k-th motor task and L is the number of 

spectral components used to create the histrogram.  Figure 4 shows an example of the end result 

of this process.  The entire histogram for kinematic dimension j of motor task k can then be 



represented as a vector of probabilities as: 

[ ]TKin
NFreqBin

Kin
FreqBin

Kin
FreqBin

Kin jkjkjkjk PPPP _2_1_ L=  (2) 

 

2.7 Classification Tests 

We created a system to identify off-line which movement was performed by an 

individual during the recordings.  Our goal was to determine the type of movement (i.e. EF, CH, 

RTR, RTL) that was performed by the individual by observing the ECoG features of a single trial 

using the process described above.  This was accomplished using a nearest neighbour classifier 

(NNC), which is an algorithm commonly used in automatic classification problems [53].  The 

NNC is capable of determining if an item belongs to any previously defined classes, each 

containing objects with similar characteristics or features.  The item’s membership is determined 

by measuring the similarities between its own features and the features of each one of the classes, 

selecting the class found to have the most similarity.  If each one of the features is considered to 

be a dimension in a multidimensional space it is possible to use geometrical distances, such as the 

Euclidean distance, to establish similarities.  In other words, the class with the shortest distance to 

the item that is classified is the most similar one. 

The magnitude of each column in the histograms was defined as a feature for the NNC; 

for any given motor task k, all of the features for each kinematic signal (X, Y, Z, roll, yaw and 

pitch) were concatenated to form a single feature vector kθ : 

 
T

KinMkkKinkKin
k PPP ⎥⎦

⎤
⎢⎣
⎡= L21θ  (3) 

 

where KinjkP  is defined by (2). 

 For each one of the movements performed we selected n trials and created their feature 
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vectors (as defined by (3)).  These vectors were averaged and used to create the classifier.  This 

process represented the training method for our classifier.  The remaining m-n trials, where m 

represents the total number of trials available for a specific movement, were used to test the 

classifier (i.e., the trials used to create the classifier were not used to test it).  Since the 

classification accuracy can depend greatly on the specific trials used to create the classifier, we 

repeated this process of devloping a clasifier 100 times, each time selecting at random the actual 

n trials used to create the classifier [54].  The reported accuracy was defined as the average 

acuracy of the individual accuracies of the 100 clasifiers developed as part of this process.  

The following five effects were statistically analyzed: 1) effect of the number of trials n 

used to train the classifier; 2) effect of the number of frequency components used to train the 

classifier; 3) effect of the kinematic dimensions used (X,Y, and Z only, or X, Y, Z, roll, yaw and 

pitch) to train the classifier; 4) effect of the type of ECoG signals used for the training, i.e., 

monopolar, differential adjacent, or differential nonadjacent signals; and 5) effect of the bin width 

used to generate the histograms.  A Kruskal-Wallis nonparametric analysis of variance was 

performed on the classifier accuracy to test for dependence against each of the six factors.  

Statistical significance was set at p < 0.05. Then, a multiple comparison test was performed 

within each factor to identify groups that yielded similar levels of accuracy. Confidence intervals 

of 95 % were constructed for each factor value and compared. 

 

2.7.1 Effect of the number of trials used to train the classifier. We tested the accuracy of the 

classifier versus the number of trials n used to create the feature vectors for training.  More 

specifically, we started by training the classifier with feature vectors created using a single trial 

(n=1) for each one of the performed movements and tested the classifier accuracy using the 

remaining data (m-n trials).  Once this process was completed, we created a classifier using 

feature vectors averaged over two trials (n=2) and the accuracy was estimated.  This process was 



repeated until the classifier was trained with feature vectors created with five trials (n=5).  The 

data used for testing included trials for all of the movements and was classified off-line.  The 

classification accuracy was defined as the number of trials correctly classified divided by the total 

number of classified trials. 

 

2.7.2 Effect of the number of frequency components used to train the classifier. We also explored 

the effect of the number of frequency components on the performance of the classifier.  To do 

this, we trained the classifier using a different number of spectral components (5, 10, 15, 20, 25, 

30, 35 and 40), selected according to the magnitude of their correlation coefficient with the 

different kinematic signals.  For example, when five spectral components were used to train the 

classifier the five frequencies with the highest absolute correlation values were selected to create 

the histograms.  Likewise, the frequency components with the ten highest absolute correlation 

coefficients were selected when the classifier was trained with ten spectral components. The 

different values tested for the number of spectral components as well as number of trials used to 

train the classifier resulted in 40 different tested combinations.  

 

2.7.3 Effects of the kinematic dimensions used.  We also investigated the effects of using different 

kinematic components on the accuracy of the classifier.  In other words, we determined if using 

all of the kinematic components for training and testing the classifier would result in higher 

accuracy or if better performance would be obtained by using only the X, Y, and Z coordinates.  

This was done to test the performance of the classifier using a smaller feature set.  Note that in a 

very limited number of experiments where the arm was moving in one plane (for example one of 

the X, Y and Z coordinates did not change at all), the correlation between at least one coordinate 

and ECoG signals was poor.  Although, in this case one may be tempted to remove the coordinate 

that has poor correlation to ECoG signals, it is our opinion that these particular cases actually 
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help the classifier identify them.  

 

2.7.4 Effects of the type of ECoG signals. We compared the effect of using monopolar (MP) 

ECoG signals against differential ECoG signals (DA and DN) electrodes.  This allowed us to 

determine if using monopolar signals or differential signals (representing differences between 

different monopolar signals) had any impact on the performance of the classifier. 

 

2.7.5 Effects of histogram bin width.   We also explored the effect of using bins representing 

different bandwidths to generate the histograms.  This gave us an opportunity to determine if the 

performance of the classifier was dependent on the bandwidth used to group spectral components. 

 



3. Results 

 

3.1 Correlation between ECoG spectral components and kinematic recordings 

The correlation coefficients between the kinematic recorings and ECoG spectral components used 

were in the range of 0.15± 0.006 to 0.63± 0.01 (mean ± SD).  These values were obtained 

averaging all of the available trials, movements and subjects.  Figure 5 shows an example of three 

spectral components with the highest correlation coefficients against position recordings (X,Y,Z) 

for a single RTR trial. 

 

3.2 Representation of correlated frequency components using histograms 

The histograms revealed consistent and unique distributions that were representative of the 

individual upper limb movements.  As shown in figures 6 and 7, each one of the movements 

generated a unique histogram for each of the kinematic dimensions. The histograms were also 

subject specific (i.e., histograms corresponding to the same movement were different for both 

subjects). 

 

3.3. Classification tests 

3.3.1 Effect of the number of trials used to create the training vectors for the classifier. The 

classification accuracy was highly dependent on the number of trials used for the classifier (p < 

0.0001), as can be seen in figure 8.  The lowest accuracies were obtained when using a single trial 

to train the classifier, while using 5 trials to generate the training feature vectors for the classifier 

yielded the highest accuracies.  

 

3.3.2 Effect of the number of frequency components used to create the training vectors for the 

classifier.  The number of spectral components used to create feature vectors to train the classifier 
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had a positive effect on the classification accuracy, as shown in figure 9, up to 20 spectral 

components.  Increasing the number of spectral components used to train the classifier beyond 20 

did not improve the classification accuracy, as confirmed by the multiple comparison test. This 

was tested for various ECoG signals namely monopolar, differential adjacent, differential 

nonadjacent, and combination of monopolar and differential adjacent signals. 

 

3.3.3 Effects on the kinematic dimensions used. There was no significant difference in 

classification accuracy as a result of using only X, Y and Z kinematic data versus all kinematic 

data, i.e., X, Y, Z, roll, yaw and pitch, to perform the classification (p<0.01).  The averages were 

estimated over all number of trials to train the classifier (1 to 5) and all number of spectral 

components tested (5 to 40). 

 

3.3.4 Effects on the type of ECoG. The accuracies obtained using monopolar, differential 

adjacent, differential nonadjacent, and combined monopolar AND differential adjacent AND 

differential nonadjacent signals were different (p < 0.0001) (see figures 8 and 9).  The accuracies 

achieved using differential adjacent and differential nonadjacent signals were significantly greater 

than those achieved using monopolar signals.  The difference between the accuracy obtained 

using differential adjacent and differential nonadjacent was not significant by the multiple 

comparison test.  The best accuracies were obtained using four or five trials to create the training 

vectors using differential nonadjacent differential signals. 

 

3.3.5 Effect on the size of the frequency bins used for the generation of the histogram. The size of 

the frequency bins used to create the histograms was found to have a positive effect on the 

classification accuracy, as can be seen in figure 10. The highest accuracies were obtained using 

frequency bins of 10 Hz and differential nonadjacent and differential adjacent signals (84.4% and 

81.2%, respectively).  Using a frequency bin of 3 Hz resulted in the lowest accuracies.  The 



multiple comparison test showed all of the accuracies obtained with different frequency bins to be 

significantly different except for frequency bins of 7 and 10 Hz. 

 

3.4 Summary 

Significant correlations were found between the spectral changes of ECoG signals and kinematic 

recordings.  The frequencies significantly correlated with movement forming consistent and 

unique distributions when grouped in a histogram, making it possible to classify specific 

movements. The classification accuracy was dependent on the number of trials and number of 

spectral components to create the classifier.  The performance of the classifier was also dependent 

on the type of ECoG signals and the size of the frequency bins used by the classifier.
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4. Discussion 

We presented a novel method for the identification of specific motor tasks from ECoG signals.  

The process described here is based on creating histograms representing the probability of 

correlation between spectral components of ECoG signals within predefined frequency bands and 

kinematic components of movement.  The distribution of the spectral components was found to 

be unique for the different motor tasks.  This allowed the use of the histograms as features to 

classify ECoG signals according to the specific movement that an individual had performed. 

The distributions of ECoG spectral components correlated with movement were different 

for the two participants in this study.  This was especially evident on the histograms generated 

while both individuals performed the same motor tasks (RTR and RTL).  As expected, this 

finding suggests that the ECoG features that can be used for the identification of specific motor 

tasks are subject specific. 

As expected, we showed that classification accuracy improved proportionally to the 

number of trials used to train the classifier.  However, our results suggest that it may be possible 

to achieve very good recognition accuracies using only 4 or 5 trials to create feature vectors to 

train the classifier. 

We determined that a higher number of spectral components used to create the vectors for 

training and classification increased the accuracy of the classifier.  The classification range of 

values tested (5, 10,…, 40) allowed us to see a plateau in the recognition accuracy.  This suggests 

that there is a maximum number of spectral components that can be used to train the classifier 

after which no significant improvements in recognition can be achieved.  In our results, the 

recognition accuracy reached a maximum value after approximately 20 spectral components. 

The spectral components correlated with the different kinematic components of each 

movement were grouped in histograms with bins of 3 Hz, 5 Hz, 7 Hz and 10 Hz.  We observed a 

proportional increase of classification accuracy, with the highest values obtained for the 



frequency bins of 10 Hz.  The accuracy was not affected by the kinematic recordings used to 

conduct our classification tests.  

Our results demonstrate that it is possible to use signals obtained with subdural electrodes 

with only four contacts placed over the motor cortex to classify movements performed by an 

individual. We were able to determine that using differential signals representing differences 

between monopolar signals greatly increases the performance of the classifier as compared to 

monopolar signals. This is likely because a large component of the monopolar signal is related to 

activities of the reference electrode rather than activities of the motor cortex.  In addition, the 

accuracy among the differential signals was greater when differential nonadjacent signals were 

used. This may be due to the fact that differential nonadjacent signals conveyed information over 

a larger area of the motor cortex as compared to differential adjacent signals.  

One advantage of using subdural electrodes in the context of brain-computer interfacing 

over systems that use scalp electrodes is an increased ability to record activity above 30 Hz.  

From the work presented here it was evident that frequencies greater than 40 Hz played an 

important role in the identification of the individual motor tasks.  This is consistent with results 

obtained by others [19, 21, 33, 36, 38, 55, 56]. In particular, there is mounting evidence that 

ECoG signals with frequencies between 100 and 200Hz may contain useful information 

pertaining to BCI applications [19, 21]. Technical limitations of the equipment used in our study 

did not allow us to acquire the ECoG signals at a higher rate than 200 Hz (traditional in clinical 

settings) and explore frequencies greater than 100 Hz. 

The fact that the participants of the study were not part of the target population of BCI 

technology may raise the question of whether or not the work presented here would be applicable 

to the targeted patient population.  The method presented here is based on establishing 

similarities, estimated by a correlation coefficient, between changes in power of frequency bands 

of ECoG signals and kinematic recordings.  It has been reported that in subjects with Parkinson’s 

Disease, changes in power in the 8-12Hz band begin closer to the onset of hand movements when 
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compared to control subjects [57].  Although it is unknown what specific effect this would have 

on the performance of the procedure presented here, there is the possibility that this difference in 

the temporal evolution of spectral changes, as related to voluntary movement, might affect the 

correlation values on which the presented method is based.  This might require modifications to 

the feature extraction process yet we feel confident that this classification method would work 

with diverse patient populations. In this particular study we had two patients with different 

diagnoses, namely Parkinson’s Disease and Essential Tremor, and the proposed clasification 

method worked well with both individuals and achieved identical clasification accuracy.  

To achieve the highest classification accuracy with the proposed BCI method one should 

use 10 Hz bins, five trials for training, and differential adjacent or differential nonadjacent ECoG 

signals. If these conditions are satisfied one should expect to have classification accuracies of 

89 % or higher. It is worth mentioning that this method requires a very low number of training 

trials (maximum five) to generate the classifier with such high classification accuracy. 

Furthermore, the method of classification, namely nearest neighbour classifier, is transparent, 

easy to implement and intuitive. The only deficiency of this method is that it requires an 

individual to complete the kinematic task before the classification can be carried out. Our 

immediate future work will be focused on developing a classifier that will be able to perform the 

classification while the task is being executed.  Our long-term goal is to apply this classification 

method to imagined movements. If successful, either of these two approaches will allow us to 

apply this classifier in real-time BCI applications.  

 



 

Acknowledgement 

We would like to thank Dr. Richard Wennberg of the Epilepsy Monitoring Unit at the 

Toronto Western Hospital for providing the facilities and support to conduct this project. We 

would also like to thank Dr. Pooya Pakarian, Dr. Danny Cunic, Dr. Clement Hamani, Dr. 

Noritaka Kawashima, and Ms. Carolyn Gunraj for their invaluable assistance. 

This work was financially assisted by the Toronto Rehabilitation Institute Student Scholarship 

Fund, Natural Sciences and Engineering Research Council of Canada, Canadian Fund for 

Innovation, Ontario Innovation Trust, and Ontario Ministry of Health and Long-Term Care, and 

the Canadian Institutes of Health Research. 



Correlation of ECoG and Arm Movements  

References 

[1] Wolpaw JR, Birbaumer N, Heetderks WJ, Peckham DJ, McFarland PH, Schalk G, Donchin E, 

et al. 2000 Brain-computer interface technology: a review of the first international meeting. 

IEEE Trans.Rehabil.Eng. Jun 8(2):164-173. 

[2] Friehs GM, Zerris VA, Fellows,Catherine L Ojakangas and Mathew R., Donoghue JP 2004 

Brain-machine and brain-computer interfaces. Stroke Nov 35(11 Suppl 1):2702-2705. 

[3] Mehring C, Nawrot MP, de Oliveira SC, Vaadia E, Schulze-Bonhage A, Aertsen A, et al. 

2004 Comparing information about arm movement direction in single channels of local and 

epicortical field potentials from monkey and human motor cortex. J.Physiol.Paris Jul-Nov 

98(4-6):498-506. 

[4] Kauhanen L, Nykopp T, Lehtonen J, Heikkonen,Pasi Jylänki and Jukka, Rantanen P, Alaranta 

H, et al. 2006 EEG and MEG brain-computer interface for tetraplegic patients. IEEE Trans 

Neural Syst Rehabil Eng Jun 14(2):190-193. 

[5] Kauhanen L, Nykopp T, Sams M 2006  Classification of single MEG trials related to left and 

right index finger movements. Clin.Neurophysiol. Feb 117(2):430-439. 

[6] Weiskopf N, Mathiak K, Bock SW, Veit,Frank Scharnowski and Ralf, Grodd W, Goebel R, et 

al. 2004 Principles of a brain-computer interface (BCI) based on real-time functional 

magnetic resonance imaging (fMRI). IEEE Trans.Biomed.Eng. Jun 51(6):966-970. 

[7] Cooper R, Binnie C, Billings R 2005 Techniques in Clinical Neurophysiology. : Elsevier  . 

[8] Wilson JA, Felton EA, Garell PC, Schalk G, Williams JC 2006 ECoG factors underlying 

multimodal control of a brain-computer interface. IEEE Trans.Neural Syst.Rehabil.Eng. Jun 



14(2):246-250. 

[9] Hinterberger T, Neumann N, Pham M, Grether,Andrea Kübler and Anke, Hofmayer N, 

Wilhelm B, et al. 2004 A multimodal brain-based feedback and communication system. 

Exp.Brain Res. Feb 154(4):521-526. 

[10] Hinterberger T, Schmidt S, Neumann N, Mellinger J, Blankertz B, Curio G, et al. 2004 

Brain-computer communication and slow cortical potentials. IEEE Trans.Biomed.Eng. Jun 

51(6):1011-1018. 

[11] Birbaumer N, Kübler A, Ghanayim N, Hinterberger T, Perelmouter J, Kaiser J, et al. 2000 

The thought translation device (TTD) for completely paralyzed patients. IEEE 

Trans.Rehabil.Eng. Jun 8(2):190-193. 

[12] Kübler A, Kotchoubey B, Hinterberger T, Ghanayim N, Perelmouter J, Schauer M, et al. 

1999 The thought translation device: a neurophysiological approach to communication in 

total motor paralysis. Exp.Brain Res. Jan 124(2):223-232. 

[13] Donchin E, Spencer KM, Wijesinghe R 2000 The mental prosthesis: assessing the speed of a 

P300-based brain-computer interface. IEEE Trans.Rehabil.Eng. Jun 8(2):174-179. 

[14] Krusienski DJ, Sellers EW, Cabestaing F, Bayoudh S, McFarland DJ, Vaughan TM, et al. 

2006 A comparison of classification techniques for the P300 Speller. J.Neural Eng. Dec 

3(4):299-305. 

[15] Sellers EW, Donchin E 2006 A P300-based brain-computer interface: initial tests by ALS 

patients. Clin.Neurophysiol. Mar 117(3):538-548. 

[16] Sellers EW, Krusienski DJ, McFarland DJ, Vaughan TM, Wolpaw JR 2006 A P300 event-

related potential brain-computer interface (BCI): the effects of matrix size and inter stimulus 



Correlation of ECoG and Arm Movements  

interval on performance. Biol.Psychol. Oct 73(3):242-252. 

[17] Sellers EW, Kubler A, Donchin E 2006  Brain-computer interface research at the University 

of South Florida Cognitive Psychophysiology Laboratory: the P300 Speller. IEEE 

Trans.Neural Syst.Rehabil.Eng. Jun 14(2):221-224. 

[18] Pfurtscheller G, Brunner C, Schlögl A, Silva FH Lopes da 2006  Mu rhythm 

(de)synchronization and EEG single-trial classification of different motor imagery tasks. 

Neuroimage May 31(1):153-159. 

Naeem M, Brunner C, Leeb R, Graimann B, Pfurtscheller G 2006Seperability of four-class 

motor imagery data using independent components analysis. J Neural Eng  Sep 3(3):208-216. 

[19] Leuthardt EC, Miller KJ, Schalk G, Rao RP, Ojemann JG 2006 Electrocorticography-based 

brain computer interface--the Seattle experience. IEEE Trans.Neural Syst.Rehabil.Eng. Jun 

14(2):194-198. 

[20] Yamawaki N, Wilke C, Liu Z, He B 2006 An enhanced time-frequency-spatial approach for 

motor imagery classification. IEEE Trans.Neural Syst.Rehabil.Eng. Jun 14(2):250-254. 

[21] Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW 2004  A brain-computer 

interface using electrocorticographic signals in humans. J Neural Eng Jun 1(2):63-71. 

[22] Neuper C, Müller GR, Kübler A, Birbaumer N, Pfurtscheller G 2003  Clinical application of 

an EEG-based brain-computer interface: a case study in a patient with severe motor 

impairment. Clin.Neurophysiol. Mar 114(3):399-409. 

[23] Pfurtscheller G, Müller-Putz GR, Schlögl A, Scherer BGaR, Leeb R, Brunner C, et al. 2006 

15 years of BCI research at Graz University of Technology: current projects. IEEE Trans 

Neural Syst Rehabil Eng Jun 14(2):205-210. 



[24] Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP 2002 Instant neural 

control of a movement signal. Nature Mar 14 416(6877):141-142. 

[25] Taylor DM, Tillery SI, Schwartz AB 2002  Direct cortical control of 3D neuroprosthetic 

devices. Science Jun 7 296(5574):1829-1832. 

[26] Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M, Chapin JK, et al. 2000 Real-

time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature Nov 

16 408(6810):361-365. 

[27] Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, et al. 2006 

Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature Jul 

442(7099):164-171. 

[28] Kennedy PR, Bakay RA, Moore MM, Adams K, Goldwaithe J 2000 Direct control of a 

computer from the human central nervous system. IEEE Trans.Rehabil.Eng. Jun 8(2):198-

202. 

[29] Toro C, Cox C, Friehs G, Ojakangas C, Gates RMaJR, Gumnit RJ, et al. 1994 8-12 Hz 

rhythmic oscillations in human motor cortex during two-dimensional arm movements: 

evidence for representation of kinematic parameters. Electroencephalogr.Clin.Neurophysiol. 

Oct 93(5):390-403. 

[30] Rickert J, Oliveira SCd, Vaadia E, Aertsen A, Rotter S, Mehring C 2005  Encoding of 

movement direction in different frequency ranges of motor cortical local field potentials. 

J.Neurosci. Sep 25(39):8815-8824. 

[31] Scherberger H, Jarvis MR, Andersen RA 2005 Cortical local field potential encodes 

movement intentions in the posterior parietal cortex. Neuron Apr 21 46(2):347-354. 



Correlation of ECoG and Arm Movements  

[32] Mehring C, Rickert J, Vaadia E, Oliveira SCd, Aertsen A, Rotter S 2003 Inference of hand 

movements from local field potentials in monkey motor cortex. Nat.Neurosci. Dec 

6(12):1253-1254. 

[33] Heldman DA, Wang W, Chan SS, Moran DW 2006 Local field potential spectral tuning in 

motor cortex during reaching. IEEE Trans.Neural Syst.Rehabil.Eng. Jun 14(2):180-183. 

[34] Hill NJ, Lal TN, Schroder M, Hinterberger T, Wilhelm B, Nijboer F, et al. 2006 Classifying 

EEG and ECoG signals without subject training for fast BCI implementation: comparison of 

nonparalyzed and completely paralyzed subjects. IEEE Trans.Neural Syst.Rehabil.Eng. Jun 

14(2):183-186. 

[35] Deng J, Yao J, Dewald JP 2005 Classification of the intention to generate a shoulder versus 

elbow torque by means of a time-frequency synthesized spatial patterns BCI algorithm. 

J.Neural Eng. Dec 2(4):131-138. 

[36] Graimann B, Huggins JE, Levine SP, Pfurtscheller G 2004 Toward a direct brain interface 

based on human subdural recordings and wavelet-packet analysis. IEEE Trans.Biomed.Eng. 

Jun 51(6):954-962. 

[37] Graimann B, Huggins JE, Schlögl A, Levine SP, Pfurtscheller G 2003 Detection of 

movement-related desynchronization patterns in ongoing single-channel electrocorticogram. 

IEEE Trans Neural Syst Rehabil Eng Sep 11(3):276-281. 

[38] Aoki F, Fetz EE, Shupe L, Lettich E, Ojemann GA 1999 Increased gamma-range activity in 

human sensorimotor cortex during performance of visuomotor tasks. Clin.Neurophysiol. Mar 

110(3):524-537. 

[39] Aoki F, Fetz EE, Shupe L, Lettich E, Ojemann GA 2001 Changes in power and coherence of 



brain activity in human sensorimotor cortex during performance of visuomotor tasks. 

BioSystems 63(1-3):89-99. 

[40] Levine SP, Huggins JE, BeMent SL, Kushwaha RK, Schuh LA, Passaro EA, et al. 1999 

Identification of electrocorticogram patterns as the basis for a direct brain interface. 

J.Clin.Neurophysiol. Sep 16(5):439-447. 

[41] Levine SP, Huggins JE, BeMent SL, Kushwaha RK, Schuh LA, Rohde MM, et al. 2000 A 

direct brain interface based on event-related potentials. IEEE Trans.Rehabil.Eng. Jun 

8(2):180-185. 

[42] Crone NE, Miglioretti DL, Gordon B, Sieracki JM, Wilson MT, Uematsu S, et al. 1998 

Functional mapping of human sensorimotor cortex with electrocorticographic spectral 

analysis. I. Alpha and beta event-related desynchronization. Brain Dec 121:2271-2299. 

[43] Crone NE, Miglioretti DL, Gordon B, Lesser RP 1998 Functional mapping of human 

sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related 

synchronization in the gamma band. Brain Dec 121:2301-2315. 

[44] Pfurtscheller G, Guger C, Müller G, Krausz G, Neuper C 2000 Brain oscillations control 

hand orthosis in a tetraplegic. Neurosci.Lett. Oct 292(3):211-214. 

[45] Pfurtscheller G, Müller GR, Pfurtscheller J, Gerner HJ, Rupp R 2003  'Thought'--control of 

functional electrical stimulation to restore hand grasp in a patient with tetraplegia. 

Neurosci.Lett. Nov 351(1):33-36. 

[46] Müller-Putz GR, Scherer R, Rupp,Gert Pfurtscheller and Rüdiger 2005  EEG-based 

neuroprosthesis control: a step towards clinical practice. Neurosci.Lett. 382(1-2):169-174. 

[47] Popovic MR, Keller T, Pappas IP, Dietz V, Morari M 2001  Surface-stimulation technology 



Correlation of ECoG and Arm Movements  

for grasping and walking neuroprosthesis. IEEE Eng.Med.Biol.Mag. 20(1):82-93. 

[48] Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. 2005 

Deep brain stimulation for treatment-resistant depression. Neuron Mar 45(5):651-660. 

[49] Lozano A 2001  Deep brain stimulation for Parkinson's disease. Parkinsonism Relat.Disord. 

Jul 7(3):199-203. 

[50] Hanajima R, Ashby P, Lang AE, Lozano AM 2002 Effects of acute stimulation through 

contacts placed on the motor cortex for chronic stimulation. Clin.Neurophysiol. May 

113(5):635-641. 

[51] An KN, Jacobsen MC, Berglund LJ, Chao EY 1988 Application of a magnetic tracking 

device to kinesiologic studies. J.Biomech. 21(7):613-620. 

[52] Pfurtscheller G, Aranibar A 1977  Event-related cortical desynchronization detected by 

power measurements of scalp EEG. Electroencephalogr.Clin.Neurophysiol. Jun 42(6):817-

826. 

[53] Cover T, Hart P 1967 Nearest Neighbor Pattern Classification. IEEE Trans.Inf.Theory 

13(1):21-27. 

[54] Duda RO, Hart PE, Stork DG 2001Pattern classification. 2nd ed. New York: Wiley;. 

[55] Pfurtscheller G, Graimann B, Huggins JE, , Levine SP, and Schuh LA 2003 Spatiotemporal 

patterns of beta desynchronization and gamma synchronization in corticographic data during 

self-paced movement. Clin.Neurophysiol. Jul 114(7):1226-1236. 

[56] Gonzalez SL, Grave de Peralta R, Thut G, Millan Jdel R, Morier P, Landis T 2006 Very high 

frequency oscillations (VHFO) as a predictor of movement intentions. Neuroimage Aug 1 



32(1):170-179. 

[57] Magnani G, Cursi M, Leocani L, Volonte MA, Locatelli T, Elia A, et al. 1998 Event-related 

desynchronization to contingent negative variation and self-paced movement paradigms in 

Parkinson's disease. Mov.Disord. Jul 13(4):653-660. 

 



Correlation of ECoG and Arm Movements  

 

 

Figure 1. (a) Physical characteristics of the subdural electrodes used in this study.  Both subjects 

were implanted with subdural electrodes over the motor cortex.  The contacts were made of 

platinum embedded in a silicone sheet to provide structural support.  (b) X-ray image showing 

the implanted subdural electrodes for subject 2. 

 



  

  

Figure 2.  Movements performed by the participants of the study: (a) elbow 

flexion (EF), (b) closing hand (CH), (c) reaching to a target placed 30 cm to the 

right of the individual’s midline (RTR), and (d) reaching to a target placed 30 cm 

to the left of the individual’s midline (RTL). Subject 1 performed tasks EF, RTR, 

and RTL.  Subject 2 performed tasks CH, RTR and RTL. 
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Figure 3.  Example of the data recorded in our experiments.  The onset of movement (t=0 sec) was 

defined as the moment in which the magnitude of the movement reached 5 % of its total amplitude. 



 
 

Figure 4.  Distribution of ECoG frequency components correlated with the X-coordinate while 

subject 1 was performing elbow flexion (EF).  The magnitude of each bin in the histogram indicates 

the probability that the frequency it represents is correlated with the kinematic dimension. The 

probabilities of each ECoG signal for each configuration tested (MP, DA, and DN) signal 

combinations have been averaged. 
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Figure 5.  Example of correlated spectral components and kinematic recordings.  The spectral 

components shown were found to have the highest correlation coefficients for a single trial 

(reaching to the right - RTR).  Consistent with observations in the time domain, the spectral 

component (10.93 Hz) correlated with the Y component of movement contains more power than 

the other to shown spectra (57.81 Hz and 51.56 Hz). 

 
 



 

 

Figure 6.  Histograms obtained using frequency bins of 10 Hz for Subject 1.  Each one of the 

movements generated a different histogram for each one of the coordinates. 
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Figure 7.  Histograms obtained using frequency bins of 10 Hz for Subject 2.  Each movement 

generated a different histogram for each one of the coordinates.  



 
 

 
 

Figure 8.  Classification accuracy obtained with different number of trials used to create the 

feature vectors used to train the classifier. The graph was generated using all of the frequency bin 

widths (3 Hz, 5 Hz, 7 Hz and 10 Hz) to group the spectral components in the histogram and all 

kinematic information (X, Y, Z, roll, yaw and pitch).  The values shown represent the accuracies 

obtained averaged across all of the frequency components (5, 10, …, 40). The classification 

accuracy was highly dependent on the number of trials used for the classifier (p < 0.001).  The 

difference in classification accuracy between using four and five trials to train the classifier was 

found to be insignificant by the multiple comparison test. Accuracy prediction using a quadratic 

model of the data revealed that accuracy did not improve significantly beyond 5 trials.   
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Figure 9.  Classification accuracy obtained with different number of spectral components to 

create the feature vectors to train the classifier.  The graph was generated using 5 Hz and 10 Hz 

frequency bins to group the spectral components in the histogram and all kinematic information 

(X, Y, Z, roll, yaw and pitch).  The values shown represent the accuracies obtained averaged 

across all of the number of trials tested (1 through 5).  The number of spectral components used 

to create training vectors to train the classifier had a positive effect on the classification accuracy.  

For all of the cases (DA, DN, MP, and MP & DA) the differences in accuracy were not 

significant when 20 or more spectral components were used to train the classifier, which was 

confirmed by the multiple comparison test. 



 

Figure 10.  Effect of the size of the frequency bins used to group spectral components on the 

classification accuracy.  The size of the frequency bins used to create the histograms was found to 

have a positive effect on the classification accuracy.  The multiple comparison test showed all of 

the accuracies obtained with different frequency bins to be significantly different. 

 

 

 

 

 


